
A Unified Compiler Algorithm for Optimizing Locality, Parallelism and
Communication in Out-of-Core Computations*

M. Kandemirt A. Choudharyt J. Rammujam~ M. Kandaswamyq

Abstract

This paper presents compiler algorithms to optimize out-
of-core programs. These algorithms consider loop and data
layout transformations in a tied framework. The perfor-
mance of an out-of-core loop nest containing many references
can be improved by a combination of restructuring the loops
and file layouts. This approach considers array references
one-by-one and attempts to optimize each reference for par-
allelism and locality. When there are references for which
parallelism optimizations do not work, communication is
vectorized so that data transfer can be performed before
the innermost tiling loop. Preliminary re.suIts from hand-
compiles on IBM SP-2 and Intel Paragon show that this
approach reduces the execution time, improves the band-
width speedup and overall speedup. In addition, we extend
the base algorithm to work with file layout constraints and
show how it can be used for optimizing programs consisting
of multiple loop nests.

1 Introduction

In recent years, processor speed has become significantly
higher than both memory and disk speeds. As a result
the issue of exploiting the memory hierarchy has emergei
as one of the most important problems in efficiently using
the available processing power. One way of handling this
problem is to design algorithms that decompose the data
sets into blocks and operate on blocks, msximizmg their
reuse before discarding them. A computation which oper-
ates on disk-resident data sets is called out-of-core, and an
optimizing compiler for out-of-core computations is called
an out-of-core compiler. Iu contrast a computation which
operates on data sets in memory is called in-core. For out-
of-core problems where the sizes far exceed the size of the
available memory, it is particularly important. An optimiz-
ing compiler for parallel out-of-core programs faces several

‘A. Choudhary was supported in part by NSF Young Investigator
Award CCR-9357840 and NSF CCR-9509143. The work of J. Ra-
manujam was supported
CCR-9457768.

in part by an NSF Young Investigator Award

‘Department of Electrical Engineering and Computer Science,
Syracuse University, Syracuse, NY 13244. mtkOece.nm.adu

‘Department of Electrical and Computer Engineering Northwest-
em University, Evanston, IL 60208. choudharOsce.nun.sd~

SDepartment of Electrical and Computer Engineering Louisiana
State University, Baton Rouge, LA 70803.jnOss.lsu.adu’

‘Department of Electrical Engineering and Computer
Syracuse University, Syracuse, NY 13244. mernaOsce.nvu.edn

Science,

Permission lo mnkr digiMfllnrd copies ofall orpn,l ol‘lhir; mnlcrinl fbr
P~~ot~~l Or clxxroonl use is gnured \viUlout Ihc provided that lhc cop;=
arc not nude or dislributcd for profit or commcrcinl sd\~antngc. lllc cops-
%hI not& fhc Ii&? oflhc publication and its dnlc nppc:lr. and nolicr is
givco ulfil coP>‘ri@ is hs pWmissiotl oflhe ACM. Inc. To copy olhcn\ise,
to rcPuhlish. lo Post 011 servers or to rcdistribulc IO lists. rquir~~ sp,yilic . . pcmusslon and/or fca

challenges: (1) the granularity of parallelism should be max-
imized to reduce synchronization and communication over-
head; (2) communication should be optimized; and (3) since
I/O accesses are generally several orders of magnitude slower
than communication, I/O should be optimized.

The di&ulty of optimizing out-of-core programs orig-
inates from the following factor: the issues of optimizing
I/O, optimizing parallelism and minimizing communication
are inter-related. For example, for a given loop nest where
a number of out-of-core arrays are accessed, the I/O opti-
mizations may imply a preferred order for the loops whereas
the parallelism optimizations may suggest another. In this
paper we offer a unij%dstrategy to optimize out-of-core pro-
grams for locality, parallelism and communication. Specs-
tally our optimizations (1) maximize the granularity of par-
allelism by transforming the loop nest such that the outer-
most loop can run parallel on a number of processors (this
is not only good for reducing the communication require-
ments of parallel programs, but it also correlates with good
memory/disk system behavior [ZS]); (2) vectorize communi-
cation, i.e., perform the communication in large chunks of
data; and (3) reorganize data layouts in files and memory-
matching the loop order with individual array layouts in
files, which is key to obtaining high performance in out-of-
core computations.

The paper is organized as follows. In Section 2, we review
the basic concepts in file layouts and tiling. In Sections 3
and 4, we present an automatic method by which file locality
and communication can be optimized, respectively. Section
5 presents a unified algorithm which (1) maximizes gran-
ularity of parallelism, (2) minimizes communication, and
(3) optimizes I/O. Section 6 presents experimental results
which demonstrate the efficacy of the algorithm. Section
7 extends the base algorithm to handle the multiple-loop-
nest case. Section 8 presents related work, and Section 9
concludes the paper.

2 Preliminaries

2.1 Data Storage Model

We build our compiler optimizations upon a storage sub-
system mode!, called the IO& phcement mode2 (LPM) [S]
which can be implemented on any multicomputer. The rn&
function of this subsystem is to isolate the peculiarities of
the underlying I/O architecture and present a unified plat-
form to experiment with. Under the data storage subsystem
each global out-of-core array is divided into local out-of-cod
arrays. The local arrays of each processor are stored in sep-
arate files called local army files which in turn reside on a
Iogical local disk. During the execution of an out-of-core pro-
gram under LPM, portions of local out-of-core asrays, called
data tiles, are fetched and stored in local memory. The
data sharing is performed by explicit message passing, so
this system is a natural extension of the distributed-memory

79

1 .

I
i
I
I
j

pEldigTll.

2.2 File Layouts

The file layout for an h-dimensional out-of-core array can
be in one of the h! forms, each corresponding to the linear
layout of data in file(s) by a nested traversal of the axes in
some predetermined order. The innermost axis is called the
fastest-changing dimension. As an example, for row-major
file layout, the second dimension is the fastest changing di-
mension. If we think each element as a sub-matrix, that
can also handle the blocked file layouts. In other words, the
methods presented in this paper are applicable to blocked
layout c5ses as well.

2.3 Optimized l/O Accesses and Tiling for Out-of-Core
Computations

We refer to an array access as optimized if it can be per-
formed such that all the data along a specific dimension
will be read from a file incurring the least I/O cost. Con-
sider the situation depicted in Figure 1 for three different
cases using a two-dimensional array. The shaded portions
denote data tiles. The case in Figure l(a) corresponds to
the unoptimized case where the entire available memory is
utilized for accessing a square tile from the corresponding
file. In order to read an S, x S,, data tile, So I/O calls
should be issued no matter what the file layout is.’ The
cases shown in Figures l(b) and Figures l(c), on the other
hand, correspond to the optimized accesses for row-major
and column-major file layouts respectively. In Figure l(b),
with Sb I/O calls it is possible to read Sb x n elements from
the file, and in Figure l(c), n x SC elements are read by
issuing only SC I/O calls (assuming for both the cases that
at most n elements can be read by a single I/O call). The
following points should be noted. First, an optimized array
access is only meaningful with the corresponding file layout.
For example, reading Sb x n elements from the array shown
in Figures l(b) would cost n separate I/O calls if the ar-
ray were stored in file as column-major. Second, in order
to have a fair comparison we frx the available memory size
(M) no matter how the array layouts are optimized. As
an example, for the cases shown in Figure l(a-c), assuming
thii is the only array referenced in the nest, the equality
sa2 = sbn = nso = M should hold. And finally, we should
make a distinction between file and disk layouts. Depend-
ing on the storage style used by the underlying file system, a
file can be striped across several disks. Accordingly, an I/O
call in the program can correspond to several system calls
to disk(s). The technique described in the rest of the paper
attempts to decide optimal file layouts and to minimize the
number of I/O calls to the files. Reduction in I/O calls to
flies lead, in general, to reduction in calls to disks. The re-
lation, though, is system dependent and is not discussed in
thii paper.

