IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 4, APRIL 2003

337

Reducing False Sharing and Improving
Spatial Locality in a
Unified Compilation Framework

Mahmut Kandemir, Member, IEEE, Alok Choudhary, Member, IEEE Computer Society,
J. Ramanujam, Member, IEEE, and Prith Banerjee, Fellow, IEEE

Abstract—The performance of applications on large shared-memory multiprocessors with coherent caches depends on the
interaction between the granularity of data sharing, the size of the coherence unit, and the spatial locality exhibited by the applications,
in addition to the amount of parallelism in the applications. Large coherence units are helpful in exploiting spatial locality, but worsen
the effects of false sharing. A mathematical framework that allows a clean description of the relationship between spatial locality and
false sharing is derived in this paper. First, a technique to identify a severe form of multiple-writer false sharing is presented. The
importance of the interaction between optimization techniques aimed at enhancing locality and the techniques oriented toward
reducing false sharing is then demonstrated. Given the conflicting requirements, a compiler-based approach to this problem holds
promise. This paper investigates the use of data transformations in addressing spatial locality and false sharing, and derives an
approach that balances the impact of the two. Experimental results demonstrate that such a balanced approach outperforms those
approaches that consider only one of these two issues. On an eight-processor SGI/Cray Origin 2000 multiprocessor, our approach
brings an additional 9 percent improvement over a powerful locality optimization technique that uses both loop and data
transformations. Also, the presented approach obtains an additional 19 percent improvement over an optimization technique that is
oriented specifically toward reducing false sharing. This study also reveals that, in addition to reducing synchronization costs and
improving the memory subsystem performance, obtaining large granularity parallelism is helpful in balancing the effects of enhancing

locality and reducing false sharing, rendering them compatible.

Index Terms—Data reuse, cache locality, false sharing, loop and memory layout transformations, shared-memory multiprocessors.

1 INTRODUCTION

ROCESSOR speeds have continued to advance at a much

higher pace than memory speeds. This has led to the
deep memory hierarchies that are found in modern
uniprocessor and multiprocessor systems. Although a
number of hardware-based techniques are available to
exploit these deep memory hierarchies [19], compiler
optimizations have come to play an increasingly impor-
tant role in exploiting the potential performance of these
machines. In recent years, there has been a significant
amount of work on compiler optimizations aimed at
restructuring programs to use the memory hierarchy
better, leading to improved performance [51]. In principle,
this can be achieved by modifying the access patterns in
the program control structures (e.g., loop nests) or by
modifying the memory layouts of large data structures
(e.g., multidimensional arrays), or through a combination
of the two. It has been shown that techniques along these
lines are quite successful in enhancing the overall

o M. Kandemir is with the Department of Computer Science and
Engineering, The Pennsylvania State University, 220 Pond Laboratory,
University Park, PA 16802. E-mail: kandemir@cse.psu.edu.

o A. Choudhary and P. Banerjee are with the Department of Electrical and
Computer Engineering, Northwestern University, 2145 Sheridan Road,
Evanston, IL 60208. E-mail: {choudhar, banerjee}@ece.nwu.edu.

e |. Ramanujam is with the Department of Electrical and Computer
Engineering, 102 Electrical Engineering Building, S. Campus Drive,
Louisiana State University, Baton Rouge, LA 70803-5901.

E-mail: jxr@ece.lsu.edu.

Manuscript received 18 Sept. 2000; revised 1 Nov. 2001; accepted 1 Feb. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 112878.

1045-9219/03/$17.00 © 2003 IEEE

<+

memor erformance on uniprocessors [49], [39], [40],
[41], [42], [38], [32], [26].

However, there is another critical issue to be considered
in the case of shared-memory parallel machines, namely,
false sharing [8], [46]. False sharing arises when two or more
processors that are executing parallel parts of a program
access distinct data elements in the same coherence unit
[15], [22]. In other words, some form of synchronization is
required between the two processors even though there is
no data dependence between the computations on the
processors. The negative impact of false sharing on the
memory performance can be devastating. Eggers and
Jeremiassen [15] show that a number of programs—that
exhibit good spatial locality on uniprocessors—perform
very poorly on multiprocessors. The main reason is the
added set of invalidations incurred on updates and the
extra invalidation misses that occur when processors reread
different data that belong to the invalidated block. Similar
observations have been made by others as well [47], [46].

The interaction between locality and false sharing on
shared-memory parallel machines is quite well-known. For
example, it is known that with smaller cache lines,
improving spatial locality also results in a reduction of
false sharing. But, at the page level (where the coherence
unit is much larger), just targeting spatial locality may not
be sufficient [18]. In this paper, we present a mathematical
framework that allows us to succinctly represent and study
the interaction between the two. More importantly, for
array-based regular floating-point scientific codes, this
framework enables the derivation of data transformations to
address the conflicting effects of techniques that improve
locality and the techniques that reduce false sharing.

Published by the IEEE Computer Society

338 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 4, APRIL 2003

False sharing can be studied at the level of a cache line as
well as at the memory page level; our approach does not
distinguish between these two types of false sharing.
Instead, our interest is in identifying those cases in which
optimizations aimed at enhancing locality and optimiza-
tions for reducing false-sharing do not conflict with each
other. For this purpose, we first represent the potential
multiple-writer false sharing in a given loop nest in the
form of vectors. Although this representation is approx-
imate, it gives the compiler some idea about the references
that may cause a severe form of multiple-writer false
sharing if not addressed correctly. We then show how
locality optimizations and parallelization techniques affect
false sharing. In order to do that, we represent the available
locality in a loop nest and the available parallelism options
also in mathematical terms. Then, we present an analysis of
the cases in which locality optimizations and false sharing
optimizations conflict with each other and the cases where
they do not. We believe that such an analysis is very useful
for compiler writers as well as for the end-users of shared-
memory parallel architectures. Our results emphasize the
importance of obtaining large-granularity (outermost loop)
parallelism. Experimental results on an eight-processor
SGI/Cray Origin 2000 machine demonstrate significant
improvements. While the importance of outermost loop
parallelism has been shown by previous researchers along
the lines of reducing synchronization costs [51], reducing
interprocessor communication [48], and enhancing memory
performance [47], in this paper, we show that obtaining
outermost loop parallelism is also important to ensure that
enhancing locality and reducing false sharing are not
incompatible.

The remainder of this paper is organized as follows:
Section 2 presents the relevant background and shows how
a specific form of false sharing can be represented in a
mathematical framework. Section 3 discusses the impact of
loop and data transformations in reducing false sharing and
in optimizing locality. In Section 4, we present our heuristic
to obtain a balance between enhancing locality and
reducing false sharing. Section 5 presents our experimental
platform and discusses performance numbers obtained on
an eight-processor Origin 2000 distributed-shared-memory
multiprocessor. In Section 6, we discuss related work and
we conclude in Section 7, with a summary and a brief
outline of ongoing and planned research.

2 PRELIMINARIES

Self temporal reuse is said to occur when a reference in a loop
nest accesses the same data in different iterations. Similarly,
if a reference accesses nearby data, i.e., data residing in the
same coherence unit, in different iterations, we say that
there is self spatial reuse [51]. It should be emphasized that
the most useful forms of reuse (temporal or spatial) are
those exhibited by the innermost loop. If the innermost loop
exhibits temporal reuse for a reference, then the accessed
element can be placed in a register for the entire duration of
the innermost loop (provided that there is no aliasing [51]).
Similarly, spatial reuse is most beneficial when it occurs in
the innermost loop since, in that case, it may enable unit-
stride accesses, leading to repeated accesses to the same
coherence unit.

False sharing occurs when two or more processors access
(and at least one of them writes) different data elements in the
same coherence unit (cache line, memory page, etc.) [22], [8],
[46], [15]. In this section, we show how to identify a severe

form of false sharing that occurs when an array dimension
that exhibits spatial reuse is accessed by multiple writers, i.e.,
multiple processors that write to data in the same coherence
unit. For example, this form of false sharing might occur when
each processor updates a different row of a two-dimensional
array stored in column-major order. Note that, depending on
the array and the size of the coherence units, multiple-writer
false sharing can also occur if each processor updates a
different column of the said array. However, this type of false
sharing occurs only at the boundaries of columns and isnot as
severe. Now, we introduce two key concepts, namely, the
parallelism vector and the reuse summary vector. Note that, in
this paper, we sometimes write a column vector Z as
(z1,..., xn)T when there is no confusion.

The parallelism vector indicates which loops in a loop nest
will be executed in parallel. These loops are a subset of the
loops that may be executed in parallel; this parallelism
information is typically obtained through data dependence
analysis [51]. Assuming a loop nest of depth n, an element
p; of the parallelism vector p = (p1,... ,pn)" is one if the
iterations of the corresponding loop will be executed in
parallel, otherwise p; is zero.

Consider an access to an m-dimensional array in a loop
nest of depth n. We assume that the array subscript
functions and loop bounds are affine functions of enclosing
loop indices and symbolic loop-independent parameters
[51]. Let I denote the iteration vector consisting of loop
indices starting from the outermost loop to the innermost.
Under these assumptions, a reference to an m-dimensional
array is represented as LI + 6, where the m x n matrix £ is
called the access (or reference) matrix [49] and the m-element
vector o is referred to as the offset (or constant) vector. The
data reuse theory introduced by Wolf and Lam [49] and
later refined by Li [39] is used to identify the types of reuse
in a given loop nest. Two iterations represented by vectors
I) and I, (where I; precedes I, in sequential execution)
access the same data element using the reference repre-
sented as £I+0 if £LI; +6= LI +06. In this case, the
temporal reuse vector is defined as 7 = I, — I}, and it can be
computed from the relation £7 = 0. Assuming column-major
memory layouts, spatial reuse can occur if the accesses are
made to the same column. We can compute the spatial reuse
vector § from the equation L5 = 0, where £, is £ with all
elements of the first row replaced by zero [49], [39].

A collection of individual reuse vectors is referred to as a
reuse matrix. We now focus on spatial reuse vectors. We call
the matrix built from these vectors the spatial reuse matrix.
For a given reuse vector, the first nonzero element from the
top (also called the leading element) corresponds to the loop
that carries the associated reuse. A reuse summary vector for a
given reuse vector is a vector in which all the elements are
zero except the element that corresponds to the loop
carrying the reuse (in the associated reuse vector); this
element is set to one. The reuse summary matrix and the
spatial reuse summary matrix are defined analogously. Fig. 1
shows an example loop nest and illustrates these concepts.
As an example computation, since

1 00
Lo=[0 1 1],
110

KANDEMIR ET AL.: REDUCING FALSE SHARING AND IMPROVING SPATIAL LOCALITY IN A UNIFIED COMPILATION FRAMEWORK 339

—_ =

Forarray U : L, = (

Forarray V: L, =

—_o

1 1

doi=1, N

doj=1, N
dok =1, N
U(i+],j,1) = V(i,j+k,i+j+1)
end do

end do

end do

% 8);@:(8);»@:(8);Euzg’u:<8)
00 0 1 1
) (1) (1)
10 1 1 (

0 1
S=Gud)=|0 -1];8=(,5)=

Fig. 1. An example loop nest and the concepts used in this paper. Notice that the reference to array V' does not have temporal reuse. £, and L, are
the access matrices and o, and o, are the offset vectors, 7, is the temporal reuse vector, s, and s, are the spatial reuse vectors, and s/, and s/, denote
the spatial reuse summary vectors. And, S is the spatial reuse matrix and S’ is the spatial reuse summary matrix.

the spatial reuse vector should be selected from the null

set of
01 1
1 1 0/

Consequently,

Since the first nonzero element in this vector is the first
element, the reuse summary vector is

In this paper, we focus on self-reuses (i.e., reuses that
originate from individual references to the same array), but
our approach can be extended to include group-reuses (i.e.,
reuses that occur when multiple references access the same
data element [49]) as well. Unless stated otherwise, all the
memory layouts are assumed to be column-major.

