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Abstract 

This paper presents a new integrated compiler framework for im- 
proving the cache performance of scientific applications. In ad- 
dition to applying loop transformations, the method includes data 
layout optimizations, i.e., those that change the memory layouts of 
data structures (arrays in this case). A key characteristic of this ap- 
proach is that loop transformations are used to improve temporal 
locality while data layout optimizations are used to improve spatial 
locality. This optimization framework was used with sixteen loop 
nests from several benchmarks and math libraries, and the perfor- 
mance was measured using a cache simulator in addition to using 
a single node of the SGI Origin 2000 distributed-shared-memory 
machine for measuring actual execution times. The results demon- 
strate that this approach is very effective in improving locality and 
outperforms current solutions that use either loop or data transfor- 
mations alone. We expect that our solution will also enable better 
register usage due to increased temporal locality in the innermost 
loop, and that it will help in eliminating false-sharing on multipro- 
cessors due to exploiting spatial locality in the innermost loop. 

1 introduction 

High performance computers of today extensively use multiple lev- 
els of memory hierarchies. This renders the performance of ap- 
plications critically dependent on their memory access character- 
istics. In particular, careful choice of memory-sensitive data lay- 
outs and code restructuring appear to be crucial. Unfortunately, 
the lack of automatic tools forces many users and in particular li- 
brary writers to manually restructure their code. The problem is ex- 
acerbated by the increasingly sophisticated nature of applications. 
Manual restructuring requires a clear understanding of the impact 
of the machine architecture, is tedious and error-prone, and results 
in severely reduced portability. In this paper we present and eval- 
uate a compiler framework for improving the cache performance 
of scientific applications using a careful combination of loop trans- 
formations and data layout optimizations. The kind of data layout 
optimizations considered here include memory layout changes such 
as row-major or column-major storage of multi-dimensional arrays 
(which are common data structures in regular scientific applica- 
tions). We will refer to data layout optimizations as data transfor- 
mations. 

Traditionally, loop transformations [4, 8, 14, 17,211 have been 
the main techniques used to improve locality by changing the ac- 
cess pattern as a result of changing the order of execution of loop 
iterations. The effect of loop transformations is local, i.e., a loop 
transformation affects only the loop nest to which it is applied, and 
both temporal and spatial locality may improve as a result. But 
loop transformations are not always legal, and they affect all arrays 
in a loop nest some of them perhaps adversely. In a sense, loop 
transformations impact locality indirectly as a result of changing 
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execution order. In addition, loop transformations are not readily 
applicable to imperfectly nested loops. 

Data transformations [l, 16, 191 such as changing the memory 
layout of (multi-dimensional) arrays from column-major to row- 
major or vice-versa are almost always legal; however constructs 
such as pointer arithmetic in C and common blocks in Fortran may 
prevent memory layout transformations by exposing unmodifiable 
layouts to the compiler. Data transformations are equally useful 
for imperfectly nested loops as well. The effect of a data transfor- 
mation is global in the sense that decisions regarding the memory 
layout of an array inlluence the locality characteristics of every part 
of the program that accesses the said array. A key drawback is that 
data transformations do not improve temporal locality [ 161. 

Given these advantages and drawbacks of loop and data trans- 
formations, neither of these by itself is fully effective in optimizing 
locality in scientific codes. Cierniak and Li [5] show that some 
programs benefit most from a combined approach that consists of 
iteration space (loop) as well as data space (array layout) transfor- 
mations. In deriving a combined approach, the following important 
questions need to be addressed: 

(1) How will these two transformation techniques be integrated? 
In what order will these be applied to programs? 

(2) What is the set of transformations considered (allowed) in 
loop and data transformations? 

The first question is difficult to answer in general. Our approach is 
based on the following simple observation mentioned earlier: data 
transformations may only affect spatial locality whereas loop trans- 
formations affect temporal as well as spatial locality. Setting off 
with this observation, we take the following approach: first using 
loop transformations, optimize as much temporal locality as pos- 
sible; then for references that do not exhibit temporal locality use 
data transformations to improve spatial locality. Therefore, a dis- 
tinctive feature of our approach is that it improves locality by using 
(a) loop transformations exclusively to improve temporal locality; 
and (b) using data transformations exclusively to improve spatial 
locality. Our solution starts with the detection of the amount of 
different types of reuse [21] in a loop nest. Then a subset of the 
references is optimized for temporal locality using loop transfor- 
mations. Next, the references within the loop nest are divided into 
two groups: the ones with optimized temporal locality, and the ones 
that do not exhibit temporal locality. For the latter group of refer- 
ences, we apply data transformations to enhance their spatial local- 
ity. It should be emphasized that since data transformations never 
degrade temporal locality, this order of application seems quite rea- 
sonable. Regarding the second question posed above, in this paper, 
we use unimodular loop (e.g., interchange, reversal, etc.) and uni- 
modular data transformations (e.g., row-major to column-major); 
this is due to the fact that unimodular transformations preserve the 
volume of the iteration or data space [2]. 

This paper is organized as follows. In the next section we define 
data reuse and discuss the basics of loop and data transformations. 
In Section 3 we present our integrated approach through several ex- 
amples. In Section 4 we show how our approach can be extended to 
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optimize multiple loop nests simultaneously. We report preliminary 
results in Section 5. Section 6 reviews related work and Section 7 
concludes with summary and an outline of planned future work. 

2 Preliminaries 

In this section we discuss loop and data transformation techniques 
used in our integrated approach. Consider an access to an m- 
dimensional array in a loop nest of depth n. We assume that the 
array subscript functions and loop bounds are affine functions of 
enclosing loop indices and symbolic variables. Let F denote the 
iteration vector (consisting of loop indices starting from the out- 
ermost loop); each array reference can be represented by Lcf + 5, 
where the m x TZ matrix C is called the access (or reference) matrix 
[21] and the m-element vector 5 is called an offset vector. Note that 
each row of L corresponds to a dimension of the array; and each 
column of L gives information about the effect of the correspond- 
ing loop on array accesses. In particular, the locality behavior of 
the innermost loop is determined by the last column of L. 

