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Abstract. Programs accessing disk-resident arrays, called out-of-core programs,
perform poorly in general due to an excessive number of I/O calls and insufficient
help from compilers. In order to alleviate this problem, we propose a data layout
optimization in this paper. Experimental results provide evidence that our method
is effective for out-of-core nests whose data sizes far exceed the size of memory.

1 Introduction

An important characteristic of out-of-core computations is that the large data structures they
access do not fit in main memory. Consequently, the data has to be stored on disk, and brought
into memory only when they are to be processed. The time spent on these disk accesses is the
primary determinant of the performance of out-of-core programs. Two main issues related with
these large data structures are (1) when and how to transfer them between different levels of
memory hierarchy, and (2) how to operate on them. It is certainly true that over the years, the I/O
subsystems of parallel machines have evolved from simple-minded architectures that reserve a
single processor for I/O to sophisticated systems where a number of I/O nodes can collectively
perform I/O on behalf of all compute nodes. However, in general, it has been difficult to exploit
these capabilities.

Several aspects of of the software support system for out-of-core computations have been
addressed so far. Most of the previous research has focused on operating systems, parallel file sy-
stems, run-time libraries and applications themselves. In particular, run-time libraries and parallel
file systems have received a lot of attention recently, resulting in a number of powerful and fast
run-time libraries as well as a few commercial parallel file systems. In spite of these advances,
it is very important for the user to exploit this capacity; inserting calls to library functions is
tedious, error-prone and results in programs whose performance varies widely from machine to
machine. Even in cases where a user is allowed to convey semantic information to the library, the
programmer faces the burden of ensuring that what is provided is indeed correct.

In this paper we offer a less widely studied alternative to deal with the I/O problem at the
software level. Instead of relying on programmer-supplied information to the run-time libraries
and parallel file systems, we use techniques based on compiler analysis to obtain high-level infor-
mation about the data access behavior of the scientific codes.After the information is collected, the
compiler can plug it into a run-time system and/or parallel file system. Thus our approach is based
on the idea of dividing responsibility between compiler and run-time system. This, in principle,
should work as current optimizing compilers for shared and distributed memory machines are
successful in detecting the data access behavior of scientific programs. Using the relevant infor-
mation, a compiler can restructure the code such that I/O will be less of a bottleneck. In low-level
terms, this restructuring of code should result in two improvements: first, the number of accesses to
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the disk subsystem should be reduced; secondly, the volume of data transferred between memory
and disk system should be reduced. Overall, these reductions will lead to reduced I/O overhead,
which in turn, hopefully, will reduce the execution time of the codes.

The rest of this paper is organized as follows. In Section 2, we elaborate on why cache memory
oriented techniques may not work well for I/O intensive applications, and motivate the need for
data-oriented techniques to improve the performance. In Section 3 we present an overview of
our data restructuring framework. In Section 4, we give preliminary experimental results on three
example kernels. In Section 5 we discuss related work and conclude the paper in Section 6.

2 Existing Techniques

Our main goal is to improve the file locality exhibited by out-of-core programs. Of course, a
simple way of looking at this problem is to think of the disk subsystem as yet another level in
the memory hierarchy, and apply the code restructuring techniques [7] available for optimizing
the performance of cache–main memory hierarchy. While in some cases this approach can work
reasonably well, the observation of the following fact is important: The techniques developed
for optimizing cache–main memory performance are access pattern oriented; that is the main
goal there is to change the access pattern of the program (specifically the order of the loops in
programs) to obtain an optimized program such that the majority of data accesses is satisfied from
cache instead of memory. Improving data localityindirectly by changing the access pattern is
problematic for main memory–disk hierarchy because of two points:

(1) The applications that use memory–disk hierarchy frequently are I/O intensive. They do
I/O either because the data that they handle are too big to fit in the memory as in out-of-core
computations or the data should be written into (read from) disk in regular intervals as in check-
pointing, or visualization or a combination of both. The main issue here is the data itself; that is,
the restructuring techniques should focus more on the data (instead of the access pattern) and seek
ways to improve the transfer of data between disk and memory.

(2) Restructuring techniques for cache memories are in general limited by data dependences.
That is, data dependences may prevent some locality optimizations from taking place. In the case
of cache memories, this is fine for many programs. But for I/O intensive programs, traditional
loop restructuring techniques are not sufficient since the penalty for going to the disk instead of
memory can be very severe.