2.1 Identifying False Sharing Due to an

LHS Reference

We begin by noting that a common cause of false sharing is
the parallel execution of a loop that carries spatial reuse
[39]. For example, in Fig. 2a, parallelizing the i-loop can
cause false sharing of array U. The reason is that the spatial
reuse for the reference U(i, j) is carried by the i-loop, and
parallelizing this loop can cause multiple processors to
write to each column of this array. Note that false sharing
occurs as a result of the interplay between memory layouts,
array subscript functions, coherence unit size, sharing
granularity, and parallelization decisions.

We now express the condition for the existence of this
form of multiple-writer false sharing in mathematical terms.
Let § be a spatial reuse summary vector for a given left
hand side (LHS) reference in a nest and let p be the
parallelism vector for the nest. A severe form of multiple-
writer false sharing can occur if p's #0, ie., if the loop
carrying the spatial reuse is parallelized. Considering all the
LHS references in the nest, multiple-writer false sharing can

occur if p’'S" #0, where ' is the spatial reuse summary
matrix comprised of the reuse summary vectors for the LHS
references. We define the false sharing vector f as

p's =fr. (1)
The nonzero entries in the false sharing vector f identify the
references that can cause false sharing. Based on previous
work in compilers, one can suggest the desired values for
o', S, and fT. For example, it is well-known that a desired
form of p” has nonzero elements only at the beginning [51].
In effect, most commercial compilers attempt to obtain a
single 1 in the leftmost position, which corresponds to
parallelizing only the outermost loop in the nest. This helps
to reduce the synchronization costs [51], reduce interpro-
cessor communication [48], and improve memory perfor-
mance [47]. On the other hand, previous work on
optimizing locality [49], [40], [39] tells us that for each
§ € 9, the index of the first nonzero element (starting with
1 corresponding to the outermost loop going to n for the
innermost loop in an n-nested loop) should be as high as
possible. This will ensure that inner loops carry the reuse. In
the ideal case, we would prefer the leading element to be
the last element in each &, ie, § =(0,...,0, 1)T. This
corresponds to the case where the spatial reuse is carried by
the innermost loop. In practice, it may not be possible to
obtain this ideal reuse summary vector for every reference
because of conflicts. Finally, as we have hinted above, the
ideal false sharing vector should be a zero vector and the
likelihood of multiple-writer false sharing increases with
the number of ones in the false sharing vector.

Our focus is on false sharing that is due to one reference
per array (self-variable false sharing [11]). It is relatively
straightforward to extend the approach presented here to
address false sharing due to multiple references to the same
array. In this case, we need to consider every pair of
references to an array that can cause false sharing and, for k
such reference pairs, the resulting false sharing vector have
k elements. On the other hand, false sharing due to different
arrays (multiple-variable false sharing [11]) is, in general,
not severe and can be eliminated by the alignment of array
variables on coherence unit boundaries; therefore, it is not
investigated in this study. Also, we focus mainly on
multiple-writer false sharing; reader-writer false sharing
can be avoided on machines that employ weak memory

340

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 4, APRIL 2003

doi=1, N
do j=1,N do i = 17, iy
dok =1, N do j = J1s Ju
U(i,jl=... do k = ki, ky
V(i,k)= U(k,i,j+k)=..
Wk,j)=... end do
end do end do
end do end do
end do
(a) (b)
doi=1, N do i = 2, N-1
do j=1, N do j =2, N-1
dok=1, N U(i,j)=@U(i-1,3)
U(i,j,k)=... +U(i+1,j)
V(@i+j,i+k,j+k)=... +U(i,j-1)
end do +U(i,j+1))/4.0
end do end do
end do end do
(d) (e)

doi=1, N

do j=1, N
UG,)=...
V(j,i)=...
W(+j,)= ...
X(i,i+j)= ...
end do

end do

(c)

do j’ = 4, 2N-2
do i’ = max(2,j’-N+1), min(j’-2,N-1)
U(i’,j’=-12)=(U(i’-1,j’-17)

+U(i’+1,j°-17)
+0(i7,j7-1-17)
+U(i’,j’°+1-12)) /4.0

end do

end do

)

Fig. 2. Several example loop nests that can incur false sharing depending on the parallelization strategy used.

consistency models [11], [19]. However, our approach
can be extended to deal with reader-writer false sharing
as well.!

2.2 Examples

The main issue that we investigate in this paper, is one of
simultaneously obtaining large granularity of parallelism,
improving spatial locality, and reducing false sharing. We
will derive the kind of data transformations useful for
achieving this goal. We note that, if we can optimize an LHS
reference (which may cause false sharing) such that only the
innermost loop carries the spatial reuse for it, then the
possibility of multiple-writer false sharing can be reduced if
the compiler can derive outermost parallelism after the
locality optimization. This strategy works fine as long as
outermost loop parallelism is available. If this is not the
case, then the interplay between locality, parallelism, and
false sharing merits further study.

Let us now consider again, the code in Fig. 2a, and show
how the false sharing vector is computed. Assume that the
nest shown is enclosed by a sequential timing loop and the
i-loop is to be parallelized,2 ie, p= (1,0, O)T. Since

1 0 0 1 0 0 0 0 1
L,= L= yand L,= .
0 1 0 0 0 1 0 1 0

The spatial reuse vectors for U, V, and W can be selected
from the null sets of (0,1,0), (0,0,1), and (0,1,0),
respectively. If we eliminate the candidate vectors that
are also temporal reuse vectors (note that we do not
consider temporal reuse here), the spatial reuse summary
vectors (and also spatial reuse vectors) are &, (1,0,0)",
(1,0,0)", and &, = (0,0,1)"; note that we do not

8, =
1. In fact, multiple-writer false sharing can also be handled by weak
memory consistency models. However, it is always better for a compiler to
do it since there is cache coherence overhead at runtime.

2. This does not mean that the j and k loops cannot be run in parallel, it
just means that the compiler decides to parallelize only the outermost loop.

consider temporal reuse here. This means that the spatial
reuse for arrays U and V are carried by the i-loop and the
spatial reuse for W is carried by the k-loop. Thus, the
spatial reuse summary matrix is

S =

O O =
O O =
= o o

Hence,

fT — 7T51/

110
(1,0,00{ 0 0 0| =(1,1,0).
00 1

This means that, if the i-loop is parallelized, then both the
references U (i, j) and V (4, k) may incur multiple-writer false
sharing (as they have nonzero entries in the false sharing
vector). We also note that, in our example loop nest, if we
parallelize the j-loop (instead of the i-loop), then the false
sharing vector will be a zero vector (the ideal case), but we
will not have outermost loop parallelism anymore. There-
fore, there is a trade-off between optimizing for parallelism
and reducing false sharing. Ideally, the best parallelism
vector is one that enables outermost loop parallelism and
maximizes the number of zeroes in the false sharing vector.
From f7 = p’'S' = 0, we obtain S"p =0 = p € Ker{S"}.In
other words, Ker{S""} includes all those parallelism vectors
that lead to the ideal false sharing vector, namely, the zero
vector. From among these candidate parallelism vectors, we
need to choose one that is legal and that enables the
maximum degree of outermost loop parallelism.

We now concentrate on the loop nest shown in Fig. 2b.
For the only reference shown, the spatial reuse vector is
5=(0,1,-1)", which implies the spatial reuse summary
vector § = (0,1,0)". In order to reduce the extent of false
sharing, the parallelism vector p should be either (1,0, O)T

KANDEMIR ET AL.: REDUCING FALSE SHARING AND IMPROVING SPATIAL LOCALITY IN A UNIFIED COMPILATION FRAMEWORK 341

or (0,0, l)T (assuming only one loop will be parallelized).
To exploit outermost loop parallelism, it is better to select
2= (1,0, O)T, i.e., parallelize the i-loop.

Let us suppose that (for some reason) we want to
parallelize the j-loop in this example nest. Further, assume
that (i1, j1, k1) and (49, j2, ko) are two iterations executed in
two different processors. Assuming column-major memory
layouts, multiple-writer false sharing can occur if the
following system has a solution:

i <, ip <y

S <92 S Ju

ki < ki, ke <k,
parallelism condition :{j; # jo}

stride condition :{|k; — k1| < 0}

locality condition :{i; = is,j1 + k1 = j2 + ka},

loop bounds condition :

where § is the coherence unit size (specified in number of
array elements). The loop bounds conditions ensure that the
two iterations are within the loop bounds. The parallelism
condition indicates that we parallelize only the j-loop. The
locality condition guarantees that the two iterations men-
tioned will access the same column; therefore, all the
subscript positions (dimensions), except maybe the first,
should have the same value. And, finally, the stride
condition requires that the two accesses fall into the same
coherence block (assuming perfect alignment). Assuming
that 4y =5=k =1 and i, =j, =k, =N and 0 > 1, the
above system has many solutions, e.g., iterations (1,1,2)
and (1,2,1). In other words, if we parallelize the j-loop,
multiple-writer false sharing is likely to occur.

If, instead, we assume that the i-loop is parallelized, then
the parallelism condition will be 4; # 4. Since this condition
is in conflict with the locality condition (which requires i,
and iy to be equal), the system will not have a solution,
meaning that false sharing is unlikely to occur. This
formulation of the false sharing problem as a system of
equalities and inequalities is very promising (especially
with the success of polyhedral algebra tools like the Omega
library [30]). However, in this paper, we use a matrix
framework and postpone the full treatment of the poly-
hedral algebraic formulation to a future work. Here, we
assume that the loop bounds condition is always satisfied.
Also (for portability concerns), we conservatively assume
that the stride condition always holds. Thus, what is left to
consider are the parallelism and locality conditions.

3 IMPACT OF TRANSFORMATIONS ON FALSE
SHARING

Given a loop nest with a single LHS reference, the
compiler’s task is to determine suitable values for the
vectors P, §, and f. In order to realize this goal, we consider
both loop transformations and data transformations. We
first briefly evaluate the effect of loop transformations and,
then, make a case for using data transformations.

3.1 Loop Transformations

We assume that the set of applicable loop transformations
for an n-deep loop nest are those that can be represented by
n x n nonsingular integer transformation matrix 7. From

data reuse theory [39], we know that, if s is the spatial reuse
vector before the transformation, then §° =75 is the new
spatial reuse vector after the transformation. From 5, we
can easily compute §*, the new spatial reuse summary
vector. Unfortunately, finding p*, the new parallelism
vector after the transformation is not as easy. In most cases,
we need to run the dependence analyzer to find it. Now,
from a loop transformation point of view, we can take three
different approaches to the problem.

Parallelism-oriented approach. Using one of the algo-
rithms in the literature (e.g., [50], [40]), we can find a
transformation 7" that results in the best possible parallelism
vector p*. Then, from T5, we find the new spatial reuse
vector and, finally, using (1), we can check whether the
reference incurs false sharing.

Locality-oriented approach. Using one of the algorithms
in the literature (e.g., [39], [49]), we can find a transforma-
tion T that gives us the best spatial reuse vector s*. Then,
using dependence analysis, we can find the new parallelism
vector and, as before, using (1), we can check whether the
reference incurs false sharing.

False sharing-oriented approach. We can try to deter-
mine a 7' that will make the dot-product of p* and 5" zero.
Unfortunately, it does not seem trivial to find such a loop
transformation matrix.>

Although we present the alternative strategies here in
terms of a reuse summary vector §, they can easily be stated
using reuse summary matrices by substituting S’ for §'. A
problem with loop transformation techniques is that loop
transformations impact both the parallelism vector and the
spatial reuse vector (matrix). That is, in most cases, either
some parallelism or some locality must be sacrificed for the
sake of the other. What we need is a less intrusive
optimization technique such as data transformation, which
is explained next.

3.2 Data Transformations

Recently, a number of researchers have proposed data
transformations (or, also called memory layout transformations)
as an alternative to loop transformations for optimizing
locality (see [42], [26], [38], [12] and the references therein). In
contrast to loop transformations, memory layout transforma-
tions are not constrained by data dependences and can be
applied to imperfectly-nested loops as well as explicitly-
parallelized codes [12]. Moreover, in a given loop nest, the
memory layout of each array can be chosen independent of
the memory layouts of other arrays. We first summarize our
memory layout representation framework presented in [26],
[25], and utilized in this work, and then show the effect of data
transformations on spatial locality and false sharing.