2.1 Temporal reuse and spatial reuse 

We mainly focus on self-temporal and self-spatial reuses; however, 
our approach can be extended to handle group reuses [21] as well. 
When a reference in a loop nest accesses the same data in different 
iterations we say that temporal reuse occurs. Similarly, if a ref- 
erence accesses data residing on the same cache line in different 
iterations we say that spatial reuse occurs. It should be emphasized 
that the most important reuses (whether temporal or spatial) are the 
ones exhibited by the innermost loop. If the innermost loop ex- 
hibits temporal reuse for a reference, then the element accessed by 
that reference can be kept in a register throughout the execution of 
the innermost loop. Similarly, spatial reuse is most beneficial when 
it occurs in the innermost loop, since in that case it may enable 
unit-stride accesses. 

Consider the loop nest given in Figure l(d). In this loop nest, 
assuming column-major memory layouts, arrays U and V have 
temporal (spatial) reuses in the inner (outer) and outer (inner) loops, 
respectively. Array W, on the other hand, does not exhibit temporal 
reuse, but has spatial reuse in the i-loop. It is reasonable to assume 
that for sufficiently large arrays and large loop trip counts (number 
of iterations), only the reuses associated with the innermost loop 
can be exploited, i.e., can be converted into locality. For this ex- 
ample, these reuses are the temporal reuse for array U and spatial 
reuse for array V. That is, if we do not apply any transformation, 
we can keep U(i) in a register and expect unit-stride accesses for 
array V. Notice that the locality behavior of this loop nest can be 
somewhat improved by interchanging the loops i and j. The data 
reuse theory introduced by Wolf and Lam [21] is used to identify 
the types of reuses in an automatic manner. Considering a reference 
LT+6, two iteration vectors Ii and Ia access the same data element 
through this reference if CT, + 6 = Lfz + 8. In that case, the tem- 
poral reuse vector is defined as r = 72 - 71, and can be found from 
CF = 0. In the loop nest shown in Figure l(d) the access matrices 

1 0 
areCu=(1,O),L~=(0,1)andL~= o 1 .Thisim- 

( > 
plies that’ fv = (0, l)* and ?V = (1, O)*. Therefore, the tempo- 
ral reuse spaces are RU = span{(O,l)*}, Rv = span{(l, O)*} 
and Rw = 8. Therefore, the temporal reuses for array U and array 
V are carried by the j-loop and i-loop respectively; and there is no 
temporal reuse for array W. 

Assuming column-major memory layouts, spatial reuse occurs 
if the accesses are made to the same column. We can find the spa- 
tial reuse vector 3 from t,~ = 0, where Cc, is C with all ele- 

ments of the first row replaced b zero. In our example, SU = 
{(LO)*, (O,l)*}, sv = {(I,O)‘, (O,l)*}, and Bw = (LO)*. 
Consequently, the spatial reuse spaces are SW = span{ (1, O)*}, 
andSu = SV = ~pan{(l,O)~, (O,l)*}. Thatis,bothloopscarry 
spatial reuse for arrays U and V; but only the outer loop carries 
spatial reuse for array W. 

Notice that for this example we have Ru c S~J, Rv c SV, 
and Rw c SW. As a matter of fact, for any reference to an array 
U, Ru c Sv holds in general as temporal reuse is a special case 
of spatial reuse [21]. 

2.2 Impact of a loop transformation 

Let a loop transformation be represented by a square non-singular 
integer matrix T. Assuming that 1 is the original iteration vector 
and J’ = Tf is the new iteration vector, each occurrence off in 
the loop body is replaced by T-‘i’. In other words, each refer- 
ence represented by LI + 5 is transformed to LT-lI’ + 6. Loop 
transformations for locality are relatively well-studied; we will not 
describe any of the known approaches in detail, but refer the reader 
to [4], [7], [8], [17] and [21] for in-depth discussion of several ap- 
proaches. 

Consider the loop nest shown in Figure l(a). Assuming that the 
default memory layout for array U is column-major (as in Fortran), 
the locality exhibited by this reference is poor. The reason is that 
consecutive iterations of the innermost loop touch array elements 
that are far apart in memory. Since these elements are separated 
by almost an entire column, they most probably would map onto 
different cache lines increasing the contention in cache memory. A 
locality-enhancing framework such as the one proposed by Li [17] 
or Wolf and Lam [21] can automatically detect this situation and 

can use a unimodular transformation T = 
0 1 

( ) 
1 o . The trans- 

formed loop nest is shown in Figure I(b). In the transformed nest, 
consecutive iterations of the inner loop v access the consecutive el- 
ements of the same column, exhibiting high spatial reuse. It should 
be emphasized that since-in this example-L is of rank 2 (i.e., 
full rank), no non-singular (full rank) transformation matrix T can 
make all entries of the last column of CT-’ zero. In other words, 
it is impossible to transform this loop nest such that the reference 
shown in the figure will exhibit temporal locality in the innermost 
loop. 

2.3 impact of a data transformation 

It is interesting to note that the nest shown in Figure l(a) can be 
optimized using data transformation as well. Conceptually, a data 
transformation is applied by transforming the dimensions (subscript 
expressions) of the reference. Assuming again that we represent 
subscript function for the reference as LI+& a square non-singular 
data transformation matrix M transforms this reference to Mtl + 
Ms. Notice that in constrast to loop transformations, the iteration 
vector does not change but offset vector is transformed. For this 

example, if we use M = 
1 0 

( > 
1 -1 ’ we obtain the loop nest 

shown in Figure l(c). Notice again that assuming a default column- 
major layout, the spatial locality of this nest is very good. 

Our approach to data transformations is based on the hyper- 
plane concept from linear algebra which is briefly reviewed next. 
Here we focus mainly on two-dimensional arrays; however, the re- 
sults easily extend to arrays of higher dimensions [ 121. 
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Figure 1: (a) Original program. (b) Loop optimized program. (c) Data optimized program. (d) A loop nest that exhibits different reuses. 