Tiling is a technique to improve locality in in-core com-
putations, and is a combination of strip-mining and loop
permutation. When tiling is applied, it replaces the original
loop with two new loops: a tiling loop and an element loop.
The traditional tiling is an optional locality optimization
technique and is applied to iteration spaces [29, 301. In an
out-of-core compilation strategy based on explicit file I/O,
tiling of out-of-core data into memory is mandatory, and the

‘We should note that for blocked layouts this type of access can
be considered ea optimized, if all elements inside the tile are stored
in the Ale consecutively.

compiler uses the results of dependence analysis [30] to de-
termine whether or not tiling is legal. All necessary loop
transformation5 should be performed in order to ensure the
legality of tiling.

A naive approach can extend the compilation method-
ology of in-core programs for out-of-core computations by
assuming user-defined data decomposition as follows: after
the node program is determined, the loops are tiled and ap-
propriate I/O calls are inserted between tiling loops, The
available memory is divided evenly among the arrays in-
volved. There are several drawbacks to this straightforward
approach:

The program obtained by this method may not be able
to exploit the largest granularity of parallelism;

Assuming a flxed file layout such as row-major or column-
major for all arrays may adversely affect the perfor-
mance [ll]; and

When more than one array is involved in a computa-
tion, during memory allocation it might be more ap-
propriate to favor (by giving more memory) the fre-
quently accessed out-of-core arrays over the others,

Our optimizations address these problems within a unified
framework. We give several examples and illustrate the fol-
lowing: To achieue the best performance in out-of-core com-
putations, both data (layout) and control (loop) transforma-
tions are necessary; and parallelism and locality should be
handled in a unified way. We note that our approach is
based on explicit file I/O and is different from those pre-
sented in [l, 17, 19, 271.

3 Algorithm for Optimizing Locality in Files

In this section we present an algorithm based on explicit I/O
to reduce the time spent in I/O. Our algorithm automati-
cally transforms a given loop nest to exploit spatial locality
in files, assigns appropriate file layout5 for out-of-core ar-
rays, and partitions the available memory among the data
tiles of out-of-core arrays, all in a unified framework. Be-
fore discussing our algorithm, we present a quick overview
of loop transformation theory.

3.1 Loop Transformation Theory

The algorithms presented in this paper rely on results from
general loop transformation theory [16, 301. We focus on
loops where both array subscripts and loop bounds are afllne
functions of enclosing loop indices. A reference to an array
X is represented by X(C?+ I;> where C is a linear trans-
formation matrix called the array reference match, b’ is the
of&et vector and ?is a column vector representing the loop
indices ir, is, s-e, i,, starting from the outermost loop, For
the rest of the paper, the reference matrix for array X will
be denoted by Lx whereas the ith row of Lx will be denoted
by cx.

Linear mappings between iteration spaces of loo? nests
can be modeled by nonsingular matrices [16]. If I is the
original iteration vector, after applyifg line? transforma-
tion T, the new iteration vector is J = TI. Simll$y lf
a’is the distance/direction vector, on applying T, Td is tha
new distance/direction vector. Since /Zf= LT” J’, after the
transformation ET-’ is the new array reference matrix. We

n c
Figure 1: (a) Unoptimized access; (b)-(c) Optimized accesses.

denote T-l by Q. An important charecteristic of our ap-
proach is that using the array reference matrices, the entries
of Q are derived systematically.

3.2 Explanation of the Algorithm

The algorithm for optimizing file locality is shown in Fig-
ure 2. Let il, i2, ‘-. , in be the loop indices of the original
nest, andjl, j2, -.a, j, be the loop indices of the transformed
nest, starting from the outermost loop. In the algorithm, C
is the array reference on the LHS whereas A represents an
array reference from the RI-IS. The symbol S denotes the
don’t care condition. The algorithm works as follows.

Handling the LHS. The transformation matrix should be
such that the LHS array of the transformed loop nest should
have the innermost index es the only element in one of the
srray dimensions and that index should not appear in any
other dimension for this array. In other words, after the
transformation, the LHS array C should be of the form
C(*,... * ,*rh*,“‘, *) where j, (the new innermost loop in-
dex)isinther th dimension and * indicates a term indepen-
dent of j,. This means that the rth row of the transformed
reference matrix for C is (0, 0, - + - , 0,l) and all entries of the
last column except the one in rth row are zero. After that
process the LHS array can be stored in the file such that
the rth dimension will be the fastest changing dimension to
exploit the spatial locality in the frle2.

Handling the RHS’s. The algorithm works on one refer-
ence from the FtHS at a time. If a row a in the data reference
matrix is identical to row r of the original reference matrix
of the LHS m-ray, it tries to store this array on the file that
the ath dimension will be the fastest changing dimension.3
If the condition above does not hold for an RHS array A,
then the algorithm tries to transform the reference to the
form A(*, - - - ,*,qL-l),*,~-- , *), where F&-r) is an a&e
function of j,,-1 and other indices except j,,, and * indicates
a term independent of both j,-1 and j,. This helps to ex-
ploit the spatial locality in the second innermost loop. If
no such transformation is possible, j,+-:! is tried and so on.

‘Notice that after this step the out-of-core array is not stored in
the file immediately according to the determined layout. Instead,
the Anal layout for the LHS array is decided after considering all
alternatives.

‘Note that the presence of such a row 8 does not guarantee that
the array will be stored on the file with the sth dimension as the
fastest changing dimension.

If all loop indices are tried unsuccessfully, then the remain-
ing entries of Q are set considering the data dependences
and non-singularity. A modified version of the completion
algorithm found in [16,22,23] is used for filling the remain-
ing entries. Notice that our approach determines only the
fastest changing dimension of the layout.

-&oosing the best alternative. After a transformation end
corresponding disk layouts ere found, the next alternative
for the LHS is tried and so on. Among all feasible solutions,
the best one is chosen. Although several approaches can
be taken to select the best alternative, we chose the follow-
ing scheme: Each loop in the nest is numbered with its level
(depth), the outermost loop numbered 1. Then, for each ref-
erence in the nest, the level number of the loop whose index
resides in the fastest changing dimension for this reference is
checked. The number for all references in the nest are added,
and the alternative with the maximum sum is chosen. For
example, if for a two-deep nest with three references an al-
ternative exploits the locality for the first reference in the
outer loop and for the other references in the inner loop, the
sum for this alternative is 1 + 2 + 2 = 5.