The working of our framework can be summarized as
follows: Each potential layout for an array can be
represented using a matrix (explained below). We then
construct two different sets of equalities involving these
matrices: layout equalities and false sharing equalities
(based on false sharing vectors). The objective of the
framework is to select a suitable layout (that is, the
corresponding matrix) for each array such that both sets
of equalities are satisfied as much as possible. This is
because we would like to both enhance locality and

3. To see the problem here, assume that p* = T (see [3] for the cases
where this holds). Then, the new false sharing vector is
(Tp)'TS = p"TTTS'. Since TT" involves nonlinearity, a trivial solution
process is unlikely unless very strict assumptions are made.

342 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 4, APRIL 2003

eliminate false sharing. In this section, we give the details of
this data space oriented optimization strategy.

In our framework, we represent the memory layouts of
multidimensional arrays using hyperplanes. In two dimen-
sions, a hyperplane defines a set of array elements (61, 862)"
that satisfy the relation

9161 + g2 = ¢ (2)

for some constant c. In this equation, g; and g, are rational
numbers called hyperplane coefficients and ¢ is a rational
number referred to as the hyperplane constant [20], [44]. The
hyperplane coefficients in (2) can be written as a hyperplane
vector §= (g1,92)". A hyperplane family is a set of hyper-
planes defined by the same g and different values of c.

A hyperplane family can be used to partially define the
memory layout of a multidimensional array [25]. In a two-
dimensional data (array) space, a hyperplane family defines
parallel hyperplanes (lines), each corresponding to a different
value of c¢. We assume that the array elements on a specific
hyperplane are stored in consecutive memory locations. As
an example, for an array whose memory layout is column-
major, each column represents a hyperplane (a line) whose
elements are stored in consecutive locations in memory.
Given a large array, the relative storage order of the columns
(with respect to each other) is not important to us in this
paper. Therefore, we represent the column-major layout with
the hyperplane vector g = (0, 1)", which simply indicates the
orientation of the hyperplanes. Similarly, the vectors (1,0)",
(1,-1)7,and (1,1)" correspond to row-major, diagonal, and
antidiagonal memory layouts, respectively. Two array ele-
ments § = (6,,8)" and & = (&,6,)" belong to the same
hyperplane g = (g1, gg)T if and only if

(91792)(51»52)T = (91792)(537 5’2)T~ (3)

As an application of (3), consider an array stored in column-
major order, i.e., the layout hyperplane vector is (0,1)" . Here,
the array elements (2,3)" and (5,3)" belong to the same
hyperplane (i.e., same column), whereas the elements (2,3)"
and (2,4)" do not. We say that two array elements that belong
to the same hyperplane have spatial locality [25]. Although this
definition of spatial locality is somewhat coarse (e.g., does not
hold at the array boundaries) and is different from the
definitions used in previous work [49], [39], it is sufficient for
the purposes of this paper.

In a two-dimensional space, a single hyperplane family
is sufficient to partially define a memory layout. In higher
dimensions however, we may need to use more hyperplane
families. Let us concentrate on a three-dimensional array U
whose layout is column-major. Such a layout can be
represented using two hyperplanes: g=(0,0,1)" and
g =(0,1,0)". We can write these two hyperplanes collec-
tively as a layout constraint matrix or simply a layout matrix

- (§)-6 2 2)

In that case, two data elements ¢ and § have spatial locality
if both of the following conditions are satisfied: g’'é = g7'¢'
and g76=g"&. The elements that have spatial locality
should be stored in consecutive memory locations. Note
how this layout representation matches the column-major

layout of a three-dimensional array in Fortran. For such an
array, in order for two elements to have spatial locality
(according to our definition), all the array indices, except
maybe the first one, should be equal. Notice that the two
conditions given above ensure that these index equalities
hold. This representation framework can easily accommo-
date higher-dimensional arrays. We refer the interested
reader to [26] and [25] for an indepth discussion of
hyperplane-based layout representations.

It is important to note that memory layout transforma-
tions do not have any effect on the parallelism vector. This is
an important advantage over loop transformations. As a
result, we can start with the best possible parallelization strategy
and then use data transformations to strike a balance between
spatial locality and false sharing without disturbing the available
parallelism. This is the approach taken in this paper. Let I
and I’ be two iteration vectors and let 5 denote I’ — I. The
data elements accessed by these two vectors through a
reference represented by £ and o0 to a two-dimensional
array are £I + 6 and LI’ + 6, respectively. Using (3) given
above, these two elements have spatial locality if (where 5
denotes the spatial reuse vector)

G (LI+0)=g (LI'+0)=g"L(I' =1)=0 or g'L5=0.
(4)

Now, we have two important equations, (1) and (4), both
related to locality. The former gives the relationship
between parallelization decisions and locality, whereas the
latter shows the relationship between locality and memory
layout. Let us concentrate on a single LHS reference with
one spatial reuse vector in an n-deep loop nest. Assume that
we want to parallelize only the outermost loop in the nest,
ie, p= (1,0,...,0)T. In order to reduce the chances for
multiple-writer false sharing due to this reference, p’s
should be zero. Substituting the value for p, we get

(1,0,...,00§ =0=38 =(0,x,..., X, ><)T, where x stands
for dont-care.* A simple spatial reuse vector 5 that satisfies
the 5 vector above is (0,...,0,1)T. If we substitute this

spatial reuse vector in (4), we can find an appropriate
memory layout using g’ € Ker{L3}, or g’ € Ker{l,},
where [, is the last column of L.

What we have done here is (assuming outermost loop
parallelism) to find a spatial reuse vector and, then, by
using that vector to find a memory layout. Notice that the
spatial reuse vector that we derived reduces false sharing. It
is important to note that such a vector is ideal from the
spatial locality point of view as well. Li [39] has observed
that the form of the ideal spatial reuse vector is (0, ..., 0, 1)T
since it exploits spatial locality in the innermost loop. To
sum up, in this case, we are able to reduce false sharing and
optimize spatial locality together. In general (after obtaining
maximum granularity parallelism using loop transforma-
tions), from a data transformation point of view, we can
define the problem as one of finding a memory layout such
that

1. false sharing will be reduced and
2. spatial locality will be enhanced.

Once we determine a suitable layout, it is relatively easy to
implement it (see [38], [42]) in a compiler that assumes a

4. x can be 0 or 1; there can be only a single 1 according to our definition
of a reuse summary vector.

KANDEMIR ET AL.: REDUCING FALSE SHARING AND IMPROVING SPATIAL LOCALITY IN A UNIFIED COMPILATION FRAMEWORK

default memory layout, e.g.,, column-major layout in
Fortran. This is achieved by transforming the default layout
matrix (e.g., that represents column-major layout) to the
desired layout matrix. The linear transformation matrix that
achieves this is then used to transform the subscript
expressions (of array references) as well as array declara-
tions. Determining the transformation matrix and trans-
forming subscript expressions are relatively easy; they are
similar to the code modifications caused by loop transfor-
mations. Modifying array declarations is in general more
difficult as such modifications might increase the overall
data space requirements of the code. These extra data space
requirements can be reduced significantly using the

techniques discussed in Leung and Zahorjan [38].
Let us now consider the loop nest shown in Fig. 2c.

Assuming that the outermost loop ¢ is parallelized, from
(1,0)8 =0, we obtain & = (0,x)". Using this summary
vector, we can select 5 = (0,1)” for all the references in the

1 0\/0
For array U : T()(>:0 =
01 1

iera{(})} =

(0
Forarray V: g 1

_ 1 _
g € Ker 0 = g
F w: g AT 0o =
or arra . =

v 9% 1/

iere{(})} =

g
(1 0
For array X : g L1

o)} - ()

With these hyperplane vectors, it is clear that the arrays
U and X should be row-major, array V should be column-
major, and array W should have a diagonal memory layout
(see the discussion in Section 3.2). Note that (provided the
i-loop is parallel) these layouts do not incur severe multiple-
writer false sharing and lead to good spatial locality in the

innermost j-loop.
An important question now is, under what circum-

stances we cannot optimize spatial locality and reduce false
sharing without any conflict. Before answering this ques-
tion, consider the loop nest shown in Fig. 2d. Assume that
we parallelize both the ¢ and j loops (provided it is legal to
do so0). Thus, in mathematical terms, p = (1, 1,O)T. Such a
two-level parallelization might be useful in architectures
like Convex Exemplar where there are two levels of
processor hierarchies (interhypernode and intrahypernode).
From (1,1,0)s =0, we obtain § = (0,0, x)". Using this
summary vector, we can select 5 = (0,0,1)" for both the
references in the nest. Therefore,

nest.

343
0 0
ForarrayU: g [0 1 0 0]=0 =
1 1
0
o 1 00
g € Ker 0 = G,=
01 0
1
1 10 0
Forarray V: g |1 0 0]=0 =
0 1 1 1
0 1 0 0
gTGKE’I" 1 = Gv: :
1 0 1 -1

As in the previous example, with these layouts,” we are
able to reduce false sharing and optimize spatial locality
together. In fact, it is easy to see that a parallelism vector
such as (1,...,1,0,...,0)T can always be treated as
(1,0,.. .,O)T; that is, all the outermost parallel loops can
be collapsed into one loop. Thus, we can conclude the
following;:

In a given parallelism vector, if all the ones are in the

leftmost positions consecutively (without a zero in between

them), then it is possible to reduce false sharing and
optimize locality together for a given left-hand side
reference.

It is also useful to verify the solution proposed for the
example in Fig. 2d, using a system of constraints. Let us
focus on just array V. The following system should have at
least two iterations (i1, j1, k1) and (42, j2, ko) as a solution in
order for multiple-writer false sharing to occur through the
reference V(i + j,i + k, j + k) in the original loop nest.

1§i17i2§N
lgjlvaSN
1<k, ke <N

loop bounds condition :

) i
parallelism condition :{ ‘1 7 ‘2 }
J1 7 Ja
stride condition :{|(is + jo) — (i1 + j1)| < 0}
locality condition :{i1 + k1 = is + ko, j1 + k1 = jo + ka1,

where 6 is the coherence unit size in array elements. It is
easy to see that this system has many solutions. On the
other hand, if we apply our layout transformations, the new
reference will be V(i+k,i+j,i—j).° Now, the layout
condition becomes {i; + j1 =42 + jo and i1 — j1 = is — jo},
which implies i; =4y. This, in turn, conflicts with the
parallelism condition 4; # ¢y. That is, the new system has no
solution meaning that the possibility of multiple-writer
false sharing is reduced.

3.3 Outer and Inner Loop Parallelization

It may not always be possible to obtain outermost loop
parallelism in loop nests [36]. For an n-nested loop, let D
denote the dependence distance matrix [50], the columns of

5. Here, G, here, corresponds to a row-major layout and G, represents a
nonconventional layout. See [25] and [26] for a precise interpretation of
layout matrices for three and higher dimensional arrays.

6. See [38], [42], [26] for details of rewriting access matrices and array
declarations after layout transformations.

344 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 4, APRIL 2003

which are the (constant) dependence distance vectors [51].
If rank(D) < n, then the outermost n — rank(D) loops can
be run in parallel. If rank(D) = n, then the loop nest can be
transformed such that the outermost is sequential, but the
inner n — 1 loops can be run in parallel [36]. As noted earlier
in this paper, in the case of an outermost parallel loop, we
set the parallelism vector to (1,0,...,0, O)T and then
optimize each reference using (0,0, ...,0, 1)T as the spatial
reuse vector. This allows us to optimize spatial locality and
reduce false sharing together. If rank(D) = n, then outermost
loop parallelism is not available and, therefore, optimizing
for improving spatial locality and optimizations for redu-
cing false sharing will conflict.

Consider now, the loop nest shown in Fig. 2e. This nest
represents the core computation in the successive-over-
relaxation (SOR) code. Both the ¢ and the j loops carry data
dependences, so, as it is, none of the loops can be executed
in parallel. By skewing the inner loop with respect to the
outer loop, followed by interchanging the loops, we derive
the code shown in Fig. 2f. Now, the innermost loop (i') can
run in parallel, giving a parallelism vector (0, 1)T. In order
to reduce false sharing, we need to choose 5 = (1,0)". Using

this reuse vector,
(0 1 \[/1) _
(7 4)(0) -

ie, g € Ker{(0,1)"}, or g = (1,0)". Thus, the layout of the
array should be row-major. With this choice, there is no
false sharing due to multiple writes to the LHS reference,
but spatial locality is very poor as successive iterations of
the local portion of a processor touch different rows of the
array.