2.4 Hyperplane-based layout representation 

Assuming a two-dimensional array, a hyperplane defines a set of 
array elements (a, b) that satisfy 

gla + gzb = c (1) 

for a constant c. In this equation, gi and ga are rational numbers 
called hyperplane coefficients and c is a rational number called hy- 
perplane constant [lo]. The hyperplane coefficients in equation (1) 
can be written as a hyperplane vector g = (gi, 92). A hyperplane 
family is a set of hyperplanes with the same coefficients but with a 
different values of the constant. 

A hyperplane family can be used to partially represent the mem- 
ory layout of an array. For example, in a two-dimensional data 
space a hyperplane family defines a number of parallel hyperplanes 
(lines) each corresponding to a different value of c. We assume that 
the array elements on a specific hyperplane are stored in consecu- 
tive memory locations. Given a large array, the relative storage 
order of hyperplanes with respect to each other may not be impor- 
tant. As an example, for an array whose memory layout is column- 
major, each column represents a hyperplane whose elements are 
stored in consecutive locations in memory. The relative storage 
order of coltmms (although well defined in the case of column- 
major layouts used in Fortran) is not important for the purposes 
of this paper. Therefore, we can represent the column-major lay- 
out with the hyperplane vector g = (0,l) that simply indicates 
the orientation of the hyperplanes (lines). Similarly, the vectors 
(l,O), (1, -l), and (1,1) correspond to row-major, diagonal and 
anti-diagonal memory layouts, respectively. 

Two data (array) elements J = (a, b) and j’ = (a’, b’) belong 
to the same hyperplane 3 = (gr , gs) if and only if 

/T 
(gi,gz)(a,b)T = (gr,gz)(a’,b) . (2) 

Consider an array stored in column-major order, i.e., the layout 
hyperplane vector is (0,l). Here, the array elements (4,7) and 
(10,7) belong to the same hyperplane (i.e., same column) whereas 
the elements (4,7) and (4,8) do not. We say that two array el- 
ements that belong to the same hyperplane have spatial locality. 
Although this definition of spatial locality is somewhat coarse and 
does not hold at the array boundaries, it is very suitable for our 
locality optimization strategy. 

The following result gives us a simple method to find a suitable 
memory layout for a given reference to have spatial locality in the 
innermost loop. 

Result 1 Consider a reference L.7 + 5 to a two-dimensional ar- 

ray in an n-depth loop nest where L = 
111 .‘. 11, 
121 ... > 12n . 

To 

have spatial locality in the innermost loop,‘the layout of this array 
must be represented by the hyperplane (gl,g2) where (gl,g2) E 

Ker(hn, z2n)T. 

Returning to our example in Figure l(a), using this result, we have 
(gi,gz) E Ker((1, l)T}. This means that (gr,ga) = (1, -1) is 

the spanning vector for that Ker set (null set). From the preced- 
ing discussion, we see that this vector corresponds to a diagonal 
memory layout where the elements along a diagonal of the matrix 
are stored in consecutive memory locations. Therefore, in order to 
have spatial locality in the innermost loop, array U should have a 
diagonal memory layout. 

After detecting the suitable memory layout, the next step is to 
implement this layout taking into account the default layout adopted 
by the language in question. This process involves finding a suit- 
able data transformation matrix A4 such that the desired locality 
improvement will be achieved. Assuming gd=f is the hyperplane 
vector representing the default layout (e.g., column-major in For- 
tran), a desired memory layout spt for an array can be implemented 
in three steps summarized as follows: [12]: 

(1) from aef M = aPt, a suitable data transformation matrix M 
is found; 

(2) the subscript expression for each reference to the array is 
transformed cf + 6 I+ M (CI + 8) ; (and) 

(3) the array bounds are also transformed accordingly. 

For Figure l(a), since a~f = (0,l) and gopt = (1, -l), a suitable 

M is 
1 0 

( > 1 -1 ’ 
leading to the code in Figure l(c). 

It should be noted that the fact that the optimal layout should 
be diagonal will only be used by the compiler, and the program- 
mer will not be aware of the data transformation performed. In 
fact, after the transformation, the array-with the renamed array 
elements-is stored in column-major as usual. 

3 Integrated approach 

In this section we present our integrated approach to enhance cache 
locality in a single nest. As mentioned earlier, our approach is 
based on optimizing temporal locality using loop transformations 
and optimizing spatial locality via data transformations. 

Consider the loop nest given in Figure 2(a) which accesses three 
arrays. One-dimensional arrays LHS and RHS can be optimized 
for temporal locality. Assuming that the default layout is column- 
major, a technique based on linear loop transformations will most 
probably not do anything about this nest. The reason is that three 
out of the four references exhibit unit-stride accesses (spatial reuse) 
and the fourth reference exhibits temporal reuse in the innermost 
loop. That is, overall the locality is very good as it is. Likewise, a 
data layout transformation framework will not do anything either. 
The reason is that a data transformation framework in general does 
not transform one-dimensional arrays, and given the loop nest a 
column-major layout for the reference to the two-dimensional ar- 
ray RMATRX is the most suitable layout form. Gur framework, on 
the other hand, first optimizes the temporal locality in the inner- 
most loop for the most number of references. For this example, it 
achieves this by interchanging the loops, which leads to temporal 
locality for the first two references. It then focuses on the other 
references and exploits the spatial reuse by converting the memory 
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do i = 1, MATDIM 
do j = 1, MATDIEI 

LSS(j) = MiS(j) - RMATRX(j,i) * MS(i) 
end do 

end do 
(a) 

Figure 2: (a) A loop nest that can benefit from combined approach. (b) Optimized version of (a). 

layout of the two-dimensional array from column-major to row- 
major and applying the corresponding transformation to the access 
matrix. The transformed program is shown in Figure 2(b) after the 
data access matrix has been transformed. Now it is easy to see that 
for two references we have temporal reuse in the innermost loop, 
and for the other two references we have spatial reuse in the in- 
nermost loop. Given the fact that as far as the innermost loop is 
concerned obtaining temporal reuse is more important (and better) 
than obtaining just spatial reuse, we have an improvement over the 
original code given in Figure 2(a). 