Memory allocation. The array references are divided into
groups according to the layouts of the associated files (i.e.,
arrays with the same file layout are placed in the same
group). The heuristic then handles the groups one by one.
For each group, the algorithm considers all fastest chang-
ing positions in turn. If a (tiling) loop index appears in
the fastest changing position of a reference and does not
appear in any other position (except the fastest changing)
of any reference in that group, then it sets the tile size for
the fastest changing position to n (the array size and loop
upper bound); otherwise it sets the tile size to S, a pa-
rameter whose value will be determined in the final step
(S < n). The tile sizes for the remaining dimensions are
also set to 5’. After all the tile sizes for all dimensions
of all array references are determined, the algorithm t&es
the size of the available node memory (M) into consid-
eration and computes the actual value for S. For exam-
ple, suppose that in a four-deep nest in which four two-
dimensional arrays are referenced, the previous steps have
assigned row-major file layout for the errays A, B and C,
and column-major file layout for the array D. Also es-
sume that the references to those arrays are A[IT,KT],
B[JT, KT], C[IT, JT] and D[KT, LT]. Our memory al-
location scheme divides those references into two groups:
A[IT, KT], B[JT, Kq, C[IT, JT] in the row-major group,
and D[KT, LT] in the column-major group. Since KT ap-

81

Step 1 Initialize i = 1.

Step 2 Set <“.Q = (O,O,e--,O,l) and&‘.& = (6,6,--e ,6,0) for each k # i where 15 denotes don’t-care.

Step 3 Set the 61e layout for C such that z *th index position will be the fastest changing position.

Step 4 For each array reference A on the RBS that has 6” = dC for some 1, try to set the file layout for A such that the
Ith dimension will be the fastest changing dimension.

Step 6 Choose an array reference A for which the equality in Step 4 does not hold. Initialize j = 1.

Step 6 Set .!$“.Q = (O,O,---,O,l,O) and&*.&= (a,&.-- ,S, 0,O) for each k # j. If this step is consistent with the previous
steps go to Step 7, otherwise increment_% and go to the beginning ofetA& step. If there exist inconsistencies for all

jvalues,theninitializej=l,andset~j .Q=(O,O,~~~,l,O,O)and& .&=(6,6,***, , , , 6 0 0 0) for each k # j, and
repeat Step 6 and so on. If no T -I is found then fill the remaining entries arbitrarily observing the dependences and
non-singularity.

Step 7 Repeat Step 6 for all the reference matrices of a particular array A except those handled in Step 4. (Of course,
all references for a particular A should have the same fle layout; this algorithm is greedy and chooses the first possible
layout)

Step 8 Repeat Step 6 for all distinct array references.

Step 9 Record the obtained transformation matrix. Also record, for each array, the loop index position which appears in
the fastest changing position for that array.

Step 10 Increment i and go to Step 2 (try a different layout for the LHS array C).

Step 11 Compare all the recorded transformation matrices and their associated file layouts, and choose the best alternativa
(see the explanation in Section 3).

Step 12 Determine the memory allocations for the all out-of-core arrays in the nest and obtain the memory constraint.

Step 13 Solve the memory constraint.

Figure 2: Algorithm for optimizing file locality in out-of-core computations.

pears in the fastest-changing positions of A[IT,KT] and
B[JT, KT], and does not appear in any other position of
any reference in this group, the tile sizes for A and B are
determined as S x n. Notice that JT also appears in the
fastest-changing position. But since it also appears in other
positions of some other references in this group, the algo-
rithm determines the tile size for C[IZ’, Jr] as S x S. Then
it proceeds with the other group which contains the refer-
ence D[KT, LT] alone and allocates a data tile of size n x S
for D[KT, LT]. After these allocations the final memory
constmint is determined as 3 x n x S + S x S 5 M. Given a
value for M, the value of S that utilizes all of the available
memory can easily be determined by solving the second or-
der equation S2 f 3nS - M = 0 for the positive S values.
Note that any inconsistency between the groups should be
resolved by setting the tile size for the conflicting dimen-
sion(s) to S.

Important observations. First, Steps 2 and 6 of Figure 2
involve solving integer matrix equations. Second, the algo-
rithm considers all possible file layouts, of which the row-
major and column-major layouts are only two alternatives.
Third, the algorithm first optimizes the LHS array. This
is important because of the fact that the data tiles for this
array are both read and written. Finally, when the file lay-
out of an out-of-core array is set to a specific form, memory
layouts of its data tiles should also be set to the same form.

82

3.3 Example application of the algorithm

In this section we give an example to illustrate the algo-
rithm shown in Figure 2. The same example will be used
in the following two sections as well. Figure 3(a) shows
a matrix-multiplication routine and Figure 3(b) presents a
straightforward out-of-core translation for it. In Figure 3(b)
only tiling loops-loops that iterate over the data tiles-are
shown. Each reference corresponds to a data tile, the size
and coordinates of which are determined by the relevant
tiling loops. For example in Figure 3(b), C[u,v] denotes a
data tile of size SX S from (u, V) to (u+S- 1, V-I-S- 1) in Ala
coordinates; whereas C[w,u] in Figure 3(c) corresponds to
a data tile of size n x S (notice the loop bounds and steps).
Unless stated otherwise, the word loop refers to tiling loop.
For clarity all I/O statements between the tiling loops are
omitted. The tile allocations for this naive translation are
illustrated in Figure 3(e).

We now optimize the program shown in Figure 3(b) US-
ing the locality algorithm. Due to space limitations, we only
show the successful trials. See 1121 for details. The rcferenca

matrices for the arrays are as follows: L” =

L*=(: 8 ‘>andL”=(i y i).Thealgo-

rithm works ss follows. Fist, it considers column-major file

layout for C. Since La.& =

DOi=l,n DOu=l,n,S DOu=l,n,S DOu=l,n,S
DOj=l,n DOv=l,n,S DOv=l,n,S DOv=l,n,S
DOk=l,n DOw=l,n,S DOw=l,n,n DOw=l,n,n
C(ij)+=A(i,k)*B(kj) C[u,v]+=A[u,w]*B[w,v] E$;;l$$[~,vl*W C[u,w]+=A[u,v]*B[v,wJ
ENDDO k ENDDO w ENDDO w
ENDDO j ENDDO v ENDDO v ENDDO v
ENDDO i ENDDO u ENDDO u ENDDO u i

DO u = 1, n/p, S
DO v = 1, n/p, S
receive B[*,v]
DOw=l,n,S
C[u,v]+=A[u,w]*B[w,vJ
ENDDO w
ENDDO v
ENDDO u

@I

DOu= 1% n/p, s
DO v = 1, n/p, S

receive A(*,v]
DOw=l,n,S
C[w,uJ+=A[w,v]*B[v,u]
ENDDO w

ENDDO v
ENDDO u

(9

DOu=l,n,S
DO v = 1, n/p, S
receive A[*,v]
DOw=l,n,n
C[w,uJ+=A[w,v]*B[v,u]
ENDDO w
ENDDO v

ENDDO u

ci)

DOu= 1, n/p, S
DO v = 1, n/p, S

receive B[v,*]
DOw=l,n,n
C[u,w]+=A[u,v]*B[v,w]
ENDDO w
ENDDO v

ENDDO u

04
I’

I
,

Figure 3: (a) Out-of-core matrix-multiplication nest; (b) Straightforward translation of (a); (c) I/O optimized translation of
(a); (d) I/O optimized translation of (a); (e) Tile allocations for (b); (f) Tile allocations for (c); (g) Tile allocations for (d);
(h) Paralieiism optimized translation of (a); (i) Paralieiism optimized translation of (a); (j) Paraileiism and I/O optimized
translation of (a); (k) Parallelism and I/O optimized translation of (a); (1) Tile allocations for (j); (m) Tile allocations for (k).