Let us now find the result of using a locality-oriented
approach for the same nest. We use 5 = (0, I)T as our (best)
spatial reuse vector. From

(8)0

we get g' € Ker{(1, —1)"}, or g= (1,1)". Here, the layout
of the array should be antidiagonal. Now, we have spatial
locality exploited in the innermost loop since successive
iterations of the innermost loop access a given antidiagonal,
but we incur false sharing at the coherence block bound-
aries. This example clearly shows the potential conflict
between optimizing spatial locality and reducing false
sharing.

4 HeuRrisTIc FOR REDUCING FALSE SHARING AND
ENHANCING SPATIAL LOCALITY

In this section, we propose a solution for enhancing
spatial locality and reducing false sharing together. Note
that, while false sharing is an issue for arrays that have at
least one reference on the LHS, spatial locality is an issue
for all the arrays referenced in the nest. Therefore, we
divide the arrays referenced in the nest being analyzed
into two groups: 1) arrays referenced on the RHS only
and 2) arrays referenced on both sides. Supposing that
there is a total of v arrays referenced in the nest,
Ar,Ag,y oo As, Ay - -5 Ay—1), A, Without loss of gener-
ality, we can assume that ¢ of these arrays fall into the
first group and y—¢ fall into the second. In the
following, we do not distinguish between spatial reuse

vector and spatial reuse summary vector, as these two
vectors are usually the same for most loop nests that we
come across in practice.

The first group is easy to handle. Since false sharing is
not an issue for this group, all we need is to use (4) for
optimizing locality. Specifically, let us consider an array j
where 1 < j < 6. Assume that the number of references to
this array is t;. We can use the constraint g L5, = 0 to
find the optimal layout for this array where Ly, is the kth
reference to this array and 5j; is the kth spatial reuse vector.
In the ideal case, we want to choose 5, = (0,...,0, l)T for
each reference k (1 <k <t;). However, given a large
number of references, this may not be possible. That is,
different references to the same array may impose conflict-
ing layout requirements. In that case, using profile informa-
tion, we favor some references over the others and optimize
for only those favored references. In the following, we
briefly discuss a profile-based reference selection scheme;
see [25] for an alternative method. For each reference Lj,
we associate a weight function weight (L;.), which gives the
number of times this reference is touched in a typical
execution of the program at hand. We use profiling to get
the values of weight (L;.). Then, the solution process is as
follows:

1. Sets; = (0,...,0, 1)T for eachreference k(1 < k < t;).

2. Sort the reference according to their weights in

nonincreasing order.

3. Attempt to solve g/ L5, = 0 for each k.

4. If there is a solution, return; else omit the reference

with the smallest weight, and go to Step 3.
When the process terminates, we will have n; <t; refer-
ences optimized for the locality in the innermost loop. This
process is independently repeated for all § arrays in the first
group (1 < j <9).

As for the second group, false sharing might be an
important issue especially at the page-level. Let us now
focus again on a single array j where §+1 < j<~. We
divide the references for this array into two groups:

1. the LHS references, L;j, where 1 < k < A and

2. the RHS references, Ljs where A +1 <k <t;.
The constraints to be satisfied for each group are different
and can be listed as follows:

for the LHS references for the RHS references
=0 g Lpsn=0 | g Lijarnsjarn =0
P52 =0 g/ Lj5j0=0 | 3/ Ljas2)5ja+2) =0
ﬁngA =0 ifﬁjAng =0 ngchtjgjtj =0

In this case, we try the following two options and select the
one that performs better.

e In the first option, we set:
§j1 = §J'2 =...= .§(7'A S Ker{ﬁT} and
_ _ _ T
Siiat1) = Sjav2) = 8, = (0,...,0,1)".

In other words, in this option, for the LHS
references, we favor reducing false sharing over
enhancing locality and, for the RHS references, we
are trying to maximize locality. After these settings,
we attempt to solve the constraints given above for

KANDEMIR ET AL.: REDUCING FALSE SHARING AND IMPROVING SPATIAL LOCALITY IN A UNIFIED COMPILATION FRAMEWORK 345

Begin

Foreach 4; € Ado

Set 55 = (0,...,0,)T
Set solution = false
While (not solution)
Solve the system ngL’jkgjk = 0 for g;:r

EndWhile
EndForeach
Foreach A; € B do

/I* Option 1 *//

Set 5, € Ker{pT}for1 <k <A

Set 85 = (0,..,0, DT for A+ 1 < K <t
Set solution = false

While (not solution)

EndWhile

/1* Option 2 *//

Set 85 = (0,...,0,)T for1 <k < A

Set 551 = (0,...,0,)T for A+ 1<k < t;
Set solution = false

While (not solution)

EndWhile

EndForeach

End

INPUT: A loop nest that accesses the arrays Ay, As, ..., As, As11, ..., A
OUTPUT: An optimized loop nest with layout-transformed arrays

Using a parallelization algorithm obtain largest granular parallelism; i.e., determine p7
Let A = {4;, As, ..., A5} be the arrays that do not have any LHS reference
Let B = {As41, As12, ..., Ay } be the remaining arrays

Order the references according to their dynamic occurrences (weights)
Let L1, L9, ..., Ljt; be the (ordered) access matrices for the references to this array

If there is a solution, then set solution = true;
else omit the constraint of the reference with the smallest weight

Order the references according to their dynamic occurrences (weights)
Let £;1, Lja, ..., L;a be the (ordered) access matrices for the LHS references to this array
Let Lia+1), Lj(a42),---» Lje; be the (ordered) access matrices for the RHS references to this array

Solve the systemﬁTEjk =0 gjjTEjkEM =0 g;rﬁjk,/ Sjp =0
If there is a solution, then set solution = truc;
else omit the constraint of the reference with the smallest weight

Compute cumulative weight(Option 1) as the sum of the weights of the references that are satisfied

Solve the system p* 53, = 0; g Ljx = 05 §] Liw 50 =0
If there is a solution, then set solution = true;
else omit the constraint of the reference with the smallest weight

Compute cumulative weight(Option 2) as the sum of the weights of the references that are satisfied
Compare cumulative weight(Option 1) and cumulative weight(Option 2)

Select the option with the larger weight from the previous step

Using ng vectors found (1 < j <) layout-transform the arrays in the nest

Ay

Fig. 3. A balanced algorithm that reduces false sharing while improving locality.

gj. As before, if there is no solution, we omit the
(constraints belonging to the) reference with the

smallest weight and try to solve the system again.
e In the second option, we set:

Sj1 = Sj2 = ... = SjA = Sj(A+1) = Sj(A+2) =

8, =(0,...,0,1)".
That is, we favor optimizing locality over reducing
false sharing for both LHS and RHS references. The
rest of the process is the same as in the previous
option.

We compare the solutions from these two options and select
the best one. Our comparison scheme is rather simple. For
each option, we calculate a cumulative weight, which is the
sum of the weights of the references that are satisfied (i.e.,
not omitted during the solution process). We prefer the
option with the larger cumulative weight. The overall
algorithm is given in Fig. 3.

Note that, in general, a layout that is suitable for one
array in one loop nest may not be suitable for the same
array in another loop nest. This means that, in contrast to
loop-based transformation techniques that can handle a
single loop nest at a time, an optimization strategy based on
layout transformations should consider all the nested loops
that access the array whose layout is to be manipulated. Our

346 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14,

NO. 4, APRIL 2003

~
1]

V(j,i-1)+2.0

W(i+j,i)+1.0

X(i+j,k-j-N)

dopar j =1, N
doi=1, N
U(i,j = V(j,i-1)+2.0
V(j,i) = W(i+j,i)+1.0
end do
end dopar
doi=1, N
do j=1, N
dopar k = 1, N
X(i+k,j+k) = ...
- = X(i+j,k-j-N)
end dopar
end do
end do
(b)

Fig. 4. (a) An example program fragment. (b) Parallelism-optimized version of (a) with parallel loops identified using dopar.

solution to this global optimization problem is as follows:
First, we determine an order of processing the nests; that is,
if a nest is more important (costly) than another, we
optimize the more important nest first. Again, profiling is
used to determine the estimated cost of a nest, which can be
defined as the sum of the weights (number of runtime
occurrences) of the references it encloses. Then, for the most
important nest, we optimize it using the approach
explained in this paper. After optimizing this nest, the
memory layouts of some of the arrays referenced in it will
be fixed. Then, we consider the next important nest, and
optimize it using a slightly different version of our
approach that takes the layouts found in the most important
nest into account.” Then, we move to the third most
important nest and, in optimizing it, we take all the layouts
determined so far (in the most important and the second
most important nests) into account, and so on. The details of
the global layout propagation algorithm is outside the scope
of this paper; it is similar to those presented in [28], [27]. It
should also be noted that a more sophisticated optimization
strategy could use loop transformations (in addition to data
transformations) during the optimization of the nests for
false sharing.

4.1 Example Application of the Algorithm

We now present an example application of our heuristic.
Consider the program fragment given in Fig. 4a. Let us first
focus on the first loop nest. Our approach starts with
optimizing parallelism. In this nest, we can achieve a
maximum granular parallelism by interchanging the loops ¢
and j. The resulting nest is shown in Fig. 4b. The access
matrices for the arrays referenced in this nest in Fig. 4b are

0 1 1 0 1 1
['ulz(l 0>7£'Ul:['v?:(0 1)7and['wl:<0 1)

We next parallelize the outer i-loop; that is, p’ = (1,0).
The array W belongs to the first group mentioned above,
ie., it has no reference on the LHS. Therefore, the only
constraint that should be satisfied is ggﬁwﬁwl =0.
Selecting 5,1 = (0, 1)T, we have

7. To be specific, the global strategy just omits the arrays whose layouts
have already been determined and focuses on the remaining arrays.

(1 1\[0) _ (1) _ .

This means that this array should have a diagonal (skewed)
memory layout. Note that, since the loop i is the innermost,
this layout will maximize the locality for this array.

For the array U, we need to satisfy p'3,, =0 and

g' L5, = 0. Selecting 5, = (0,1)", we reach

(0 1\/0\ _ (1) o
gu,(l 0)(1)_O:>gu,<0)_0:>gu,_(071)7

meaning that the array U should be column-major.

The array V has both LHS and RHS references. We need
to satisfy the following constraints:
and gz:[:vzg@g = O

ﬁTgvl = 07 gzﬁvlgvl = 07

Since p! = (1,0), the two options mentioned above are the
same. Consequently, we select 5,1 = 5,5 = (0,1)" and obtain
the following two equations:

(1 0\[0\ _ (1 0\/0\ _
o 1)(1) =0 ma (o 9)(1) -0

respectively, for the two references to array V. Therefore,
from

(1 0\[0) _ {0\ o
£(3 $)(2) o=s($) 0= =00

we find that the layout of V' should be row-major. To sum
up, the layouts of the arrays U, V, and W should be column-
major, row-major, and diagonal, respectively. These layouts
help us to exploit locality in the innermost loop while
reducing the amount of potential false sharing.