3.1 Determining both loop and data transformation ma- 
trices: a non-linear problem 

We now show that for a single reference, determining both a loop 
and a data transformation matrices simultaneously is equivalent to 
solving a non-linear system with some_ additional constraints. Sup- 
pose that the original reference is LI + 6, and we would like to 
apply a loop transformation matrix T and a data transformation ma- 
trix M. Then the transformed reference is MCT-' f’+ MS. Omit- 
ting the offset vector part, since both M and T-l are unknown, 
determining a suitable MLT-1 from the locality point of view in- 
volves solving a non-linear problem, with the additional constraints 
such that both A4 and T should be non-singular and T should ob- 
serve all the data dependences in the original loop nest. 

Suppose g+ is the optimal layout that we need, qlaJt is the last 
column of the inverse of the loop transformation matrix T, and C 
is the access matrix for the reference in question. The following 
result gives us an important relation between Qopt, L: and qlast. 

Result 2 In otder to have spatial locality in the innermost loop, 
aj?er the loop “and” data transfotmations, the following relation 
should hold: 

g3ptcqhst = 0. (3) 

Therefore, the problem is reduced to finding a aPt and a qlast for a 
given L: such that the relation given by (3) will be satisfied. Since 
both Qopt and qlast are unknown, this formulation is still non-linear. 
However, if either of them is known, the other can easily be deter- 
mined. For example, assuming that we know qlaJt, then 

g+ E Ker{Lqht}. (4) 

Likewise, if we know sPt, then 

qht E Ke&dL}. (3 

On the other hand, suppose that we would like to optimize a refer- 
ence with access matrix t for temporal locality. Since the resulting 
access matrix t’ = CT-l should have a zero last column, the 
following relation should be satisfied: 

qhd E Ker{C), (6) 

where qlost again is the last column of inverse of the loop trans- 
formation matrix. If we cannot find a qlast that satisfies (6), i.e., if 

Ker{L} is empty, then this reference cannot be optimized for tem- 
poral locality. It should be noted that in this case applying a data 
transformation will not change a thing, since data transformations 
do not affect temporal locality. 

3.2 Our solution 

Instead of trying to work on the non-linear system given by (3) 
directly, our solution involves first applying a loop transformation 
and after that applying data transformations. We first explain the 
approach using the example nest given in Figure 3(a) which refer- 
ences two different arrays. The access matrices are 

,,=(; ; +mdCv=(; ; ;). 
First let us attempt to optimize the reference to array U for temporal 
locality. Using (6), qlast E Ker{Lu}; or, 

qht EKer{ ( F i i )} e qlast =(O,l,-l)T. 

Next we optimize the reference to array V for spatial locality using 
this qlast. Using (4), Qopt E Ker{tvqu}; or, 

apt = (1,O) * Mv = ; ; 
( > 

On the other hand, from qlast, we can complete T-’ to the uni- 

. Having obtained the loop trans- 

formation matrix (actually its inverse) and the data transformation 
matrix MV for array V, we next find the transformed access matri- 
ces: 

M&T-‘=( !f ; ;);MvCvT-'=( ‘: ; -;) 
Note that since array U is optimized only for temporal locality, 
its data transformation matrix is the 2 x 2 identity matrix (i.e., 
Mu = ZzX2). The transformed nest is shown in Figure 3(b). Also 
note that array U is optimized for temporal locality whereas array 
V optimized for spatial locality, assuming column-major memory 
layout. For the sake of simplicity, we do not show how the array 
declarations are modified. 

In the following we explain how our approach works in the gen- 
eral case. Let us suppose that a loop nest of depth n references k 
arrays, and each array has only a single uniformly generated refer- 
ence (UGR) set [8]. In that case, we can represent each array with 
a single reference matrix, as offset vectors are irrelevant from the 
locality analysis point of view (note that we do not consider group 
reuse). Therefore, in the following we use the terms “array” and 
“reference” interchangeably. 

Let the access matrices of references in the loop nest be L1, 
. . , Lh. Our approach first computes the spanning vectors for the 
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do i = 1, N do u = 1, N 
do j = 1, N do v = 2, 2N 

do k = 1, N do u = mar(-N+v,l), min(v-1,N) 
U(j+k.i)=V(i+j+k,k) u(v,U)=v(v-Y,U+v) 

end do end do 
end do end do 

end do end do 

(a) (b) 

Figure 3: (a) Original loop nest. (b) Optimized version of (a). (c) Original loop nest. (d) Optimized version of (c). 

kernel sets of these access matrices. Let Pij be the jth (1 5 j 5 hi) 
spanning vector for Ker{L;} (1 5 i 5 k) where hi is the num- 
ber of spanning vectors for Ker{L;}. Considering all references, 
from among all spanning vectors, we choose the one which occurs 
most frequently. This heuristic tends to maximize the number of 
references for which temporal locality can be exploited. The se- 
lected spanning vector becomes the last column qtost of the inverse 
of the loop transformation matrix. Now, without lost of generality, 
suppose that for the selected qtast we are able to exploit temporal lo- 
cality for the references with access matrices Li , . . . , Lf whereas 
for the references with access matrices L f +i , . . , Lk no temporal 
locality is exploited. 

Next we use relation (4), and from goptj E Ker{Ljqt,,t } we 
determine an optimal layout (goptj ) for each reference represented 
by Lj where (f + 1) 5 j 5 k. 