Thus, it is important for restructuring techniques for I/O intensive programs to be “data-
oriented” rather than “control-oriented” (e.g., program dependences). With these issues in mind,
we offer a program restructuring technique based on data layout transformations for out-of-core
dense matrix computations. Specifically, our technique detects the optimal layouts in files and
memory for out-of-core arrays referenced in a program. The overall effect is a much better I/O
performance in terms of the number of I/O calls, the I/O volume and hence the execution time.

In order to explain the problem with loop transformation based techniques in detail, we
considerloop permutation[7], a well-known transformation to improve locality in loop nests.
Assuming column-major layouts, the locality of the code in Figure 1(a) will be poor, because
successive iterations of the innermost loop touch different columns of the array. Loop permutation
can improve the performance byinterchangingthe order of the loops; the resulting code shown in
Figure 1(b) has good locality. Unfortunately, loop interchange may not be possible in every case.
Consider the code in Figure 1(a) again, this time assuming that there is another right hand side
referenceA(i-1,j+1). In this case, the data dependence [7] due to this and the left hand side
reference prevents loop interchange.

Our objective is to derive an optimized out-of-core version of a program from its in-core
version. Specifically, we would like to determine optimal file layouts for the arrays referenced in the
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program. The input to our framework is a program annotated (by user or compiler) using compiler
directives that indicate which arrays are out-of-core. The output is a layout–optimized program
which includes I/O calls to a run-time system as well as communication calls (for message-passing
machines).

Since the size of an out-of-core array is larger than the memory available, the array should
be divided into chunks such that each chunk can fit into memory. At a time, for a given array,
only a single data chunk can be brought from file into memory, can be operated on and (if it is
modified) stored back in file. In handling a data chunk, there are two main issues: (1) how to
read/write it from (into) file efficiently; and (2) how to process it efficiently. The first issue is very
important as file I/O is much more expensive as compared to memory or processor operations in
terms of latency. An efficient compilation framework should minimize the file access time. This
can be achieved by reducing the number of I/O calls as well as the volume of the transferred
data. Reducing the number of I/O calls is more important, because it is the dominant factor. The
second issue is related to the efficient use of memory which is a valuable resource in out-of-core
computations. In essence, the elements of a data chunk that are brought into memory should be
reused as much as possible before they are stored back on file. There is no point in bringing a data
chunk when the ongoing computation will use only a part of it.

To see how the compilation of out-of-core arrays is handled, we again consider the program
in Figure 1(a), assuming that the referenceA(i-1,j+1) is also there. Suppose thatA is ann × n
out-of-core array and resides in a file with a column-major layout and brought into memory in
chunks whose sizes and orientations are dictated by the innermost loop.Assuming thatM is the size
of memory allocated for this array and at mostn consecutive items can be read/written in a single
I/O call, to read a chunk of size (M/n)×n from file into memory (as shown in Figure 2(a)) will
entailn I/O calls, each of which is for a sub-column of data of sizeM/n. For the entire execution
of the code,n3/M I/O calls should be issued. Of course, one might think of bringing a chunk
of sizen×(M/n) (instead of size of (M/n)×n) by issuing onlyM/n I/O calls (instead ofn) for it
(see Figure 2(b)). Unfortunately, this is not very useful, as due to the access pattern, most of the
data in this chunk will not be assigned new values as they are themselves dependent on the data
which will be residing in file. The source of the problem here is that the data should not be stored
as column-major in file. Rather, if it is stored as row-major as illustrated in Figure 2(c), then an
(M/n)× n size data chunk can be brought into memory and operated on by issuing onlyM/n I/O
calls. Therefore, it is possible to minimize the number of I/O calls by changing the file layout of
the data.

To see the difference in performance between column-major and row-major file layouts quan-
titatively, consider Figure 3. The figure on the left shows (on a log scale) the number of I/O calls
issued by the two versions (column-major and row-major file layouts) for different input sizes
(n) between2K and10K elements. The memory size (M) is fixed at4M elements for illustrative
purposes. We note that when the input size is increased, the gap between the number of I/O calls
in the two versions widens. The figure on the right illustrates the number of I/O calls when the
memory size is varied and the input size is fixed at4K elements. As one would expect,16M
elements is the minimum memory size to accommodate all the data. These figures indicate that
with a careful choice of file layouts,huge savings can be obtained in the number of I/O calls issued
in an application.

More importantly, file layout transformations, in most cases, do not get affected by data
dependences; because they do not change the access order, they just rename the data points (array
elements). This gives the file layout transformations a capability to optimize some loop nests
where iteration space based optimization techniques fail due to existing data dependences.