We next move to the second nest. Now, suppose that,

due to possible dependences arising from references to
arrays other than X, only the innermost loop k can be
parallel, meaning that p” = (0,0, 1). Let us concentrate on
array X. The two access matrices are

1 0 1 1 1 0
ﬁxl—(o 1 1>and£m2f(0 _1 1>

We have three constraints to be satisfied:

KANDEMIR ET AL.: REDUCING FALSE SHARING AND IMPROVING SPATIAL LOCALITY IN A UNIFIED COMPILATION FRAMEWORK 347

TABLE 1
Programs in Our Experimental Suite and Their Important Characteristics

program code source size iter || no.of || max type over || over
no. arrays || dim LOL Loy
1 hydro2d/T1 spec92 4,000 10 4 2 || benchmark || 16.4 4.7
2 hydro2d/fct spec92 4,000 2 20 2 || benchmark || 17.0 6.9
3 vpenta spec92 920 10 9 3 || benchmark || 24.4 7.0
4 emit spec92 4,000) 16 2 || benchmark || 19.1 7.0
5 btrix spec92 820 5 29 4 || benchmark || 18.2 7.1
6 mxm spec92 2,048 10 3 2 || benchmark || 20.8 8.8
7 cholsky spec92 1,800 5 3 3 || benchmark || 42.0 2.0
8 gmtry spec92 2,250 5 6 2 || benchmark || 34.7 3.5
9 adi livermore || 3,000 1 6 3 || benchmark || 15.6 2.2
10 bakvec eispack 4,000 20 3 2 || library 25.1 8.1
11 htribk eispack 2,048 2 5 2 || library 23.1 7.4
12 qzhes eispack 4,000 5 3 2 || library 28.6 7.5
13 fnorm odepack 4,000 5 3 2 || library 14.6 6.0
14 gfunp hompack || 4,000 12 6 2 || library 14.9 6.4
15 rimpyq minpack 4,000 12 1 2 || library 19.3 8.0
16 transpose nwchem 4,096 10 2 2 || application || 19.9 9.0
17 hnd_nw_hnd nwchem 4,096 10 8 3 || application || 28.5 7.9
18 hnd_nwhnd_tran nwchem 4,096 5 10 2 || application || 40.6 8.0
19 hnd_int_le_studd | nwchem 4,096 5 4 4 || application || 25.2 8.2
20 hnd_whermt nwchem 4,096 2 6 3 || application || 13.0 4.3

P'81=0, G L151=0, and g L8, =0.

Considering the first option, we can set 5,1 = (0, 1, O)T and
5.0 = (0,0,1)". Then,

0
a(1 0 1y
“\o 1 1)\,

which implies that the layout of X should be row-major.
Similarly, from

0
(1 1 0
g“'(O -1 1> ?

(0 _
:0:>g§(1) =0=g. = (1,0),

(0 .
:0:>gf<1> =0=g. =(1,0),

we also find that the preferred layout is row-major.
Therefore, in this option, we are able to satisfy both the
constraints by selecting a row-major memory layout for the
array X.

We now focus on the second option. We try to satisfy the
two constraints by setting 5,1 = 5,0 = (0,0, 1)" . Therefore,

0
(1 0 1
gl'<011 (1)

which implies that the layout of X should be diagonal. On
the other hand, from

0
(1 1 0
gf(o -1 1 (1)

:0:>gf<i> =0=g. =(1,-1),

:0;»575((0 =0=g, =(1,0),

we find that the second constraint prefers a row-major
layout. Assuming a profile information prefers one refer-
ence (constraint) over the other, using this option, we can
satisfy only a single constraint.

Comparing these two options, it is clear that the first
option is preferable, therefore, we set the layout of the
array X to row-major.

5 EXPERIMENTAL RESULTS

We now present preliminary experimental results obtained
on an eight-processor SGI/Cray Origin 2,000 distributed
shared memory multiprocessor [37] at Northwestern Uni-
versity. The SGI Origin uses R10K processors, each of
which is a 4-way superscalar microprocessor operating at a
clock frequency of 195 MHz. Each processor has a 32 KB
on-chip instruction cache and can issue instructions to its
four functional units out-of-order. It also has a 32 KB two-
way set-associative on-chip data cache and a 4 MB unified
external cache, which are called the primary and the
secondary cache, respectively. The latency ratio between
the first-level (on-chip) data cache, second-level (off-chip)
cache, and main memory is approximately 1:5 :60. The
cache line size is 128 bytes and the page size is 16 KB. The
local memory of each node (which consists of two
processors) is made up of 128 MB SDRAM.

We conducted extensive experiments to measure the
impact of our approach on locality and false sharing using
20 programs from different domains (benchmarks, library
codes, and real application codes). Table 1 gives the
important features of these codes. The size column gives
(in terms of double precision elements) the maximum size
of a dimension of any array used in the program and the
iter column shows how many times the outermost timing
loop has been executed for each code. The max-dim column
on the other hand, shows the maximum dimensionality of
any array used in the respective code. The last two columns
will be explained later.

When necessary (to eliminate a constraint during
optimization), we used profile data to select the constraint
to be dropped from consideration. Since our constraints
(false sharing or locality) are obtained from array refer-
ences, we can easily associate a constraint with one or more
array references. Consequently, eliminating a constraint can
be reexpressed as eliminating an array reference(s). To
measure how important each array reference is, we
instrumented each code to keep track of how many times
each array reference is touched during execution. When this

348 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 4, APRIL 2003
TABLE 2
Different Versions Used in Our Experiments
version | brief description | references |
ORI original (unoptimized) code with column-major memory layouts for all arrays
LOL locality optimized version using loop (iteration space) transforms only native compiler, [39], [29]
LOD locality optimized version using data (memory layout) transforms only [38], [42], [26]
LOU locality optimized version using both loop and data transforms [28], [27], [12]
FOL false sharing optimized version using loop (iteration space) transforms only authors, [18], [6]
FOD false sharing optimized version using data (memory layout) transforms only authors, [46], [22]
FOU false sharing optimized version using both loop and data transforms authors, [13], [18]
BAL version obtained using the approach discussed in this paper authors
HND hand optimized version using both lincar and non-lincar transforms authors

instrumented version is executed, we can order the
references in the code according to their importance. Using
this profiling strategy, the references in inner loop levels are
considered more important than the references in outer
loop levels. Similarly, the references in loops with large trip
counts (number of iterations) are considered more impor-
tant than the references in loops with small trip counts. We
also performed experiments with different input data
(keeping the data size fixed). However, since in array-
intensive codes the runtime execution path is largely
determined by loop bounds and array sizes (rather than
specific values of input arrays), we did not observe any
significant dependence on input. Even with smaller input
sizes, the relative importance of different array references
with respect to each other did not change too much.

Table 2 shows the versions used in our experiments.
The optimized versions can be divided into several
groups. In the first group consisting of LOL, LOD, and
LOU, the optimizations used are aimed only at enhancing
spatial locality. Among these versions, LOU is the most
powerful as it employs both loop and data transforma-
tions to improve locality. In the second group (consisting
of FOL, FOD, and FOU), the optimizations attempt to
reduce false sharing rather than optimizing spatial
locality exclusively, therefore, they are most useful on
multiprocessors. In this group, the most powerful
technique is FOU, which uses both loop and data
transformations for minimizing false sharing. For each
version, we tried to use as many published techniques as
possible (listed under the referencescolumn in Table 2)
and selected the one that performs best.® In all these six
versions, only linear loop and data transformations were
used. For example, tiling or loop unrolling [51] were not
used. The BAL version refers to the approach discussed in
this paper, and HND is the hand-optimized version using
both linear and nonlinear (e.g., tiling) loop and data
transformations. Note that, with the hand-optimized
version (HND), we did not pay great attention to choosing
tile sizes; the use of tile size selection heuristics [14], [34]
may further improve the performance of the HND version.

8. Our own approaches [26], [28] as well as the heuristic presented in this
paper are implemented using Parafrase-2 [43]. For the approaches of other
researchers, we hand coded the optimizations relying on the explanations in
the respective papers; also, in those cases, we used only the techniques that
are applicable to array-based codes. For example, from [18] we used only
loop and array alignment, from [46] we used only array alignment, and
from [13] we used software caching where applicable. For each version, we
selected the result of the best performing version. As an example, the LOL
version used the best of the output codes of native compiler [29] and [39].
The entry authors denotes our own techniques that have not been
published yet. Also, note that all array dimensions were padded [45], [2] by
a small amount to eliminate power-of-two sizes.

For all the versions, before transforming the code for
locality and/or false sharing, we detected the largest
granularity parallelism using the native Fortran compiler
(MIPSpro version 7.20) with locality optimizations turned
off.” Note that FOL, FOD, FOU, BAL, and HND take
parallelism decisions explicitly into account, whereas
LOL, LOD, and LOU can reduce false sharing only as a
side effect of improving locality. After the different
versions were obtained, we again used the native
compiler (with the -02 option and all the scalar
optimizations turned on) to generate the executables.

The results for single processor case are presented in
Table 3, and the results for the eight processor case are
shown in Table 4. In these tables, the second column (ORI)
gives the total execution times in seconds. Columns three
through 10 show the percentage improvement obtained by
using the respective versions over ORI. The improvement
here means reduction in the overall execution time and a
negative entry indicates an increase in the execution time
with respect to ORI.

From Table 3, we can conclude the following: The pure
locality oriented techniques are able to improve the
overall performance significantly. In 14 of our 20
programs, the LOD version had the opportunity for
applying some kind of data transformation. Similarly, in
12 of our codes, the LOL version chose to apply some
kind of loop transformation. We observe that in nine
programs the LOU and FOU version generated the same
results. We also observe that LOU brings on average
23.44 percent improvement over the original codes.
However, three is a large variance between applications.
For example, btrix and vpenta show very large
improvements (mostly due to layout transformations).
The btrix benchmark, for instance, accesses four-dimen-
sional arrays and the original access pattern is very poor.
Loop transformations eliminate some of the problems, but
in particular, two loop nests in this code cannot be fully
optimized due to data dependences. A framework that
uses both loop and data transformations in concert on the
other hand, achieve large performance benefits. In
contrast, in hydro2d/fct, mxm, cholsky, gzhes, and
hnd_int_le_studd, the default memory layout is
appropriate for the default access pattern. For example,
in mxm, the original code is both unrolled and loop
transformed for locality. Consequently, neither loop nor
data transformations are effective. In addition, we also
observe that in some cases data transformations actually
degrade performance. This is because in some cases the
compiler can decide to apply a data transformation,

9. The locality optimizations are turned on for generating the LOL
version.

KANDEMIR ET AL.: REDUCING FALSE SHARING AND IMPROVING SPATIAL LOCALITY IN A UNIFIED COMPILATION FRAMEWORK

349

TABLE 3
Results On a Single Processor

program ORI LOL LOD LOou FOL FOD FOU BAL HND imprvl | imprv2

no. (sec) (%) (%) (%) (%) (%) (%) CONIESO) (%) (%)

1 128.13 0.00 0.00 [251 0.00 0.00 0.00 [7.86 [8.65 535 | 0.79

2 53.80 0.00 0.00 [0.00 0.00 0.00 0.00 | 0.00 [0.00 0.00 [0.00

3 30.50 0.00 | 80.32 | 84.30 0.00 0.00 0.00 | 90.04 [90.04 574 | 0.00

4 10.13 5.40 5.00 | 816 | —2.25 [—4.00 | —2.25 | 22.66 | 22.66 || 14.50 | 0.00

5 56.54 | 12.35 | 86.41 | 90.85 8.30 [—3.38 | 10.67 | 90.85 [90.85 0.00 [0.00

6 119.86 418 [—11.40 | 4.18 4.18 4.18 418 | 418 [3413 0.00 | 29.95

7 7118 | —455 0.00 [0.00 | —6.00 0.00 0.00 | 0.00 [9.90 0.00 [9.90

8 58.40 0.00 0.00 [0.00 0.00 0.00 0.00 [0.00 | 265 0.00 | 2.65

9 3424 [56.24 | 3359 | 56.24 [12.00 0.00 [12.30 | 66.04 | 67.11 9.80 [1.07
[ave.(B) [6253 [818] 21552736] 180 —036[27731293622 393] 4.93]

10 43.13 4.05 428 [21.00 | 1036 | —7.40 [—7.40 [43.36 [43.36]| 22.36 | 0.00

11 24.05 [—38.00 | 45.00 | 48.95 | —38.00 | —36.60 | —36.60 | 48.95 | 50.16 0.00 | 1.21

12 21.00 0.00 [—1.00 | 0.00 0.00 [—2.00 0.00 [0.00 [20.02 0.00 | 20.02

13 1037 | 6854 | 61.10 | 68.54 | 6854 | 1482 | 68.54 | 68.54 | 68.54 0.00 [0.00

14 88.15 0.00 0.00 [14.54 0.00 0.00 0.00 [16.02 | 22.84 148 | 6.82

15 1250 | —2.51 0.00 [5.80 0.00 0.00 0.00 | 9.65 | 9.65 3.85 [0.00
[ave. (L) [3320 | 535 [1823 [2647] 363 [—520] 4.09]31.00[3576] 4.62] 467]

16 32.14 0.00 [35.18 | 35.18 0.00 [3518 | 35.18 | 35.18 | 44.11 0.00 [893

17 47.66 2.36 3.40 [3.40 2.36 3.40 3.40 [340 | 6.00 0.00 | 2.60

18 24.10 4.40 5.21 | 5.21 [—10.05 5.21 521 | 521 [5.21 0.00 [0.00

19 24.23 0.00 [—486 | 0.00 | —441 | —441 | —441 [2433 [3044 || 2433 | 6.11

20 1655 | 18.96 | 20.03 [20.03 | 1896 | 18.96 | 18.96 | 20.03 | 41.00 0.00 [2097
ave.(A) | 2894] 514 11.79 1276] 137] 11.67 | 11.67 [1763 | 2535 [487] 7.72]
| ave. [4533] 557] 1811 [2344] 216 120 [53927823337 437] 5.55]

ave. (B), ave. (L), and ave. (A) denote the averages for the benchmark codes, library codes, and application codes, respectively.

however, since a data transformation affects the locality
behavior of all references in the code, it can create a
negative overall impact. Similarly, as in cholsky, gzhes,
and rlmpyqg, in some cases, loop transformations make
the subscript expressions very complex and back-end
optimizations may not be able to eliminate the perfor-
mance overhead due to these complex expressions. So, we
observe some degradation in performance (as compared
to the original code) when this occurs.