923 = 0 and 413 = 1. Since LA.& =

which means there is no inconsistency so far. Since LB.& =

(; ; ;),pn=Oandqsz=l. AtthispointT-‘=

Q = By setting 921 = 1 and 931 = 0,

T-1 The resulting code is shown

in Figure 3(c). Ail arrays have column-major file layouts.
Tiles of size n x S are allocated for C and A, and a tile of
size S x S is allocated for B as shown in Figure 3(f). Since
ah the arrays have the same layout, during memory aiioca-
tion there is only one group. The final memory constraint
is 2nS-kS2 5 M.
Now, the algorithm tries the other file layout (row-major)

for C. Since Lc.Q =

and q-z3 = 1. Since LB.& = (i 0s :),q33=O.Siice

83

LA.&= (; ; ;),qrs=Oandg2=1. At,t,hispoint

By setting 4x1 = 1 and 431 =

The resulting code is shown

in Figure 3(d). Ail srrays are row-major. Tiles of size S x n
are allocated for C and B, and a tile of size SxS is allocated
for A es shown in Figure 3(g]. The final memory constraint
is 2nS + S2 < M, as before.

4 Algorithm for Maximizing Parallelism and Minimizing
Communication

This section presents an algorithm which considers loop trans-
formations to optimize parallelism and communication in
message-passing machines. Specifically, the algorithm pre-
sented here transforms a loop nest such that (1) the out-
ermost transformed loop is distributed over the processors,
(2) data decomposition across processors is determined for

4It should be emphasized that the parameter S in each optimized
case is different, and that its value depends on the memory constraint.

each out-of-core array, and (3) communication is performed
in large chunks and is optimized such that all non-local data
are transferred to respective local disks before the execution
of the innermost loop.

4.1 Explanation of Algorithm

As before, let ir, iz, . . -, in be the loop indices of the original
loop and jr, jz, .a., j, be the loop indices of transformed
loop. The following is the explanation of the algorithm:

Handling the LHS. The transformation matrix should be
such that the LHS.array of the transformed loop should
have the outermost index as the only element in one of ar-
ray dimensions. In other words, the LHS array C should be
of the form C(*, -. . , *,jr, *, . e e, *) where jr (the new out-
ermost loop index) is in the fth dimension. This means
that the ~~~ row of the transformed reference matrix for C
is (l,O,*** ,O,O). Then the LHS out-of-core array can be
distributed along the dimension T across processors with-
out any communication occurring. Note that distributing
an out-of-core array means creating a corresponding local
array file on each (logical) local disk.

Handling the RHSs. The algorithm works on one reference
from RHS at a time. If a row s of data reference matrix for
a RHS array A is identical to a row in the reference matrix
for the LHS array, then it is always possible to distribute
that srray along s th dimension across processors without
any communication.
If the condition above does not hold for a FtHS reference for
en array A, then the entries for Q should be chosen such that
some dimension of that reference consists only of the inner-
most loop index, and the other dimensions are independent
of the innermost loop index. That is, the FEE transformed
reference should be of the form A(*, a - - , *, j,,, *, - - -, *) where
* indicates a term independent of j,. If this condition is sat-
isfied, the communication arisiig from that FtHS reference
can be moved out of the innermost loop.

Refining communication. An aggressive approach may re-
peat the previous step several times to take the communi-
cation to the outermost loop possible, constrained only by
the data dependences.

As before, the transformation matrix should be non-
singular, and must satisfy data dependence.% The algo-
rithm is presented in Figure 4 and its details can be found
in [24, 251.

4.2 Example

We reconsider the matrix-multiplication nest shown in Fig-
ure 3(b). The algorithm works as follows:

Lc.Q== (i i i). Thereforeqrr=l,qrz=Oand

q13 = 0. Since lf = ey, A can be distributed along the first

dimension as well. LB.Q = (f f i). Thereforeqsr=

432 = cl23 = 0 and 433 = 1. The remaining entries should be
selected such that the rank of Q is 3, end no dependences
are violated. In this case the algorithm can set 421 = 0 and
q22 = 1. This results in the identity matrix meaning that no
transformation is needed. A and C are distributed by rows,
and B by columns, The resulting node program is shown

in Figure 3(h). Note that the communication is performed
outside the innermost loop.
Next the algorithm tries to distribute 0 in the second di-

mension. ICC.9 = (f i i). Thereforeqzr =l,qaa=O

and 423 = 0. Since 42 8, =l tcanbF$alongngrr

second dimension as well. C .Q =

fore qrr = q12 = 433 = 0 end q13 = 1. The remaining
entries should be selected such that the rank of Q is 3, and
no dependences are violated. The algorithm sets q31 = 0

0 0 1
and w = 1. This results in Q =

()
1 0 0 . All arrays
0 1 0

are distributed by columns. The resulting node program is
shown in Figure 3(i).

5 Unified Algorithm

This section presents a unified greedy algorithm which com-
bines the characteristics of the algorithms presented in the
previous two sections. It fist attempts to optimize for par-
allelism, then for communication, and finally for locality.

5.1 Explanation of the Algorithm

We first deEne the following terms where p represents the
number of loops in the nest.

l An array reference is said to be optimized for par-
allelism if the array can be distributed along an array
dimension where only jr (the transformed outermost
loop index) appears; thus, there is no communication.

l An array reference is said to be degree CY optimized
for communication if it cannot be optimized for pw-
allelism, but communication for it can be performed
before the oth loop, where 15 a! < p. A reference op-
timized for parallelism is said to be degree 0 optimized
for communication.

l An array reference is said to be degree /l optimized
for locality if it contains the loop index j,+p.+r in an
array dimension and it can be stored in a file such that
this array dimension will be the fastest changing array
dimension (15 /I 5 p).

Using these definitions we can associate a tuple ((Y,@) for
each array reference where (Y and p denote the degrea of
communication and locality, respectively, The tuple (0,l) is
the best possible tuple for a reference. Our algorithm tries to
achieve thii best possible tuple for all references. For those
references this is not possible, the selection of the next tuple
to be considered depends on whether parallelism is favored
over locality or vice-versa. For example for a 3-deep nest
in which ‘L-dimensional out-of-core arrays are accessed, we
follow the sequence (0, l), (0,2), (3,l); that is, if an array
reference cannot be optimized for parallelism, we check only
for the case where the communication can be taken out of
the innermost transformed loop. If (3,1) is unsuccessful,
we choose to apply communication or locality optimization
alone.