At this point we have our references such that f of the total 
k references exhibit temporal locality in the innermost loop and 
k - f of the references exhibit spatial locality again in the in- 
nermost loop. Provided that the array sizes and loop trip counts 
are sufficiently large we can proceed as follows. First we com- 
plete the inverse of the loop transformation matrix such that all 
the data dependences are observed. Since we know qtost, the first 
row tprst of the loop transformation matrix T can be found from 
t,rrdt E Ker{qt,,t} as qtost and tf;,.st should be orthogonal. Hav- 
ing obtained the first row, the remaining rows of the loop trans- 
formation matrix and consequently the remaining columns of the 
inverse of it can be determined using the approaches given by Li 
[17] or Bik and Wijshoff [3] such that T will be unimodular and 
observe all data dependences in the loop nest. Then, we focus on 
determining suitable data transformation matrices. For 1 5, i _< f, 
the data transformation matrices Mi are set to identity matrices (2) 
of proper dimensionality as these references are optimized for tem- 
poral locality only. For the references (f + 1) 5 j 5 k, we use 
sefMj = goptj to find suitable data transformation matrices Mj . 
Finally, using iV.fi L;T- ‘7’ + M;6 we find the new access matrices 
and offset vectors for all references (1 5 i 5 k). 

In some cases, for a given reference represented by Li, (1 5 
i 5 f) we might want to exploit spatial locality as well in addition 
to temporal locality (assuming that it spatial locality is not already 
exploited). Since the innermost loop is the one that carries temporal 
reuse for a reference Li (1 5 i 5 f) (which has been optimized for 
temporal locality), spatial locality can be exploited only in the outer 
loops for this reference. In most cases, it is sufficient to focus only 
on the second innermost loop. Let qnest be the second column 
(from the right) of the inverse of the loop transformation matrix. 
Note that this column determines the effect of the second innermost 
loop on locality. Also, note that this column is the spanning vector 
with the second highest frequency. A reference represented by Li 
which enjoys temporal locality in the innermost loop can exhibit 
spatial locality in the second innermost loop if it has a memory lay- 
out represented by gopti such that gopti E Ker{LiqneZt}, where 
l<i<k. 

The entire algorithm is given in Figure 4. If the references to the 
same array span more than one UGR set, then a conflict resolution 

foreach 1 5 i < k 
using S&RX7Z{~ij} = Ker{Li} compute all Tij(1 5 j 5 hi) 

endforeach 
among Tij, select qtast = r;j to exploit most temporal reuse 
letti,..., Lf be references with temporal reuse 
letLf+i,..., Lk be references without temporal reuse 
foreach 1 5 i 5 f 

M; =Z 
endforeach 
foreach (f + 1) 5 j 5 k 

determine goptj from goptj Ljqt,,t = 0 
determine Mj from aef Mj = goptj 

endforeach 
complete qtodt to T- ’ using a completion algorithm 
foreach 1 5 i 5 k 

let L: = MiL;T-’ 
let 0: = Mioi 

endforeach 

Figure 4: Algorithm for determining optimized access matrices and 
offset vectors. 

scheme as discussed in [ 121 can be used. 

4 Multiple loop nests 

In this section we discuss how we extend our approach to handle 
the multiple loop nest case. Before that however, we focus on the 
following sub-problem: given a loop nest where layouts of some 
of the arrays referenced in it areJired, what are the optimal loop 
transformation as well as the optimal memory layouts for the ar- 
rays whose layouts are notfixed yet? As before, let us assume that 
there are k references with access matrices Cl, . . , &. Suppose 

that for e arrays the memory layouts are fixed. Also assume that 
of the remaining k - e references, f references exhibit temporal 
reuse and (k - e) - f references do not exhibit temporal reuse. 
In the following cx is used to denote a reference from Cl, . . , L, ; 
and /3 denotes a reference from Le+l, . ’ . , Lk. Further, y is used 
to denote a reference from Le+l, . . . , L,+f and 0 denotes a refer- 
encefromL,+f+r,..., Lk. Thus L, , L, , Lo denote references 
with fixed layout, with temporal locality, and with no temporal lo- 
cality, respectively whereas Lp denotes to a reference with no fixed 
layout. 

Our approach first tries to determine the last column qtast of the 
inverse of the loop transformation matrix T. Now, different from 
the case discussed in the previous section, two factors may affect 
our decision on what this last column should be: 

(1) references whose associated layouts are fixed; and 

(2) references which exhibit temporal reuse. 
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The effect of the first group of references is taken into account by 
the relation given in (5), i.e., qrast E Ker{g,,t,&}. Each ref- 
erence whose associated layout is fixed implies a desired qrast as 
the last cohnnn. The effect of the second group is taken into ac- 
count as before using relation (6), i.e., qrart E Ker{C,}. Con- 
sidering these two types of relations, the compiler chooses a qrast 
which satisfies the most number of references. In case of a tie, 
the preference is given to the alternative that exploits the tempo- 
ral reuse for the most number of references. Having fixed the last 
column of the inverse of the loop transformation matrix, the next 
task is to determine the layout for each Co. We use relation (4), 
i.e., goptg E Ker{Lepr=,t}, in order to determine the suitable lay- 
outs. The overall algorithm is given in Figure 5. Notice that so 
far we have assumed that a reference whose associated layout is 
fixed does not exhibit temporal reuse in the loop nest considered. 
Obviously this assumption is not valid in general. If this reference 
exhibits temporal reuse, then we take this reference twice into ac- 
count for determining the last column of the inverse of the loop 
transformation matrix. 