The false sharing oriented optimizations on the other
hand, hardly achieve any improvement. In fact, the FOD
version increases the execution time in benchmark and
library codes. These poor results are due to the overhead of
false sharing optimizations and the poor spatial locality
they obtain in uniprocessor runs. In one benchmark
(transpose), however, FOD improves performance sig-
nificantly as the data transformations it applies are very
suitable from the spatial locality perspective as well.

The BAL version performs very well, even in the
uniprocessor case due to its ability to satisfy as many
locality and false sharing constraints as possible. In
particular, although not presented here in detail, 92 percent
of the (dynamic) array references that are optimized by LOU
are also optimized by BAL, indicating that taking false
sharing constraints into account sacrifices little performance
(as far as locality is concerned). The imprvl column gives
the difference between BAL and the next best version from
among the columns three through eight (usually LOU). This
means that the BAL version outperforms a hypothetical
approach that applies all these techniques and selects the
best one. Notice that, as compared to the classical loop
transformation techniques (LOL), BAL obtains more than
22 percent further reduction.

It should be noted that, even in single processor case,
the BAL version performs better than the LOU version.
While this is counter-intuitive (as it is not clear why a
strategy that takes false-sharing into account should
outperform a pure locality-based approach on a single
processor), our further study shows that this is due to the
global optimization strategy that our framework uses.
What we have found is that a pure locality-oriented
strategy determines the layouts earlier in the optimization
process than a strategy that takes false-sharing into
account. Consequently, with the former strategy, the
layout constraints accumulate more quickly and the
remaining nests have more restrictions in determining
the most suitable layouts as far as their own (intranest)
locality is concerned. The strategy that takes false-sharing
into account, on the other hand, spreads the layout
determination more evenly across different nests and
achieves a better overall performance. In particular, with
codes such as bakvec and hnd_int_le_studd, if the
array layouts are determined late in the optimization
process, much better results are achieved. It should be
emphasized, however, that this observation may be
specific to the codes in our experimental suite and, for
some other codes, we can expect the LOU version to
outperform the BAL version as far as the uniprocessor
performance is concerned.

The imprv2 column shows the difference between HND
and BAL. Except for three programs, the additional
improvement obtained by hand optimization over BAL is
always below 10 percent. This additional improvement
comes almost exclusively from loop tiling. For example, in
mxm, tiling the innermost two loops makes a significant
difference in performance. Similarly, in gfunp, tiling the
most time consuming nest increases the performance by

350

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 4, APRIL 2003

TABLE 4
Results on Eight Processors

program ORI LOL LOD LOU FOL FOD FOU BAL HND imprvl | imprv2

no. (sec.) (%) (%) (%) (%) (%) (%) (%) | (%) (%) (%)

1 21.72 0.00 0.00 | 2.30 0.00] 0.00] 0.00] 9.11 [9.86 6.81 [0.75

2 9.61 0.00 0.00 | 0.00 0.00 | 0.00 | 0.00 [0.00 [0.00 0.00 | 0.00

3 10.89 0.00 | 63.21 | 64.40 0.00 | 0.00 | 0.00 [87.17 | 87.17 || 22.77 | 0.00

4 3.27 2.90 5.05 | 7.05 4.90 | 633 | 6.90 [30.01 [30.01 || 22.96 | 0.00

5 2019 | 13.07 | 55.91 [70.04 [19.16 | —1.15 [24.35 | 70.04 | 70.04 0.00 | 0.00

6 21.03 3.90 | —16.51 | 4.40 821 | 821 | 821 | 9.87 | 24.55 1.66 | 14.68

7 16.95 | —8.21 0.00 | 0.00] —933| 0.00 | 0.00 [0.00 [10.86 0.00 | 10.86

8 13.90 0.00 0.00 | 0.00 0.00 | 0.00 | 0.00 [0.00 | 1.08 0.00 | 1.08

9 5.90 | 40.00 | 24.61 | 40.00 7.75 | 0.00 | 7.75 | 65.16 | 71.04 || 25.16 | 5.88
[ave.® | 1372] 574] 14702091 [341 [1.49] 5253015 [3385] 924[370 |

10 10.27 2.05 4.20] 15.65 449] 6.91] 6.91 [40.86 [40.86 | 25.21 [0.00

11 9.25 | —27.02 | 42.24 | 44.00 | —11.00 | —7.14 | —7.14 | 44.00 | 51.07 0.00 | 7.07

12 7.50 0.00 | —1.00 [0.00 0.00 | 895] 0.00 [895 [14.69 0.00 | 5.74

13 221 | 68.90 | 62.33 [68.90 | 6890 | 16.80 | 68.90 | 68.90 | 68.90 0.00 | 0.00

14 17.28 0.00 0.00 | 10.11 0.00 | 0.00 | 0.00 [20.04 | 22.67 9.93 | 2.63

15 2.55 | —7.66 0.00 | 513 0.00 | 0.00 | 0.00 [8.00 [8.00 2.87 | 0.00
ave.(L) | 818 605 [1796 [2397 [1040 | 425] 1145 3179 [3437 [782] 258

16 5.27 0.00 [20.28 [20.28 0.00 | 20.28 | 20.28 [20.28 [34.62 0.00 [14.34

17 9.17 2.30 315 | 315 230 | 315 | 315 [315 | 555 0.00 | 1.40

18 3.39 4.05 5.50 | 5.50 446 | 19.81 | 10.81 | 34.63 | 47.80 || 14.82 | 13.26

19 6.21 0.00 | —9.50 [0.00 [1321 [13.21 | 13.21 | 29.85 | 49.55 [| 16.69 | 19.70

20 338 | 1521 | 19.85 [19.85 | 15.21 | 15.21 | 15.21 | 19.85 | 40.86 0.00 | 21.01
[ave.(A) | 548] 431] 786 9.76 [7.04 [1433 | 14.33 [21.55 [35.69 | 7.22 [1414 |
[ave. | 999 547 [1397 [19.04 [641] 553] 938 [2849 [3446 [901] 597

ave. (B), ave. (L), and ave. (A) denote the averages for the benchmark codes, library codes, and application codes, respectively.

nearly 30 percent. These results motivate us for further
research on combining iteration space tiling with our
optimization framework.

In the case of eight processors (Table 4), as expected, the
false sharing oriented techniques perform better than they
do for the uniprocessor case. In particular, FOU is now able
to reduce the original execution times by nearly 9 percent.
However, this is still below the performance of LOU (which
is around 19 percent). This is consistent with the conclusion
of Torrellas et al. [46], that reducing false sharing at all costs
is not a good idea. We also note that the impact of pure
locality-based approaches is decreased when we move from
one processor to eight processors, mostly due to a reduction
in the working set sizes per processor and due to not
considering parallelism decisions in determining the opti-
mal memory layouts. For example, in transpose, not
taking parallelism (false sharing) constraints into account
results in selecting different memory layouts for the two
most active arrays (as compared to the case when these
constraints are accounted for). A similar scenario occurs in
htribk as well. The BAL version, on the other hand, does
take the parallelism decisions into account and achieves a
28.49 percent improvement on the average; it reduces
memory system delays, decreases the working set size per
processor, and minimizes the coherence overhead in multi-
processor runs. By including hand optimizations, we can
get an additional 6 percent benefit, most of which can be
obtained by attributed to a judicious application of tiling
(i.e., tiling only the loops that carry some reuse [49]) after
using BAL. In particular, the 14.14 percent performance gap
between BAL and HND in application codes encourages us to
use control-centric tiling [21] and data-centric tiling [32]
once our approach has been applied. An in-depth under-
standing of the interaction between our approach and tiling,
however, merits further study and is outside the scope of
this paper.

We also need to say that using BAL increased the total
compilation time on the average by 23 percent over LOL,
and increased it by 6.5 percent over LOU (The last two
columns of Table 1 show the increases in compilation times
(in percent) over LOL and LOU, respectively, per program
basis). Finally, on the average, there was only a 7 percent
increase on the total memory requirements of the codes
after data transformations (most of which in the application
codes). Given the benefits of our technique, we believe that
the reasonable increases in compilation time and memory
requirements are bearable.

In general, we can expect that our unified strategy would
still be effective if we had only a single-level cache
hierarchy (instead of our two-level cache hierarchy). The
array (page) distribution strategy can make some difference
in the results (absolute execution times) we obtain. In all
results presented in this section, we used the round-robin
page allocation strategy. This is reasonable as this strategy
tries to distribute the data pages evenly across processors
and balances the workload. We activated this page
allocation strategy by inserting a compiler directive
(provided by SGI) at the beginning of each code. An
alternative strategy would be the first-touch page allocation
strategy, where a page is stored in memory of the processor
that touches it first. However, in codes in our experimental
suite, the array initialization loops are not always paralle-
lized. Consequently, the first-touch page allocation strategy
would generate much worse execution times by over-
loading the memory of a single processor. However, we
expect this degradation to be valid for all different versions
used in our experiments. In particular, we expect that the
BAL version would still generate the best results. Studying
the interaction between our optimizations and page alloca-
tion strategy is a topic that we will revisit in future.

KANDEMIR ET AL.: REDUCING FALSE SHARING AND IMPROVING SPATIAL LOCALITY IN A UNIFIED COMPILATION FRAMEWORK 351

6 RELATED WORK

Compiler researchers have attacked the locality optimiza-
tion problem from several points of view. Most of the
research has focused on enhancing the cache locality of
scientific computations using loop transformations. Wolf
and Lam [49] presented formal definitions of several types
of reuse and offered a framework that uses unimodular
loop transformations as well as tiling. Li [39] also focused
on cache locality, but considered general nonsingular loop
transformation matrices. McKinley et al. [41] presented a
simple algorithm that unifies loop permutation, fusion, and
distribution. Other researchers have also considered tiling
[14], [21], [32], [49], [9]. All of these approaches use only
iteration space transformations and, consequently, they are
constrained by intrinsic data dependences in the program.
Since it might be difficult to find a loop transformation that
satisfies all the references in a loop nest, these approaches
are limited in their ability to improve locality for all the
arrays referenced in a nest. Moreover, since most of these
techniques are specifically for optimizing the performance
of uniprocessor caches, they do not take false sharing into
account.

Recently, techniques based on memory layout transfor-
mations for improving locality have been proposed. Leung
and Zahorjan [38], O’Boyle and Knijnenburg [42], and
Kandemir et al. [26], [25] proposed techniques that change
memory layouts. Although such techniques can improve
the spatial locality characteristics of the programs signifi-
cantly, they may not be as effective on multiprocessors due
to false sharing as they do not take parallelism information
into account. In contrast, Cierniak and Li [12] and Kandemir
et al. [27] offered techniques that employ both loop and data
transformations to improve locality. Besides suffering from
disadvantages of loop transformations, these techniques
also suffer from the effects of false sharing in those cases
where outermost loop parallelism is not available. Ander-
son et al. [1] also propose data transformations to improve
locality and eliminate false sharing; they use permutations
and strip-mining for possible data transformations. Our
work is more general as we consider a larger search space
for possible layout transformations.