Theoretically, if there are enough loop indices and array
dimensions, an array reference C can be transformed to the
form C(*,...,*,k,*,...,*,jn,*,..,,*), where * denotes a
subscript independent of j,. If such a transformation is pos-
sible, then C can be distributed across processors along the

.T
-‘, ,. . __ . I. ,. z’,- “.:

Step 1 Initialize i = 1.

Step 2 Set eT.Q = (1, 0, - . - , 0, 0), i.e., distribute LHS out-of-core array across processors along dimension i.

Step 3 For all array references A on the R.HS that have elf - - ly for some I, distribute array A along the dimension 1.

Step 4 Choose en array reference A for which the equality in Step 3 does not hold. Initialize j = 1.

Step 5 Set c.Q = (O,O,-a-,0,1) audlf.Q = (b,6,-.. , 6,O) for each A # j. If a valid Q is found, check the determinaut of it.
If non-zero block transfers are possible for that RHS array, go to Step 8. If there are no valid Q or the determinant of
Q is zero for all j, block transfers are not possible on that array with the given distribution of the LHS array; increment
j and go to Step 5.

Step 6 Repeat Step 5 for ell reference matric~ of a particular A.

Step 7 Repeat Step 5 for all distinct array references.

Step 8 Record the obtained transformation matrix. Also record the number of arrays for which there is no communication
and the number of arrays for which block transfers are possible.

Step 9 Increment i and go to Step 2 (try a different distribution for the LHS array).

Step 10 Compare all alternatives and choose the best one.

Figure 4: Algorithm for data decomposition and parallelism.

Table 1: Array reference matrices for commonly used ((Y, ,@ tuples for a two-dimensional array enclosed in a three-deep loop
nest (left) and in a four-deep loop nest (right).

dimension where jr occurs alone, and at the same time local
portions of it can be stored in local files such that the dimen-
sion where j, occurs will be the fastest changing dimension.
The problem is that in most of the nests, the number of loops
and the number of array dimensions are small values; thus,
the number of entries in T-l is small (e.g. 4, 9 etc.). Once
the above form is obtained for one reference, since most of
the entries of T-’ are already determined, the chance of
optimizing the other references would be low. This is why
our algorithm considers other degrees of communication and
locality as well.

For an array reference, optimization for a tuple ((~,p)
can be formulated es a problem of finding a transformed
reference matrix which is suitable for both (Y degree com-
munication and p degree locality. For example, the refer-
ence matrices corresponding to some commonly used (cr,p)
tuples for a three-deep nest and a four-deep nest in which
two-dimensional arrays are accessed are given in Table 1.
The combined algorithm is given in FiR;“e 5. t’ denotes
the original reference matrix for the it erray in the nest,
i = 1 corresponding to the LHS array. The jth possible
transformed reference matrix for au (LL, 0) tuple is denoted
by Rj~~,p,. This algorithm is a generic form of the previous
algorithms in the sense that by setting 7Zj(o,~) matrices to
appropriate values both of the previous algorithms can be
implemented.

5.2 Example

Consider the matrix-multiplication nest once again. Since

L’.Q= (9 8 :> with(cr,~)=(O,l),q~l=O,q~z=O,

413 = 1, 421 = 1, ~22 = 0 and 423 = 0. Since LA.& =

(: i fi) with (o,fl) = (3, l), 433 = 0. Since .CB.Q =

(f i i) with (a,@) = (0,2), 932 = 1. By setting

0 0 1
931 = 0, T-’ = Q =

4)
100. The resulting node
0 1 0

program is shown in Figure 3(j). All arrays are column-
wise decomposed across processors. The arrays C and B
are optimized for parallelism (Q = 0), whereas the array A is
optimized for communication with (Y = 3. The arrays C and
A are optimized for locality in the innermost loop, whereas
for array B the locality is exploited in the second loop. The
tile allocations for local arrays are shown in Figure 3(l).
Next the algorithm considers the other alternative for the

array C. Since Lc.Q = (ii 8 t) with (0, PI = (0, 11,

911 = 1, qxt = 0, qm = 0, qzl = 0, 422 = 0 and 423 = 1. Since

85

Step 1 Initialize i = 1. Initialize (a, S) t- (0,l) (try the best possible optimization).

Step 2 Initialize j = 1. (try the first transformed reference matrix for this (cu,S) tuple).

Step 3 Set ,Cc’.Q = 7Zjca,,g,. If there is no inconsistency, then go to Step 4; else increment j (try the next possible transformed
reference matrix for this (a, /3) tuple) aud repeat this step. If there are inconsistencies for every value of j, then increment
(cx,p) tuple (try the next tuple on the trial sequence) and repeat this step. If there are inconsistencies for all (ac,S)
tuples, then apply pure communication or pure locality optimization for this reference.

Step 4 Increment i and go to Step 2 (optimize the next array reference).

Step 5 When a Q is found, record it. Also record the associated ((~,/3) tupIes for each array reference.

Step 6 When all solutions are obtained, choose the best alternative by comparing (cr,S) values, aud apply the memory
allocation scheme.

Figure 5: Unified algorithm for optimizing parallelism, communication and locality.

LA-Q = (; ; ;) with (a,@) = (0,2), 432 = 1 and

433 with (4) = (3,I),

432 = 1. Bysettingqsr = 0, T-’ = Q = . The

resulting node program is shown in Figure 3(k). All arrays
are row-wise decomposed across processors. The arrays C
and A are optimized for parallelism (a) = 0), whereas the
array B is optimized for communication with o = 3. The
arrays C and B are optimized for locality in the innermost
loop, whereas for array A the locality is exploited in the
second loop. The tile allocations for local arrays are shown
in Figure 3(m).

6 Experimental Results

The experiments were performed on IBM SP-2 and Intel
Paragon, for different values of Slab Ratio (SR), the ratio
of available node memory to the total size of all out-of-core
local arrays, The transformations to the original programs
were applied manually following the algorithms.

6.1 Experimental Suite

Our experimental suite consists of a simple benchmark, four
common kernels and an out-of-core 2-D FFT program.

6.1.1 A Simple Benchmark

Figure 8(a) shows a four-deep loop nest. Application of our
algorithm results in two optimized node programs as shown
in Figures 8(b) and (c) respectively. In Figure 8(b), the
reference A is optimized with (0, l), the reference B is op-
timized with (6,2), and the reference C is optimized with
(3,2). Before the w-loop, communication is performed for
C. On the other hand, in Figure 8(c) the reference A is
optimized with (0,l) and the reference C is optimized with
(3,2), incurring communication before the ur-loop. The ref-
erence B could only be optimized for locality; and commu-
nication is needed for it before the w-loop.