We note that what we have done for this nest istiling, a well-known transformation technique
[7]. However, instead of tiling the iteration space first and then focusing on the data requirements of
individual tiles, we first tile the data space and then execute all the iterations that assign new values
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DO i = 2, n
DO j = 2, n

A(i,j) = A(i-1,j) + A(i,j-1)
END DO

END DO

(a)

DO j = 2, n
DO i = 2, n

A(i,j) = A(i-1,j) + A(i,j-1)
END DO

END DO

(b)

Fig. 1. (a) Original program. (b) Transformed program. [The transformed program exhibits good
spatial locality for column-major memory layout].

i i i 

j j j 

n 

M/n

: a data element and dependences 

(a) (b) (c)

Fig. 2. Different memory layouts of the array accessed in Figure 1. [The shaded block in each
figure denotes a data tile (chunk). The dashed arrows indicate the storage order of the array. Except
near the boundaries, each data element is dependent on three others. An example data element and
its dependences are also shown].

to the elements of the tile currently stored in memory. Our file layout transformation allows us to
read an (M/n)×n data tile by issuing justM/n I/O calls. In this example, a simple column-major to
row-major layout conversion (i.e., a dimension permutation) is sufficient to optimize the layout.
In general, a compiler may have to deal with more complex data layouts. In the next section, we
focus on detecting optimal file layouts automatically by using a simple linear algebra techniques
using hyperplanes.

3 Layout Restructuring Framework

In this section, we outline a method using which an optimizing compiler can restructure array
layouts. The method was originally developed for in-core computations to determine memory
layouts for optimal cache performance; but with appropriate modifications it can be adapted for
out-of-core programs. In the out-of-core computation domain, this approach reduces the number
of I/O calls as well as the volume of data transferred between disk and memory. The details of
the approach can be found in [4]. In order to keep the presentation simple, we focus only on two-
dimensional out-of-core arrays. However, our method works with arrays of any dimensionality.
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3.1 Preliminaries

We focus on programs where array subscript expressions and loop bounds are affine functions
of enclosing loop indices or constants. Under this assumption, each array reference to anm-
dimensional array that occurs in ak-deep loop nest can be represented byLĪ + ō, where the
access (or reference) matrixL is of sizem × k and the offset vector̄o is of sizem. For example,
the referenceA(i-1,j) in Figure 1(a) can be represented byLĪ + ō, where

L =

(
1 0
0 1

)
, Ī =

(
i
j

)
, ō =

(
−1

0

)

Notice that access pattern in the innermost loop is captured by the last column ofL.

3.2 Hyperplanes and File Layouts

In anm-dimensional data space, ahyperplanecan be defined as a set of tuples

{(a1, a2, ..., am) | g1a1 + g2a2 + ... + gmam = c}
whereg1, g2,...,gm are rational numbers called hyperplane coefficients andc is a rational number
called hyperplane constant [6]. For convenience, we use a row vectorgT = (g1, g2, ..., gn) to
denote an hyperplane family (for different values ofc) whereas̄g corresponds to the column vector
representation of the same hyperplane family. At least one of the hyperplane coefficients should
be non-zero.

In a two-dimensional data space, the hyperplanes are defined by(g1, g2). We can think of a
hyperplane family as parallel lines for a fixed coefficient set and different values ofc.An important
property of the hyperplanes is that two data points (array elements)(a, b) and(c, d) belong to the
same hyperplane if

(g1, g2)

(
a
b

)
= (g1, g2)

(
c
d

)
(1)

For example,(g1, g2) = (0, 1) indicates that two elements belong to the same hyperplane as long
as they have the same value for the column index (i.e., the second dimension); the value for the
row index does not matter.

It is important to note that a hyperplane family can be used to partially define the file layout
of an out-of-core array. In a two-dimensional case(0, 1) is sufficient to indicate that the elements
in a column of the array (i.e., the elements in a hyperplane with a specificc value) will be stored
consecutivelyin file and will havespatial locality. The relative order of these columns are not
important provided the array is large enough compared to the memory size which is the case
in out-of-core computations. Similarly, the hyperplane vectors(1, 0) and(1, −1) correspond to
row-major and diagonal file layouts, respectively.

3.3 Determining Optimal File Layouts

The following claim gives us a simple method to determine optimal file layout for a given reference
to have spatial locality in the innermost loop (see [4] for the proof).