Kennedy and McKinley [31] explore the tradeoffs
between effectively utilizing parallelism and memory
hierarchy on shared memory parallel machines. They use
strip-mining and loop permutation in order to exploit both
parallelism and data locality. There is also considerable
work on reducing false sharing in shared-memory parallel
machines. Torrellas et al. [46] applied a number of data
transformations such as array padding and block alignment
to eliminate false sharing. They hypothesize that false
sharing is not the major source of cache misses on shared-
memory machines; instead, most of the misses are due to
poor spatial locality. However, they offer no systematic
approach that can be automated for balancing spatial
locality and false sharing for array-based codes. Jeremiassen
and Eggers [22], [15] also proposed data transformations to
reduce false sharing. Their optimizations either group data
that is accessed by the same processor or separate
individual data items that are shared. Although some of
their transformations help improve spatial locality, others
may adversely affect locality. In comparison, we focus more
on structured codes and demonstrate how spatial locality
and false sharing can be treated in an optimizing compiler
framework.

Bianchini and LeBlanc [5], Eggers and Katz [17], and Ju
and Dietz [23] also observe the impact of false sharing on
parallel programs and propose several techniques to
manage it. None of these works explicitly studied the
interaction between optimizing locality and reducing false

sharing. In contrast, Bolosky et al. [8] proposed coalescing
different data into a larger data set and padding data to
page boundaries to eliminate false sharing at the page level.
Since padding to page boundaries can be very expensive
and distorts spatial locality, it is not clear to us how
successful this method will be on modern cache-coherent
architectures. Granston and Wijshoff [18] discussed loop
and data transforms for eliminating false sharing in shared
virtual memory systems, however, they do not propose a
complete methodology and no experimental results are
presented. Bodin et al. [6], [7] also proposed loop
transformation techniques for reducing page-level multi-
ple-writer false sharing. However, they do not investigate
the interaction between parallelism decisions, spatial
locality, and false sharing. Another drawback of the
previous work on false sharing specific optimizations is
that, in reality, the number of processors available for a run
may not be known at compile time. If it happens to be just
one processor, then all these false sharing-oriented page-
level transformations may introduce significant overhead at
runtime. In comparison, we take a more balanced view of
the problem and do not eliminate false sharing at all costs.
Cierniak and Li [13] proposed software caching and
dynamic layout modifications to reduce false sharing. They
found that false sharing optimizations improve spatial
locality as well. Their results can be attributed to the
available outermost loop parallelism in the small kernels
that they used. Finally, Chow and Sarkar [11] proposed the
modification of runtime scheduling parameters for elim-
inating multiple-writer false sharing. We believe that their
solution is complementary to our approach.

Finally, there is some work on developing cache-
conscious applications and scientific libraries. Frens and
Wise [16] give a recursive matrix-multiply algorithm that
uses nonlinear array layouts. LaMarca and Ladner investi-
gate the influence of caches on the performance of heaps
[35] and present a cache performance analysis of well-
known algorithms [33]. Bilmes et al. present a locality-
optimized matrix-multiply routine [4]. Chatterjee et al. [10]
consider nonlinear memory layouts for optimizing cache
locality in some matrix computations.

7 SUMMARY AND FUTURE WORK

The performance of programs on current shared-memory
multiprocessors with coherent caches depends on several
factors such as the interaction between the granularity of data
sharing, the size of the coherence unit, and the spatial locality
exhibited by the applications, in addition to the amount of
parallelism in the applications. In this paper, we have
presented a mathematical framework for studying the
interaction between false sharing and locality for programs
on shared-memory multiprocessors. We have found that, in
those cases where the compiler can obtain outermost loop
parallelism, it is possible to simultaneously enhance spatial
locality and reduce false sharing using memory layout
transformations, while honoring the parallelism decisions
already made by the compiler. On a collection of 20 programs
drawn from various sources, the balanced approach pre-
sented in this paper, brings about an additional 9 percent
improvement over powerful loop and data transformations
aimed specifically at locality and shows a 19 percent
improvement over techniques aimed only at reducing false
sharing. This clearly demonstrates the benefits of balancing
locality and false sharing. In those cases where outermost
loop parallelism is not possible, we need to favor eliminating
false sharing over optimizing locality or vice-versa; detailed
profile informations might be useful in making this decision.

352

In the future, we plan to embed loop transformations
(other than those aimed only at deriving parallel loops) into
our framework. Although, in principle, such a framework
should be more powerful than the one discussed in this
paper; including loop transformations brings a number of
other issues into the picture. In addition, we plan to
enhance our data transformation framework so that it can
work in an interprocedural setting where the arrays may be
reshaped across procedure boundaries.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
providing helpful comments. The material presented in this
paper is based on research supported in part by the US
National Science Foundation grants CCR-9357840 and CCR-
9509143, and the Air Force Materials Command under
contract F30602-97-C-0026. P. Banerjee is supported in part
by the Defense Advanced Research Projects Agency
(DARPA) under contract F30602-98-2-0144. J. Ramanujam
is supported in part by a US National Science Foundation
Young Investigator Award CCR-9457768, a US National
Science Foundation grant CCR-0073800, and a US National
Science Foundation Information Technology Research grant
CHE-0121706.

REFERENCES

[1] J. Anderson, S. Amarasinghe, and M. Lam, “Data and Computa-
tion Transformations for Multiprocessors,” Proc. Fifth ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming,
pp- 166-178, July 1995.

[2] D.E. Bacon,]J. Chow, D.R. Ju, K. Muthukumar, and V. Sarkar, Proc.
CASCON ’94 Conf., Nov. 1994.

[3] U. Banerjee, “Unimodular Transformations of Double Loops,”
Advances in Languages and Compilers for Parallel Processing,
A. Nicolau et al., eds., MIT Press, 1991.

[4] . Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, “Optimizing
Matrix-Multiply Using PHiPAC: A Portable, High-Performance
ANSI C Coding Methodology,” Proc. Int’l Conf. Supercomputing,
pp- 340-347, July 1997.

[5] R. Bianchini and T. LeBlanc, “Software Caching on Cache-
Coherent Multiprocessors,” Proc. Fourth IEEE Symp. Parallel and
Distributed Processing, Dec. 1992.

[6] F. Bodin, E. Granston, and T. Montaut, “Evaluating Two Loop
Transformations for Reducing Multiple-Writer False Sharing,”
Proc. Seventh Ann. Workshop Languages and Compilers for Parallel
Computing, Aug. 1994.

[71 F. Bodin, E. Granston, and T. Montaut, “Page-Level Affinity
Scheduling for Eliminating False Sharing,” Proc. Fifth Workshop
Compilers for Parallel Computing, June 1995.

[8] W. Bolosky, R. Fitzgerald, and M. Scott, “Simple But Effective
Techniques for NUMA Memory Management,” Proc. 12th ACM
Symp. Operating Systems Principles, Dec. 1989.

[9] L. Carter, J. Ferrante, S. Flynn Hummel, B. Alpern, and K. Gatlin,

“Hierarchical Tiling: A Methodology for High Performance,”

UCSD Technical Report C596-508, Nov. 1996.

S. Chatterjee, V.V. Jain, A.R. Lebeck, S. Mundhra, and M.

Thottethodi, “Nonlinear Array Layouts for Hierarchical Memory

Systems,” Proc. ACM Int'l Conf. Supercomputing (ICS ’99), June

1999.

J. Chow and V. Sarkar, “False Sharing Elimination by Selection of

Runtime Scheduling Parameters,” Proc. 26th Int’l Conf. Parallel

Processing, Aug. 1997.

M. Cierniak and W. Li, “Unifying Data and Control Transforma-

tions for Distributed Shared Memory Machines,” Proc. SIGPLAN

'95 Conf. Programming Language Design and Implementation, pp. 205-

217, June 1995.

M. Cierniak and W. Li, “A Practical Approach to the Compile-

Time Elimination of False Sharing for Explicitly Parallel Pro-

grams,” Proc. 10th Ann. Int’l Conf. High Performance Computers,

June 1996.

[10]

(1]

[12]

[13]

(14]

[15]

[16]

(171

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[20]

(27]

(28]

(29]

(30]

1]

(32]

[33]

(34]

(35]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 4, APRIL 2003

S. Coleman and K. McKinley, “Tile Size Selection Using Cache
Organization and Data Layout,” Proc. SIGPLAN 95 Conf.
Programming Language Design and Implementation, June 1995.

S. Eggers and T. Jeremiassen, “Eliminating False Sharing,” Proc.
Int’l Conf. Parallel Processing, vol. I, pp. 377-381, Aug. 1991.

J.D. Frens and D.S. Wise, “Auto-Blocking Matrix Multiplication or
Tracking BLAS3 Performance with Source Code,” Proc. Sixth ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming,
pp- 206-216, June 1997.

S. Eggers and R. Katz, “The Effect of Sharing on the Cache and Bus
Performance of Parallel Programs,” Proc. Third Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 257-270, Apr. 1989.

E. Granston and H. Wijshoff, “Managing Pages in Shared Virtual
Memory Systems: Getting the Compiler Into the Game,” Proc. Int'l
Conf. Supercomputing, pp. 11-20, 1993.

J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 1995.

C.-H. Huang and P. Sadayappan, “Communication-Free Partition-
ing of Nested Loops,” |. Parallel and Distributed Computing, vol. 19,
pp- 90-102, 1993.

F. Irigoin and R. Triolet, “Supernode Partitioning,” Proc. 15th Ann.
ACM Symp. Principles of Programming Languages, pp. 319-329, Jan.
1988.

T. Jeremiassen and S. Eggers, “Reducing False Sharing on Shared
Memory Multiprocessors Through Compile Time Data Transfor-
mations,” Proc. Fifth ACM SIGPLAN Symp. Principles and Practice of
Parallel Programming, July 1995.

Y. Ju and H. Dietz, “Reduction of Cache Coherence Overhead by
Compiler Data Layout and Loop Transformation,” Proc. Workshop
Languages and Compilers for Parallel Computing, U. Banerjee et al.,
eds., pp. 344-358, 1992.

M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee, “A
Graph-Based Framework to Detect Optimal Memory Layouts for
Improving Data Locality,” Proc. 1999 Int’l Parallel Processing Symp.,
Apr. 1999.

M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J.
Ramanujam, “A Linear Algebra Framework for Automatic
Determination of Optimal Data Layouts,” IEEE Trans. Parallel
and Distributed Systems, vol. 10, no. 2, Feb. 1999.

M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J.
Ramanujam, “A Hyperplane Based Approach for Optimizing
Spatial Locality in Loop Nests,” Proc. 1998 ACM Int'l Conf.
Supercomputing, pp. 69-76, July 1998.

M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee,
“Improving Locality Using Loop and Data Transformations in an
Integrated Framework,” Proc. 31st Ann. ACM/IEEE Int’l Symp.
Microarchitecture, vol. 31, pp. 285-296, Dec. 1998.

M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee, “A
Matrix-Based Approach to the Global Locality Optimization
Problem,” Proc. 1998 Int’l Conf. Parallel Architectures and Compila-
tion Techniques, Oct. 1998.

M. Kandemir, J. Ramanujam, A. Choudhary, and P. Banerjee, “An
Iteration Space Transformation Algorithm Based on Explicit Data
Layout Representation for Optimizing Locality,” Proc. Workshop
Languages and Compilers for Parallel Computing, Aug. 1998.

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D.
Wonnacott, “The Omega Library Interface Guide,” Technical
Report CS-TR-3445, CS Dept., Univ. of Maryland, College Park,
Mar. 1995.

K. Kennedy and K.S. McKinley, “Optimizing for Parallelism and
Data Locality,” Proc. 1992 ACM Int’l Conf. Supercomputing (ICS '92),
July 1992.

I. Kodukula, N. Ahmed, and K. Pingali, “Data-Centric Multi-Level
Blocking,” Proc. SIGPLAN '97 Conf. Programming Language Design
and Implementation, June 1997.