I/O Times Table 2 shows the I/O times on a single proces-
sor and in Figures 6 and 7 we present the normalized I/O
times on SP-2 and Paragon respectively for four different

86

versions of this example: (1) Original: The original program
in Figure 8(a) is parallelized manually for maximum granu-
larity and the data distributions are applied to files holding
the out-of-core arrays. Fixed column-major layout is used
and square tiles sre read/written. (2) Col-Opt: The opti-
mized program by using our approach under jibed column-
major layouts for all arrays. In that case our algorithm
allocates data tiles of size 5’ x S, S x S and n x S for the A,
3 and C respectively, resulting in the memory constraint
nS + 2S2 5 M where M is the size of the node memory,
(3) Row-Opt: The optimized program under jlxed row-major
layouts for all arrays. The algorithm allocates data tiles of
size S x n, S x S and S x S for the A, B and C respectively,
resulting in the memory constraint nS f 2S2 5 M. (4) Opt:
The program optimized by our approach assuming no Axed
file layouts (Figure 8(b)). A and C are row-major while B
is column-major. The algorithm allocates data tiles of sizes
S x n, n x S and S x n for the A, B and C respectively,
resulting in the memory constraint 3nS 5 M. Notice that
in this case, all three array accesses are optimized.

Table 3 shows the number of bytes read, and number of
I/O calls issued for each of the four versions. It is easy to
see that the Opt version minimizes both the number of I/O
calls in the program and the number of bytes transferred
from the files resulting in a corresponding reduction in the
overall I/O time.

Speedups Figure 9 shows the speedups for the Original and
Opt versions on SP-2. Notice that each speedup is relativo
to the sequential version of the same program (Original or
Opt).

I/O Bandwidth The I/O bandwidth (also called the aggre-
gate read bandwidth) of an out-of-core program is computed
as the total number of bytes read by all processors divided
by the total time to read. The optimized programs have
better bandwidth speedups than their unoptimized counter-
parts. Figure 10 shows two different cases for the examplo
given in Figure 8(a): (1) 4K x 4K double arrays with a slab
ratio of l/64, and (2) 2K x 2K double arrays with a slab
ratio of l/256. Notice that each bandwidth speedup is rel-
ative to the I/O bandwidth of the same version on a single
processor. Therefore bandwidth speedups for the original
and optimized cases start from the same point when p=l,
even though the actual values are d&rent for each version.
The I/O bandwidth of the optimized program when p=l

Table 2: I/O times (in seconds) for the example shown in Figure 8(a) on SP-2 and I ‘aragon.

Table 3: Number of Mbytes read and number of I/O calls issued (example shown in Figure 8(a)).

is 6.23 MB/set, whereas when p=16 the bandwidth is 55.3
MB/set.

6.1.2 Common Kernels

We also applied our optimizations to a number of common
kernels. The experiments were conducted on four nodes of
SP-2 with 4Xx4.X two-dimensional and 4X one-dimensional
double arrays and the results are shown in Figure 11 as
normalized I/O times. Figure 11(a) gives the performance
improvement obtained on a matrix-transpose loop that con-
tains the statement B(i, j) = A(j, i). The algorithm assigns
column-major layout for array A and row-major layout for
array B. It then allocates a tile of size nS to A, and a tile of
size Sn to B. Notice that no fixed 6le layout for all arrays
(as in C or Fortran) can obtain that performance. The per-
formance improvement on an iterative-solver nest is given
in Figure 11(b). The innermost loop contains the statement
Y(k) = Y(b) - U&j) *X(j). For this imperfectly nested
example our algorithm associates column-major layout for
all arrays. Figure 11(c) shows the results of the optimiza-
tions on a matrix-smoothing nest. The nest contains an
outermost serial loop. Our algorithm associates row-major
layout for all arrays (a 6xed column-major layout for all sr-
rays is also equally acceptable). Figure 11(d) illustrate the
performance improvement on matrix-vector multiplication
(Y=AX). It is interesting to note that in this example sll
layout combinations are equally good as far as I/O cost is
concerned. Going with column-major layout for all arrays,
the algorithm allocates a data tile of size nS for A, a tile of
size n for Y, and a tile of size 5’ for X.

6.1.3 2-D Out-of-Core FFT

Fast Fourier transform (FFT) is widely used in many areas
such as digital signal processing, partial differential equation
solutions and various other scientific and engineering prob-
lems. We implemented 2-D out-of-core FFT on the Intel
Paragon. The 2-D out-of-core FF’T consists of three steps :
1) 1-D out-of-core FFT, 2) Out-of-core transpose and 3) 1-D
out-of-core FFT. The 1-D FFT steps consist of reading data
from the two-dimensional out-of-core array and applying l-
D FFT on each of the columns. After this, the processed
columns are written to file. In the transpose step, the out-
of-core array is staged into memory, transposed and written
to file. Our optimising algorithm wss applied to the ori&
nsl program (Orig) and the results are presented in Figure
12 for three different cases. For all cases, the I/O times
constitute the bulk of the execution times. The bar charts
in the figure show that there is a 17 - 26% reduction in
the overall I/O time when the program is optimized. The
overhead time (Ovhd) includes times for file open end close
operations, buffer copying and other times for communica-
tion initializations.

6.2 Observations

From these results we observe the following:

l The Opt version performs much better then all other
versions.

l When the number of processors is increased, the effec-
tiveness of our approach (Opt) increases (see Figures 6
and 7). This is because of the fact that more proces-
sors are now working on the out-of-core local array(s)
I/O-optimally.

87

number of proces0rs=1

0.6

1
F
s

0.6

3
a
E

0.4

B

02

0.0
1116

1.0

0.6

t

i".,

1 0.4

z

02

0.0 :

0dgb-!al
col-opt
Rowopt
opt

256

QkTf~
Col-oPf
Rcwopt
opt

56

0.6

I
I=
0

0.6

I
a
B

0.4

%

02

0.6

f
F
9

0.6

a

4
B

0.4

s

02

number at pmessws=.l6

14 1116
ShbF

otrghal
cd-opt
Rcwopt
OPf

Ollglnol
COl.OP!
Row-Opt
OPl

56

Figure 6: Normalized I/O times with 4K x 4K (128 MByte) double arrays on SP-2.

l When the slab ratio is decreased, the eEectiveness of
our approach increases (see Figures 6, 7 and 11). As
the amount of node memory is reduced, the Original
version performs many number of small I/O requests,
and that in turn degrades the performance dramati-
cally.

l As shown in Figure 9, the Opt version also scales better
than the Original for ell slab ratios.

l As shown in Figure 10, the Opt version also has a
better I/O bandwidth speedup then the Original.

l Demonstrations on two different platforms with vary-
ing compile-time end run-time parameters, such es
number of processors, available memory, array sizes
etc., prove that the algorithm is quite robust.

l The results presented here are conservative in the sense
that the unoptimized programs are also parallelized
such that the maximum granularity is obtained. Since
this may not always be the case, the performance im-
provement obtained by our approach will be higher in
general.

7 Global I/O Optimization

In this section we show how our algorithm can be extended
to work on multiple nests. Since a number of out-of-core
arrays can be accessed by a number of nests and each of
these nests may require a different file layout for a specific
array, the algorithm should determine a file layout for that
array that satisfies the majority of the nests.

7.1 Constrained Layouts

We f&t focus on the problem of optimizing locality when
some or all file layouts are fixed. We note that each fixed
file layout requires the innermost loop index to be in the
appropriate array index position (dimension), depending on
the file layout form of the array. For example, suppose that
the file layout for a h-dimensional array is such that the di-
mension kr is the fastest changing dimension, the dimension
kz is the second fastest changing dimension, /us is the third
etc. The algorithm should first tr

3: most loop index j, only to the kr’
to place the new innor-
dimension of this array,

If this is not possible, then it should try to place j, only
to the Lzth dimension and so on. If all dimensions up to
and mcluding.kh are tried unsuccessfully, then j,-r should
be tried for the krth dimension and so on. As we will show
shortly this corralrained layout algorithm is very important
for global optimization.