Consider the loop nest shown in Figure 3(c), assuming that 
the memory layout of V is jixed as goptv = (1, -1). The ac- 

and Lw = (0, 0,l). Considering the layout of array V, using the 
condition pv E Ker{g,,t,Lv}, we have FV E Ker(l,O,O). 
We find ?V = ((0, 1, O)T, (0, 0, l)T}. Next we look at the avail- 
able temporal reuse. The spanning vectors for the access matri- 
ces are Fw = {(l,O,O)T,(O,l,O)T}, ?t~ = (l,-l,l)T, and 
FV = (0, 1, O)T. Given these vectors, we select qrast = (0, 1, O)T . 
This vector satisfies the spatial locality requirement of array V and 
helps us exploit temporal locality for V and W. Now the only ref- 
erence which does not get optimized for temporal locality is the 
reference to array U. Using goptU E Ker {CUqrast}, we have 
gOPtr, E Ker(1, l)T; so we can set goptLr = (1, -1) which in 

turn gives us Mu = 
1 0 

( ) 
1 -1 We set Mv, and MW to iden- 

tity matrices. On the other hand, from qrast, we can obtain T-’ as 
1 0 0 

T-l = 

( ) 

001. Having obtained the loop and data trans- 
0 1 0 

formation matrices. we can comnute the transformed access matri- 

cesasfollows. MiLuT-’ = c : _!f :> ,MvLvT-’ = 

, and MwLwT-’ = (0, 1,O). The transformed 

code is shown in Figure 3(d). We note that for arrays V, and W 
temporal reuse is exploited whereas for array U spatial reuse is ex- 
ploited, all in the innermost loop. 

Notice that if there are no layout constraints (i.e., no layout is 
fixed), the algorithm given in Figure 5 reduces to the one given in 
Figure 4. 

Now we return to the problem of optimizing a number of loop 
nests using loop and data transformations. Our approach to this 
problem is based on careful applications of the algorithms given 
in Figures 4 and 5. For simplicity, we assume that the loop nests 
we want to optimize are consecutive in the program and there is 
no conditional statement between or within them. Our approach is 
rather simple: First we determine an order of processing the nests; 
that is, if a nest is more important (costly) than another one, we 
optimize the more important nest first. Profiling can be used to 
determine the estimated cost of a loop nest. Then, for the most 
important nest we use the algorithm given in Figure 4. After opti- 
mizing this nest, it is possible that the memory layouts of some of 
the arrays referenced will be fixed. Then, we consider the next im- 

let &i , . , C, be the references with fixed layouts 
let LCe+l, . . , Lk be the references with no fixed layout 
foreach 1 5 (Y < e 

using Taj E Ker{gopt, Cc,} compute all raj 
endforeach 
foreach (e + 1) 5 p 5 k 

using span{rflj,} = Ker{Lp} compute all Tgjl 
endforeach 
considering all raj and rajt, select a suitable qraJt 

which satisfies most of the references 
let Le+lr.. . , Lf be references with temporal reuse 
let Cf+l, . . . , ,& be references without temporal reuse 
foreach (e + 1) 5 y 5 f 

M7 =Z 
endforeach 
foreach (f + 1) 5 0 5 k 

determine goptg from goPte Leqrast = 0 
determine Me from aef Me = goptg 

endforeach 
complete qrast to T- ’ using a completion algorithm 
foreach 1 5 Q 5 e 

let L:b, = L,T-’ 
let ob, = ocr 

endforeach 
foreach (e + 1) 5 ,B 5 k 

let L:& = M,JL~T-~ 
let o& = Mpop 

endforeach 

Figure 5: Algorithm for determining optimized access matrices and 
offset vectors when some of the arrays referenced have fixed lay- 
outs. 

portant nest and optimize it using the algorithm given in Figure 5, 
taking the layouts found in the most important nest into account. 
Then we move to the third most important loop nest, and in opti- 
mizing it (using the algorithm shown in Figure 5) we take all the 
layouts determined so far into account, and so on. Given the fact 
that in most scientific programs, the bulk of the execution time is 
spent in a couple of loop nests, our approach seems reasonable. 

5 Experimental results 

We now present the results of our experiments. We first intro- 
duce our experimental codes, and different versions of them. We 
then study (using simulations) uniprocessor miss rates to show the 
performance improvement achieved by adopting our integrated ap- 
proach. Then we present our execution time results obtained on 
a single node of SGI Origin 2000 distributed shared memory ma- 
chine with two-levels of cache. We conclude the section with a 
summary of the results. 

5.1 Loop nests 

We measured the effectiveness of our approach on the performance 
of sixteen loop nests from several benchmarks and math libraries. 
The relevant information about these loop nests are given in Ta- 
ble 1. The TO REF column gives the total number of references 
in the loop nest whereas the TP REF gives the number of refer- 
ences with temporal reuse. For example the loop nest shown in 
Figure 2(a) has four references, three of which exhibits temporal 
reuse. Depending on the loop order, we can convert either one or 
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Table 1: Loop nests used in our experiments. The TO REF column gives the total number of references in the loop nest whereas the TP REF 
gives the number of references with temporal reuse. An entry namei under the CODE column denotes the ith loop nest (from top) of the 
benchmark name. 

fl x 11 CODE )I SOURCE 11 TO RBF 1 TP REF 11 11 X 11 CODE 11 SOURCE 11 TO REF 1 TP REF fl 

Table 2: Different versions of the codes used in our experiments. 

0 VERSION II BRIEF -DESCRIPTION 0 
CM original code: fixed column-major memory layout for all arrays 
RM original code: fixed row-major memory layouts for all arrays 
LP loop-optimized version: no memory layout transformation 
DT lavout-oatimized version: no 1000 transformation , I I 

DN [I OUT approach : integrated loop & data layout transformations 

two of these temporal reuses into temporal locality in the innermost 
loop. As can be seen from Table 1 we tried to select loop nests with 
different (TP REF/TO REF) ratios to observe the locality behavior 
of loop nests with different degrees of temporal reuse. 

For each loop nest, we experimented with five different versions 
summarized in Table 2. For the LP version we used the technique 
given by Li [17] whereas for the DT version we used an approach 
of ours [ 121 that uses only data transformations to optimize spatial 
locality (without directly exploiting temporal locality). We believe 
that those represent the most current work on optimizing locality 
using pure loop and pure data transformations, respectively. The 
UN version is the version that is obtained by applying our integrated 
technique explained in the paper. 