Claim. Consider a referenceLĪ + ō to a two-dimensional array inside a loop nest of depthk
where

L =

(
a11 a12 · · · a1k

a21 a22 · · · a2k

)

In order to have spatial locality in the innermost loop, this array should have a layout represented
by a hyperplane(g1, g2) such that(g1, g2) ∈ Ker{(a1k, a2k)T }.
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Returning to our example in Figure 1(a), using this result, we have(g1, g2) ∈ Ker{(0, 1)T }
which means(g1, g2) = (1, 0) is the spanning vector for thatKer set (null set). This vector
corresponds to the row-major layout; therefore, in order to have spatial locality in the innermost
loop, the array should have a row-major file layout

4 Preliminary Results

In this section, we present performance results for three example programs: an out-of-core matrix
transpose nest, an out-of-core matrix multiplication nest, and the Fast Fourier Transform (FFT).
For each case, we report the I/O times on an Intel Paragon message-passing machine. The machine
that we used had56 compute nodes,3 service nodes, and one HIPPI node. Each compute node is
an Intel i860 XP microprocessor with32 MBytes of memory.

Matrix transpose:Figure 4(a) shows the I/O times for an out-of-core matrix transpose nest
which transposes an out-of-core array into another. Each array is of size2048 × 2048 double
elements and only256 KBytes of the memory of each compute node is used. Note that this small
amount of memory makes the problem out-of-core. We conducted experiments with4, 8, and16
processors. The results show that optimizing file layouts can lead to huge savings in I/O times.
The super-linear speedups in this case are due to memory effects.

Matrix multiplication: Figure 4(b) shows the I/O times for an out-of-core matrix multiplication
routine that computesC = A × B, whereA, B, andC are2048 × 2048 out-of-core matrices. The
results here are not as impressive as those of the matrix-transpose example. The reason is that due
to the access pattern of the loop nest, only two of the three arrays could be layout-optimized. The
improvements are between6% and26%.

FFT: The fast Fourier Transform (FFT) is widely used in several scientific and engineering
problems. The 2-D out-of-core FFT consists of three steps: (1) 1-D out-of-core FFT, (2) 2-D out-
of-core transpose, and (3) 1-D out-of-core FFT. The 1-D FFT steps consist of reading data from
a two-dimensional out-of-core array and applying 1-D FFT on each of the columns. Of course,
in order to perform 1-D out-of-core FFTs the data on disk should be strip-mined into processors
memory. After this, the processed columns are written to the file. In the transpose step, the out-
of-core array is staged into memory, transposed and written to file. The innermost loop of the
transpose routine uses two files that are accessed by all processors. In the original program, file
layout for these two arrays is column-major. The transpose is performed by reading a rectangular
data tile from one of the files, transposing it in the local memory, and writing it in the other file.
Since both the files are column-major, optimizing the block dimension for one array has a negative
impact on I/O performance of the other array, resulting in the poor I/O performance observed in
Figure 5(a) and the poor overall performance shown in Figure 5(b) (for2048 × 2048 double
arrays). If we store one of the arrays in row-major order the I/O performance of both the arrays
improve. This is evident from Figures 5(a) and (b).

5 Related Work

Due to lack of space, we discuss related work on compilation of dense matrix codes which access
out-of-core arrays. Brezany et al. [1] perform I/O optimizations in out-of-core compilation in a
compilation framework with a runtime system called VIPIOS. The user provides hints for the I/O
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Fig. 3.The number of I/O calls in example shown in Figure 1 as a function of the input size (left)
and the memory size (right).
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modes, I/O distribution etc., using the language constructs. Paleczny et al.[5] incorporate out-of-
core compilation techniques with Fortran D. The main philosophy behind their approach is to
choreograph I/O from disks along with the corresponding computation. Their idea, however, is
based on computation re-ordering, and therefore is different from ours. Cormen and Colvin [2]
introduce ViC* (Virtual C*), a preprocessor which transforms a C* program that uses out-of-core
data structures into a program with appropriate library calls from the ViC* library in order to
read/write data from/to disks. Finally, the previous work of the authors [3] considered unified loop
and file layout transformations. However, the search space for possible file layout transformations
was restricted to the dimension-wise transformations (e.g., from column-major to row-major). As
against to that work, the approach presented in this paper uses a more powerful technique based
on hyperplanes.

6 Summary and Ongoing Work

In this paper, we have presented an approach that can optimize file layouts of multi-dimensional
out-of-core arrays. The approach can work with a large set of layouts which can be expressed
using hyperplanes. In practice, the technique can optimize affine accesses to out-of-core arrays
in two different yet complementary ways: (1) by reducing the number of file accesses, and (2)
by reducing the data volume transferred between disk and main memory. The combined effect of
these is a reduction in I/O as well as the overall execution time. The main issue that we are dealing
with currently is to design a conflict resolution scheme that can decide near-optimal file layouts
in cases where an out-of-core array is accessed with conflicting access patterns. This will allow
us to apply our technique to longer programs. Another important issue is to combine computation
reordering transformations with the layout optimization technique offered in this paper.
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