7.2 A Simple Heuristic for Global Optimization

In the following we present sketch of a simple heuristic, Due
to space limitations, the details are omitted (See [12] for de-
tails). Our approach is based on the concept of most costly
nest. Intuitively, this is the nest which takes the most I/O
time and should be optimized. A programmer can use com-
piler directives to give hints about this nest. We can also use
a metric such es multiplication of the number of loops and
the number of arrays referenced in the nest. The nest which
has the largest resulting value can be marked as the most
costly nest. Then the algorithm proceeds as follows: First,
the most costly nest is optimized by using the algorithm
presented in Figure 5. After this step, file layouts for some
of the out-of-core arrays will be determined. Then each of

1.0

0.6

!

9 OS

P
! 0.4

z

02

0.0 L

0.a

f
g 0.6

8”

lo,

02

0.a

f
F
P

0.6

B
1 0.4

t

02

Figure 7: Normalized I/O times with 4K x 4.K (128 MByte) double arrays on Paragon.

the remaining nests can be optimized using the approach
presented for the constrained layout case in Section 7.1. Af-
ter each nest is optimized, new file layout constraints will
be obtained, and these will be propagated for optimization
of the next nest.

Results on a 2-D out-of-core FFT code demonstrate a
17 - 26% reduction in I/O times using our heuristic. Note
that due to lack of space, we just summa&e the results in
this case. The 2-D out-of-core FFT consists of three steps:
(a) 1-D out-of-core FFT,(b) out-of-core transpose, and (c)
1-D out-of-core FFT. The 1-D FFT steps consist of reading
data from the two-dimensional out-of-core array and apply-
ing 1-D FFT on each of the columns. After this, the pro-
cessed columns are written to the file. In the transpose step,
the out-of-core array is staged into memory, transposed and
written to the file. We also note that the effectiveness of the
approach increases with increasing number of processors, de-
creasing slab ratio and increasing problem size. That is, the
global layout optimization improves the scalability of the
program as well as the execution time.

8 Related Work

Previous work on compiler optimizations to improve local-
ity has concentrated on iteration space tiling. In [29] and
1151, iteration space tiling is used for optimizing cache per-
formance of in-core programs. In [18], a simple model for
optimizing cache locality is developed. In [9], unifody gen-
emted sets are introduced, and windows are used to capture
data reuse. Previous work on parallelism has concentrated,
among other topics, on compilation techniques for multi-
computers [lo], automatic discovery of parallelism [28] and
data layout reorganizations [2, 3,7],

In [8], the functionality of ViC*, a compiler-like prepre
cessor for out-of-core C* is described. Output of ViC* is a
standard C* program with the appropriate I/O and library
calls added for efficient access to out-of-core parallel vari-
ables. In [ZO], the compiler support for handling out-of-core
arrays on parallel architectures is discussed. Bordawekar
e&al [4] offer a strategy to compile out-of-core programs on
distributed-memory message-passing systems. It should be
noted that our algorithms are general in the sense that they
can be incorporated to any out-of-core compilation frame
work for parallel and sequential machines.

Previous work considers optimizing the performance of
virtual memory (VM). Abu-S&h et al. [I], dealt with opti-
misations to enhance the locality properties of programs in a
VM environment. In principle, our file layout determination
scheme can be applied for optimizing the performance of the
VM as well (by changing tile sizes to take the page size into
account). But, we believe that the impact of the I/O opti-
misations based on VM will be limited as compared to that
of the optimisations based on the explicit file I/O. Because,
(1) the fixed page sizes present a problem. Even if the com-
putation requires a small portion of a data tile, a full page
containing the data is brought into memory. Or, conversely,
even if there is enough bandwidth for fetching a number of
pages, the VMs generally bring one or two pages after every
page fault, wasting the bandwidth; (2) the performance of
the VM depends mostly on the page replacement policy of
the operating system, which in turn, is out of control of the
compiler. [19]; (3) the concept of locality in uniprocessors
on which paging is based does not directly extend to par-
allel computers because of different interleaving of accesses
by processors [21].