5.2 Simulation results 

Figures 6 and 7 show the overall miss rates achieved by different 
versions of the loop nests. The miss rates are obtained using Dinero 
[9] for a direct-mapped cache with 64 bytes block (line) size. The 
horizontal axis shows different cache sizes whereas the vertical axis 
is the absolute miss rates. Except for some hard-coded values of ar- 
ray dimensions, the size of the dimension of any array used in the 
experiments is set to 2048 double-precision elements; an excep- 
tion to this is the adi. 2 code where the three-dimensional arrays 
are of size 3 x 512 x 512. Note that in all cases, to avoid bad 
strides due to power of two dimension sizes, array dimensions were 
padded by a small constant as needed. The trace sizes are limited 
to 100,000,000 references. Our first observation is that, as ex- 
pected, increasing the cache size generally reduces the miss rates. 
Secondly, beyond a certain cache size, the performances of differ- 
ent versions become quite similar; this is to be expected, because 
in the cache can hold the entire working set of the loop nest up 
to a certain size. Another observation is that in most of the cases, 
the CM version outperforms the RM version. This is because the 
loop nests have originally been extracted from Fortran programs. 
In transpose. 1 and vpenta. 6, the UN and DT versions behave the 
same and outperform the other versions in particular for the cache 
sizes less than 128K. The reason for this can be seen from Table 1; 
these are the only loop nests without any temporal reuse. Also due 
to conflicting accesses to different arrays, the LP version does not 
help with these nests either. The only remaining possibility is using 

the data layout transformations derived by the UN and DT versions. 
This result shows that for the loop nests without temporal reuse, our 
approach achieves the same result as pure data transformations. 

For the loop nests with very high temporal reuse (htribk. 2, 
qzhes .7 , and mxm. 2) the relative success of loop and data trans- 
formations depends largely on the number of dimensions of the 
arrays with temporal reuse as well as the degree of conflict in opti- 
mal layout requirements between different references. In our cases, 
the data transformations performed very well for htribk. 2 and 
qzhes. 7 as the arrays with temporal reuse are two-dimensional 
and there are no conflicts in optimal layout requirements. Since 
mxm. 2 has already been optimized through loop unrolling for the 
fixed column-major layouts, the DT and the RM versions kind of 
reverse the optimizations. It should be noted that although pure 
data transformations may not be successful for the loop nests with 
high temporal reuse, our approach (UN) will be successful in gen- 
eral as it first optimizes for temporal locality via loop transfor- 
mations. For hydro2d/Tl. 1, emit .4, bakvec .2, gfunp.4, and 
rhf hessian. 1, the programmers did a good job as far as the lo- 
cality is concerned. For these codes, CM, LP, DT, and UN behave sim- 
ilarly. The RM version however performs very poorly as the column- 
major layouts fit very well with the existing loop structures in those 
codes. It should be emphasized however, the UN version still offers 
some improvement in these codes over the CM, LP, and DT versions. 

As for the remaining loops, btrix .4 has a structure that al- 
lows any locality optimization method (even a simple conversion 
to row-major layouts) to improve its performance. The UN version, 
however, improves it the most by first taking advantage of tem- 
poral locality and then using layout transformations for two four- 
dimensional arrays. A similar situation also occurs with f norm. 1, 
rlmpyq. 1, and rhf hessian. 2. For hydro2d/f ct. 7 code, the 
CM, LP, DT and UN versions result in exactly the same transformed 
code. For the adi. 2 code, which contains the maximum number of 
references, again the UN version outperforms the others and results 
in the same code as LP. 

Overall the UN version seems to be quite successful and con- 
sistently achieves in general the best results obtained by our ex- 
periments. In the loop nests where there is no temporal reuse, our 
approach can optimize spatial locality using data transformations. 
For the loop nests with high temporal reuse, our approach first op- 
timizes potential temporal reuse using loop transformations, then 
uses data transformations for the remaining references. Even in 
the programs where the original locality is good, we can still offer 
a marginal improvement. Our approach works for those cases in 
which loop transformations are preferable to data transformations 
or vice-versa and takes advantage of that through an integrated ap- 
proach. 

5.3 Execution time results 

The experimental platform that we used to evaluate our locality 
optimization method is a single node of the SGI Origin 2000 dis- 
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tributed shared memory multiprocessor. The node uses 195MHz 
RlOOOO MIPS processor, with 32KB Ll data cache and 4MB L2 
unified cache. RlOOOO is an advanced superscalar processor which 
can fetch and decode four instructions per cycle and can run them 
on five pipelined functional units. Both caches are two-way as- 
sociative and non-blocking. Up to 4 outstanding misses from the 
combined two levels of cache are supported. RlOOOO dynamically 
schedules instructions whose operands are available in order to hide 
the latency of cache misses. For Ll cache hits, the latency is 2 cy- 
cles; and for Ll misses that hit in L2, the latency is 8 to 10 cycles. 
The C versions of the programs are compiled using the native C 
compiler using -02 option. 

In the experiments we used two input sizes for each loop nest: 
small and large. Except for a few codes, each array dimension is 
set to 2,048 for small and to 4,096 for large. Figure 8 shows the 
execution times for the small input sizes. The times are normal- 
ized with respect to the worst performing version. These results in 
general are consistent with the miss rates and show that except for 
one case, the IJN version achieves the best performance, the same 
result obtained by the simulation. However, due to small differ- 
ences between miss rates, the relative performances of the other 
versions differ in some cases from the miss rates. Similar results 
are also observed with the large inputs in Figure 9. Notice that 
when the input size is increased, in general the effectiveness of the 
UN version also increases. 

5.4 Discussion 

Table 3 shows the summary of simulation results for our loop nests. 
If a version 2 achieves the best measured miss rate for a loop nest 
y, we put a + symbol in location (2, y). In obtaining this table, 
we only considered the cache sizes up to 64K. It is easy to note 
that except for one case, the UN version always resulted in the best 
miss rates. In contrast, the DT and the LP versions achieved the best 
rates in 5 and 4 times respectively. In 9 of the 16 loop nests neither 
DT nor LP obtained the best rates. These results show that neither 
DT nor LP dominates the other; and our technique consistently out- 
performs both of them and can lead to significant improvements in 
miss rates. 