R. Ladner, J. Fix, and A. LaMarca, “Cache Performance Analysis
of Algorithms,” Proc. 10th Ann. ACM-SIAM Symp. Discrete
Algorithms, Jan. 1999.

M. Lam, E. Rothberg, and M. Wolf, “The Cache Performance of
Blocked Algorithms,” Proc. Fourth Int’l Conf. Architectural Support
for Programming Languages and Operating Systems (ASPLOS '91),
Apr. 1991.

A. LaMarca and R. Ladner, “The Influence of Caches on the
Performance of Heaps,” The ACM |. Experimental Algorithms, vol. 1,
1996.

KANDEMIR ET AL.: REDUCING FALSE SHARING AND IMPROVING SPATIAL LOCALITY IN A UNIFIED COMPILATION FRAMEWORK 353

[36] L. Lamport, “The Parallel Execution of DO Loops,” Comm. ACM,
vol. 17, no. 2, pp. 83-93, Feb. 1974.

[37] J. Laudon and D. Lenoski, “The SGI Origin: A CC-NUMA Highly
Scalable Server,” Proc. 24th Ann. Int’l Symp. Computer Architecture
(ISCA '97), May 1997.

[38] S.-T. Leung and J. Zahorjan, “Optimizing Data Locality by Array
Restructuring,” Technical Report TR 95-09-01, Dept. of Computer
Science and Eng., Univ. of Washington, Sept. 1995.

[39] W. Li, “Compiling for NUMA Parallel Machines,” PhD thesis,
Cornell Univ., Ithaca, New York, 1993.

[40] W. Li and K. Pingali, “Access Normalization: Loop Restructuring
for NUMA Compilers,” ACM Trans. Computer Systems, vol. 11, no.
4, pp. 353-375, 1993.

[41] K. McKinley, S. Carr, and C.W. Tseng, “Improving Data Locality
with Loop Transformations,” ACM Trans. Programming Languages
and Systems, vol. 18, no. 4, pp. 424-453, July 1996.

[42] M. O’'Boyle and P. Knijnenburg, “Non-Singular Data Transforma-
tions: Definition, Validity, Applications,” Proc. Sixth Workshop
Compilers for Parallel Computers, pp. 287-297, 1996.

[43] C. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B. Leung,
and D. Schouten, “Parafrase-2: An Environment for Parallelizing,
Partitioning, Synchronizing, and Scheduling Programs on Multi-
processors,” Int’l]. High Speed Computing, vol. 1, no. 1, 1989.

[44]]J. Ramanujam and P. Sadayappan, “Compile-Time Techniques for
Data Distribution in Distributed Memory Machines,” IEEE Trans.
Parallel and Distributed Systems, vol. 2, no. 4, pp. 472-482, Oct. 1991.

[45] G. Rivera and C.-W. Tseng, “Data Transformations for Eliminat-
ing Conflict Misses,” Proc. 1998 ACM SIGPLAN Conf. Programming
Language Design and Implementation (PLDI '98), June 1998.

[46]]. Torrellas, M. Lam, and J. Hennessey, “False Sharing and Spatial
Locality in Multiprocessor Caches,” IEEE Trans. Computers, vol. 43,
no. 6, pp. 651-663, June 1994.

[47] E. Torrie, C-W. Tseng, M. Martonosi, and M. Hall, “Evaluating
the Impact of Advanced Memory Systems on Compiler-Paralle-
lized Codes,” Proc. Int’l Conf. Parallel Architectures and Compilation
Techniques, June 1995.

[48] C.-W. Tseng,]J. Anderson, S. Amarasinghe, and M. Lam, “Unified
Compilation Techniques for Shared and Distributed Address
Space Machines,” Proc. 1995 Int’l Conf. Supercomputing, July 1995.

[49] M. Wolf and M. Lam, “A Data Locality Optimizing Algorithm,”
Proc. ACM SIGPLAN ’91 Conf. Programming Language Design and
Implementation, pp. 30-44, June 1991.

[50] M. Wolf and M. Lam, “A Loop Transformation Theory and an
Algorithm to Maximize Parallelism,” IEEE Trans. Parallel and
Distributed Systems, vol. 2, no. 4, pp. 452-471, 1991.

[51] M. Wolfe, High Performance Compilers for Parallel Computing.
Addison Wesley, CA, 1996.

Mahmut Kandemir received the BSc and MSc
degrees in control and computer engineering
from Istanbul Technical University, Istanbul,
Turkey, in 1988 and 1992, respectively. He
received the PhD from Syracuse University,
New York, in electrical engineering and compu-
ter science in 1999. He has been an assistant
professor in the Computer Science and En-

f gineering Department at the Pennsylvania State
University since August 1999. His main research interests are optimizing
compilers, /O intensive applications, embedded systems, and power-
aware computing. He is a member of the IEEE and the ACM.

Alok Choudhary received the PhD degree from
the University of lllinois, Urbana-Champaign, in
electrical and computer engineering in 1989, the
MS degree from the University of Massachu-
setts, Amherst, in 1986, and the BE degree
(Hons.) from the Birla Institute of Technology
and Science, Pilani, India in 1982. He is a
professor of electrical and computer engineering
at Northwestern University. From 1993 to 1996
he was an associate professor in the Electrical
and Computer Engineering Department at Syracuse University, and
from 1989 to 1993 he was an assistant professor in the same
department. He has worked in industry for computer consultants prior
to 1984. Alok Choudhary received the US National Science Founda-
tion’s Young Investigator Award in 1993 (1993-1999). He has also
received an IEEE Engineering Foundation award, an IBM Faculty
Development award, and an Intel Research Council award. His main
research interests are in high-performance computing and communica-
tion systems and their applications in many domains including multi-
media systems, information processing, and scientific computing. In
particular, his interests lie in the design and evaluation of architectures
and software systems (from system software such as runtime systems,
compilers, and programming languages to applications), high-perfor-
mance servers, high-performance databases, and input-output. He has
published more than 130 papers in various journals and conferences in
the above areas. He has also written a book and several book chapters
on the above topics. His research has been sponsored by (past and
present) the Defense Advanced Research Projects Agency (DARPA),
US National Science Foundation, NASA, Air Force Office of Scientific
Research (AFOSR), Office of Naval Research (ONR), US Department
of Energy (DOE), Intel, IBM, and TI. Alok Choudhary served as the
conference cochair for the International Conference on Parallel
Processing and as a program chair and general chair for the
International Workshop on 1/O Systems in Parallel and Distributed
Systems. He also served a program vice-chair for HIPC *1999. He is an
editor of the Journal of Parallel and Distributed Computing and an
associate editor of IEEE Transactions on Parallel and Distributed
Systems. He has also served as a guest editor for IEEE Computer and
IEEE Parallel and Distributed Technology. He serves (or has served) on
the program committee of many international conferences in architec-
tures, parallel computing, multimedia systems, performance evaluation,
distributed computing, etc. He is a member of the IEEE Computer
Society and the ACM. He also serves in the High-Performance Fortran
Forum, a forum of Academia, industry, and government labs working on
standardizing programming languages for portable programming on
parallel computers.

354 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 4, APRIL 2003

J. Ramanujam (Ram) received the BTech
degree in electrical engineering from the Indian
Institute of Technology, Madras, India, in 1983,
and the MS and PhD degrees in computer
science from The Ohio State University, Colum-
bus, in 1987 and 1990, respectively. He is a
professor of electrical and computer engineering
at Louisiana State University, Baton Rouge. His
research interests are in embedded systems,
compilers for high-performance computer systems, software optimiza-
tions for low-power computing, high-level hardware synthesis, parallel
architectures, and algorithms. He has published more than 90 papers in
refereed journals and conferences in these areas in addition to several
book chapters. Dr. Ramanujam received the US National Science
Foundation’s Young Investigator Award in 1994. He has served on the
Program Committees of several conferences and workshops such as
the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for
Embedded Systems (LCTES ’2001), the Workshop on Power Manage-
ment for Real-Time and Embedded Systems, (IEEE Real-Time
Applications Symposium, 2001), the International Conference on
Parallel Architectures and Compilation Techniques (PACT 2000), the
International Symposium on High Performance Computing (HiPC 99),
and the 1997 International International Conference on Parallel
Processing. He initiated and has coorganized the annual workshop on
Compilers and Operating Systems for Low Power, which has been held
in conjunction with PACT (Conference on Parallel Architectures and
Compilation Techniques) since 2000. He has taught tutorials on
compilers for high-performance computers at several conferences such
as the International Conference on Parallel Processing (1998, 1996),
Supercomputing 94, Scalable High-Performance Computing Confer-
ence (SHPCC 94), and the International Symposium on Computer
Architecture (1993 and 1994). He has been a frequent reviewer for
several journals and conferences. He is a member of the IEEE.

Prith Banerjee received the BTech degree in
electronics and electrical engineering from the
Indian Institute of Technology, Kharagpur, India,
in August 1981, and the MS and PhD degrees in
electrical engineering from the University of
Illinois at Urbana-Champaign in December
1982 and December 1984, respectively. Dr.
Banerjee is currently the Walter P. Murphy

‘ Professor and Chairman of the Department of

A Electrical and Computer Engineering, and Di-

rector of the Center for Parallel and Distributed Computing at North-
western University in Evanston, lllinois. During 1985-1996, he was on
the faculty of the University of lllinois. During that time, he was the
Director of the Computational Science and Engineering program and
Professor of Electrical and Computer Engineering and the Coordinated
Science Laboratory at the University of lllinois at Urbana-Champaign.
Prith Banerjee has also served as Founder, President, and CEO of a
company called AccelChip during 2000-2002 while he was on leave from
Northwestern University. This company was founded based on
technology developed as part of a DARPA sponsored research on the
MATCH compiler at Northwestern. Prith is continuing to serve as
Chairman and Chief Technology Officer of AccelChip, Inc., in a part-time
manner. His research interests are in parallel algorithms for VLSI design
automation, distributed memory parallel compilers, and compilers for
VLSI systems such as FPGAs and ASICs, and is the author of more
than 300 papers in these areas. He lead the PARADIGM compiler
project for compiling programs for distributed memory multicomputers,
the ProperCAD project for portable parallel VLS| CAD applications, the
MATCH project on a MATLAB compilation environment for adaptive
computing, and the PACT project on power aware compilation and
architectural techniques. He is also the author of a book entitled “Parallel
Algorithms for VLSI CAD” published by Prentice Hall, Inc., 1994. He has
supervised 30 PhD and 35 MS student theses so far. Dr. Banerjee has
received numerous awards and honors during his career. He received
the IEEE Taylor L. Booth Education Award from the IEEE Computer
Society in 2001. He became a Fellow of the ACM in 2000. He was the
recipient of the 1996 Frederick Emmons Terman Award of ASEE’s
Electrical Engineering Division sponsored by Hewlett-Packard. He was
elected to the fellow grade of IEEE in 1995. He received the University
Scholar award from the University of Illinois for in 1993, the Senior Xerox
Research Award in 1992, the IEEE Senior Membership in 1990, the US
National Science Foundation’s Presidential Young Investigators’ Award
in 1987, the IBM Young Faculty Development Award in 1986, and the
President of India Gold Medal from the Indian Institute of Technology,
Kharagpur, in 1981. The company that he has started called AccelChip
has received the award for the “One of 50 emerging new technology
companies in lllinois” in 2001. Prith has served as an Associate Editor of
the IEEE Transactions on Parallel and Distributed Systems, the IEEE
Transactions on Computers, the Journal of Parallel and Distributed
Computing, the IEEE Transactions on VLS| Systems, and the Journal of
Circuits, Systems, and Computers. He has served on the program and
organizing committees of at least 30 conferences overview the past few
years. He has also served as the Program Chair of the High-
Performance Computing Conference in 1999, and the International
Conference on Parallel Processing for 1995. He has served as General
Chairman of the International Conference on Parallel and Distributed
Computing Systems in 1997, and the International Workshop on
Hardware Fault Tolerance in Multiprocessors 1989. He has been a
consultant to many companies and was on the Technical Advisory
Board of many companies such as Ambit Design Systems and Atrenta.

> For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