89

DOi=l,n
DOj=l,n

DOk=l,n
DOl=l,n

A(i,j)+=B(k,i)+C(Lk)
ENDDO I

ENDDO k
ENDDO j

ENDDO i

(4

DO u = 1, n/p, S
DO v = 1, n/p. s

receive C[v,*]
DOw=l,n,n

DOy=l,n,n
gl+g~[w,ul+cIv*wl

ENDDO w
ENDDO v

ENDDO u

@I

DOu= 1, n/n S
DO v = 1, n/p, S

receive B v,*
receive C +,v I I
DOw=l,n,n

~~~~~~,y]+c[w,vl 

ENDDO w 
ENDDO v 

ENDDO u 
(4 

Figure 8: (a) A four-deep out-of-core loop nest; (b) Parallelism and I/O optimized translation of (a); (c) Parallelism and I/O 
optimized translation of (a). 

9 Summary 

In this paper, we proposed algorithms for (1) optimizing lo- 
cality, (2) optimizing parallelism and communication, and 
(3) optimizing locality, parallelism and communication to- 
gether. Our techniques can reduce the execution time by 
as much as an order of magnitude on IBM SF2 and In- 
tel Paragon. The results however should not be interpreted 
as a general comparison of the two machines, es they are 
dependent on the parallel file systems, our parallel I/O li- 
brary and the I/O access pattern of the loop nests m our 
experiment suite. We believe that our work is unique in the 
sense that it combines data transformations (layout determi- 
nation) and control transformations in a unified framework 
for optimizing out-of-core programs on distributed-memory 
message-passing machines. We have shown in thii paper 
that the combination of these two transformations leads to 
the highest granularity of parallelism and optimized file lay- 
outs, and that in turn, minimizes the oversll execution time. 

References 

PI 

PI 

[31 

1 

J. M. Anderson and M. S. Lam. Global Optimizations 
for Parallelism and Locality on Scalable Parallel Ma- 
chines. In Proc. SIGPLAN ‘93 Conference on Program- 
ming Language Design and Implementation (PLDI), 
June 1993. 

J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. 
Data and computation transformations for multipro- 
cessors. In Proc. 5th ACM SIGPLAN Symposium on 
Principles and Practice of Parallel Programming, July 
1995. 

W. Abu-Sufah. On the performance enhancement of 
paging systems through progrem analysis and transfor- 
mations. IEEE Bansactions on Computers, C-30(5), 
pages 341-355, May 1981. 

[4] R. Bordawekar, A, Choudhary, K. Kennedy, C. Koelbel, 
and M. Paleczny. A model and compilation strategy for 
out-of-core data-parallel programs. In Proc. 5th ACM 
Symposium on Principles and Practice of Parallel Pro- 
gramming, July 1995. 

[5] R. Bordawekar, A. Choudhery, and J. Ramanujam. Au- 
tomatic optimization of communication in out-of-core 
stencil codes. In Proc. 10th ACM International Con- 
ference on Supercomputing, May 1996. 

[6] R. Bordawekar. Techniques for compiling I/O intensive 
parallel programs. Ph.D. Thesis, Dept. of Electrical and 
Computer Eng., Syracuse University, April 1996, 

M. Cierniek and W. Li. Unifying data and control 
transformations for distributed shared memory ma- 
chines. Technical Report 542, CS Dept., University of 
Rochester, November 1994. 

T. H. Cormen and A. Colvin. ViC*: A preprocessor for 
virtual-memory C*. Dartmouth College Computer Sci- 
ence Technical Report PCS-TR94-243, November 1994. 

[9] D. Gannon. W. Jalbv, and K. Gallivan. Strategies for 
cache and local memory management by globa pro- 
gram transformations. Journal of Parallel and Dis- 
tributed Computing, 5:587-616, 1988. 

S. Hiranandani, K. Kennedy, and C. -W. Tseng. Com- 
piling Fortran D for MIND distributed memory ma- 
chiies. Communications of the ACM, 35(8):66-88, AU- 
gust 1992. 

M. Kandemir, R. Bordawekar and A. Choudhary, Data 
access reorganizations in compiling out-of-core data 
parallel programs on distributed memory machines. 
In Proc. International Parallel Processing Symposium, 
April 1997. 

WI 

Pll 

P21 

[I31 

PI 

1151 

M. Kandemir, A. Choudhary, J. Ramanujam, and M. 
Kandaswamy. A unified compiler algorithm for opti- 
mizing locality, parallelism and communication in out- 
of-core computations. Technical Report, ECE Depart- 
ment, Northwestern University, August 1997. 

C. Koelbel, D. Loveman, Il. Schreiber, G. Steele, and 
M.Zosel. High Performance Fortran Handbook. The 
MIT Press, 1994. 

U. Kremer. Automatic data layout for ai&ibutd mem- 
ory machines. Ph.D. thesis, Rice University, 1996, 

W. Li. CompiIing for NUMA parallel machines. Ph,D. 
Thesis, Cornell University, 1993. 

[16] W. Li and K. Pingali. Access normalization: Loop, r~- 
structuring for NUMA compilers. ACM fiansactrons 
on Computer Systems, November 1993. 



5.0 10.0 15.0 20.0 
NumberdRwssars 

15.0 -wti 
/ 

-opt 
.’ 

---- Ideal 

Ilo.j/ : 

0.0 
0.0 5.0 10.0 15.0 20.0 

Number d R-rs 

0.0 
0.0 5.0 10.0 15.0 20.0 

Number of Rooersors 

slab Fiauo4255 
20.0 

0.0 
0.0 5.0 10.0 15.0 20.0 

Number d Rowsor 

Figure 9: Speedups for unoptimized and optimized versions with 4K x 4K double arrays on SP-2. 

[17] A. C. McKellar, and E. G. Cotian. The organization 
of matrices and matrix operations in a paged multi- 

1251 J. Ramazmjam and A. Narayan. Automatic data map- 

programming environment. Conam. ACM 12,3 (March 
ping and program transformations. In Proc. Workshop 

1969), pages 153-165. 
on Automatic Data Layout and Performance Predic- 
tion, Houston, TX, April, 1995. 

[18] K. McKinley, S. Caxr, and C. W. Tseng. Improving data 
locality with loop transformations. ACM !l+ansactions 
on Programming Languages and Systems, July 1996. 

[19] T. C. Mowry, A. K. Demke and 0. Krieger. Automatic 
compiler-inserted I/O prefetching for out-of-core appli- 
cations. In Pmt. Second Symposium on Operating Sys- 
tems Design and Implementations, Seattle, WA, Octo- 
ber 1996, pages 3-17. 

[26] E. Torrie, C-W. Tseng, M. Martonosi, and M. W. Hall. 
Evaluating the impact of advanced memory systems 
on compiler-parallelized codes. In Proc. International 
Conference on Parallel Architectures and Compilation 
Techniques, June 1995. 

[27] K. S. Trivedi. On the paging performance of ar- 
ray algorithms. IEEE iknnsactions on Computers, C- 
26(10):938-947, 1977. 

[ZO] M. Paleczny, K. Kennedy and C. Koelbel. Com- 
piler support for out-of-core arrays on parallel ma- 
chines. CRPC Technical Report 94509-S, Rice Univer- 
sity, Houston, TX, December 1994. 

[21] A. Purakayastha, C. S. Ellis, D. Katz, N. Nieuwejaar, 
and M. Best,. Characterizmg parallel file-access pat- 
terns on a large-scale multiprocessor. In Proceedings of 
the Ninth International Pamllel Processing Symposium, 
pages 165-172, April 1995. 

[28] M. Wolf and M. Lam. A loop transformation theory and 
an algorithm to maximize parallelism. IEEE !Ransac- 
tions on Parallel and Distributed Systems, 2(4):452-471, 
October 1991. 

[29] M. Wolf and M. Lam. A data locality optimizing al- 
gorithm. In Proc. ACM SIGPLAN 91 Conf. Program- 
ming Language Design and Implementation, pages 30- 
44, June 1991. 

[22] J. Ramanujam. Non-unimodular transformations of 
nested loops. In Proc. Supercomputing 92, pp. 214-223. 

1231 J. Ramauujam. Beyond u&nodular transformations. 
The Journal of Supercomputing, 9(4):365-389, 1995. 

[24] J. Ramanujam and A. Narayan. Integrating Data Dis- 
tribution and Loop Transformations for Distributed 
Memory Machines. In Proc. 7th SIAM Conference on 
Parallel Processing for Scientific Computing, D. Bailey 
et al., Eds., SIAM Press, pages 668-673, February 1995. 

[30] M. Wolfe. High performance compilers for parallel 
computers. Addison-Wesley Publishing Company, CA, 
1996. 

91 

I 

! 
1 

1 

! 

! 

I 

i 
i 



I 

Figure 10: Bandwidth speedups for the exampIe shown in Figure 8(a) on SP-2. 

1.0 

0.6 - 

I 
!= - 2 0.6 

P 

lo,’ 

0.2 - 

OrIgInal 

opt 

0.0 
l/4 Ill6 1164 IR56 

slab Rat!4 

(4 

Mabix Smwthlng 
1.0 

OllQllVA 
W 

0.6 - 

g 
‘=06. 
9 

!j 0.4 - 

02 . 

0.0 
114 IA6 l/W ‘1256 

slab RElio 

1.0 

0.6 - 

E! 
F 2 0.6 - 

I _ 

.j o.4 

02 - 

@I 
iterative solver 

OIlglWd 

OPl 

0.0 - 
114 l/l6 1184 11256 

S!&W 

(d) 

0.0 1 -I 
114 1116 1164 11280 

slab Ratb 

Figure 11: Normalized I/O times for different kernels: (a) Matrix transpose; (b) Iterative solver; (c) Matrix smoothing; (d) 
Matrix-vector multiplication. 

Figure 12: 2-D Out-of-core FFT: Reduction in I/O time and breakdown of execution time. SR is the slab ratio, and p is the 
number of processors. AU times are in seconds. 