It should be noted that as far as the UN version is concerned, 
the execution times also follow this trend for our benchmark nests. 
However, the performance of the miss rates and that of the execu- 
tion time can differ for other versions due to the large amount of 
overlapped activity in the processor. 

Although our main objective is to improve cache locality using 
an integration of loop and data transformations, as mentioned ear- 
lier, since our technique associates different types of locality with 
each reference, it can provide useful hints for the new cache archi- 
tectures. 

6 Related work 

Much of the related compiler work to cache locality optimization is 
based on iteration space transformations. Wolf and Lam [21] define 
reuse vectors and reuse spaces, and show how these concepts can 
be exploited by an iteration space optimization technique. Their 
approach first finds the loop levels which carry reuse and then uses 
unimodular loop transformations to bring the loops carrying reuse 
in the innermost positions. In this step they use a kind of exhaus- 
tive search. Afterwards, they apply tiling to the loops that carry 
some form of reuse. Li [17] also uses reuse vectors to detect the 
dimensions of loop nest which carry reuse. Instead of resorting 
to exhaustive search, however, he determines the appropriate loop 
transformation matrix in one shot. In contrast, Carr et al. [4] use a 
simple locality criterion to reorder the computation to enhance data 

locality. The locality improving techniques also include blocking 
[4, 6, 11, 14, 15, 211. 

All these techniques however focus on the iteration space and 
attempt to improve data locality indirectly by modifying the loop 
access patterns. They are not easily applicable to programs with 
imperfectly-nested loops (except [14]) and are constrained by data 
dependences. We, instead, demonstrated in this paper that data 
transformations can also play a significant role in enhancing cache 
locality. 

More recently new techniques based on memory layout trans- 
formations have been proposed. These techniques focus directly 
on array layouts and try to modify the layouts such that unit-stride 
accesses will be obtained in the innermost loop. O’Boyle and Knij- 
nenburg [ 191 explain how to generate code given a data transforma- 
tion matrix. They show different usages of data transformations in 
addition to optimizing spatial locality. Leung and Zahorjan [ 161 fo- 
cus more on minimizing memory consumption after a layout trans- 
formation. These two techniques however are oriented toward ex- 
ploiting spatial reuse rather than temporal reuse as they are based 
on pure data transformations. More importantly, since the impact 
of a layout change may penetrate into multiple nest, the scope to 
be considered becomes much larger. In comparison, our approach 
uses loop transformations to minimize the adverse effect of a layout 
transformation in another nest. Since we give priority in optimizing 
temporal locality, our approach can potentially be more successful 
than a pure data layout based approach. 

Ciemiak and Li [5] were among the first to offer a scheme 
that combines loop and data transformations. There are a num- 
ber of differences between their work and ours. First, we use gen- 
eral unimodular loop and data transformations whereas they restrict 
the search space for possible loop and data transformations. For 
example, their framework cannot convert a memory layout from 
column-major to diagonal. Second, their optimization methodol- 
ogy is centered around a concept called the stride vector whose 
entries should be guessed by compiler before the optimization pro- 
cess. In contrast, we do not have such a requirement. Third, they 
focus largely on a single loop nest. Their extension to multiple 
loop nests is not very clear whereas we can handle multiple loop 
nest case using layout constraints. Lastly, we give priority to opti- 
mizing temporal locality whereas they do not distinguish between 
different types of locality. Kandemir et al. [13] have also consid- 
ered loop and data layout optimizations. Like Ciemiak and Li [5], 
their solution restricts the search space of data transformations to 
dimension permutations; in addition, theirs is an exhaustive search 
technique. Anderson et al. [I] propose a transformation technique 
that make data elements accessed by the same processor contiguous 
in the shared address space. They use only permutations of array 
dimensions and strip-mining for possible data transformations. Our 
work is more general as we consider a much larger search space for 
possible layout transformations. 

7 Conclusions 

This paper describes an integrated compiler approach to enhance 
cache locality. Our approach combines loop and data transforma- 
tions, but specializes the loop transformations for optimizing tem- 
poral locality. Once the potential temporal reuse is exploited, our 
approach uses data transformations to optimize available spatial 
reuse in the nest. We also show how our technique can be extended 
to work with cases in which some subset of the arrays referenced 
in the nest have fixed memory layouts. We discuss the great impor- 
tance of this extension for optimizing cache locality globally (i.e., 
program-wide). The information required by the compiler to apply 
our technique is easily obtained during dependence analysis, which 
is performed by almost every optimizing compiler. Once this infor- 
mation is obtained, our approach uses simple linear algebraic tech- 

294 



Figure 8: Normalized execution times with small input sizes. 

Figure 9: Normalized execution times with large input sizes. 
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Table 3: Summary of the results. If a version z achieves the best measured miss rate for a loop nest y, we put a + symbol in location (z; 
In obtaining these results, only the cache sizes up to 64K are considered. 

niques to manipulate loop nests, array references and array decla- 
rations. Our simulation results demonstrate that our technique does 
make a difference, and improves over techniques that are based on 
pure loop or pure data layout transformations. Our preliminary ex- 
ecution time results also show the effectiveness of our approach. 

This work can be seen as a first step toward combining data 
and loop transformations in an integrated framework. It integrates 
linear loop and linear data transformations. An important future 
direction is to investigate the interaction of data layout transforma- 
tions with tiling, another loop-based transformation technique. It is 
known that applying locality-enhancing loop transformations be- 
fore tiling is preferable as it makes performance of the tiling less 
sensitive to the tile size [5, 171. The impact of integrating loop and 
data transformations on tiling merits further investigation. Another 
important question is whether or not storing the elements accessed 
by a tile in consecutive memory locations will further help. This 
is also a data transformation although not linear. We are studying 
those cases where such a data transformation might be useful. In 
addition, we plan to enhance our technique by taking into account 
the effects of instruction scheduling and register allocation. 
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