
Minimizing Data and Synchronization Costs
in One-Way Communication

Mahmut Kandemir, Member, IEEE, Alok Choudhary, Member, IEEE Computer Society,

Prithviraj Banerjee, Fellow, IEEE, J. Ramanujam, Member, IEEE, and Nagaraj Shenoy, Member, IEEE

AbstractÐMinimizing communication and synchronization costs is crucial to the realization of the performance potential of parallel

computers. This paper presents a general technique which uses a global data-flow framework to optimize communication and

synchronization in the context of the one-way communication model. In contrast to the conventional send/receive message-passing

communication model, one-way communication is a new paradigm that decouples message transmission and synchronization. In

parallel machines with appropriate low-level support, this may open up new opportunities not only to further optimize communication,

but also to reduce the synchronization overhead. We present optimization techniques using our framework for eliminating redundant

data communication and synchronization operations. Our approach works with the most general data alignments and distributions in

languages like High Performance Fortran (HPF) and uses a combination of the traditional data-flow analysis and polyhedral algebra.

Empirical results for several scientific benchmarks on a Cray T3E multiprocessor machine demonstrate that our approach is successful

in reducing the number of data (communication) and synchronization messages, thereby reducing the overall execution times.

Index TermsÐOne-way communication, message-passing, redundant synchronization, compiler optimizations, data-flow analysis,

linear algebra techniques, data-parallel languages.

æ

1 INTRODUCTION

MOST of the current languages for distributed-memory
architectures, such as High Performance Fortran

(HPF) [38], Fortran-D [31], and Vienna Fortran [11], provide
data alignment and distribution directives to the users.
Using these directives, the users can specify the data
mappings and a compiler can derive the computation
partitions automatically. The compilers for these languages
have traditionally relied on send (Send) and receive (Recv)
primitives to implement message-passing communication.
The impact of this approach is twofold. First, such an
approach combines synchronization with communication in
the sense that data messages also carry implicit synchro-
nization information. While this relieves the compiler of
the task of inserting explicit synchronization messages to
maintain data integrity and correct execution, separating
synchronization messages from data messages may
actually improve the performance of programs by giving
the compiler the option of optimizing the data and
synchronization messages separately. In fact, recently,
O'Boyle and Bodin [42] and Tseng [52] have presented
techniques to optimize synchronization messages on
shared memory and distributed shared memory parallel

architectures. These techniques can be applied to the
synchronization messages of the programs compiled using
separate data and synchronization messages. Second, the
compiler has the task of matching send and receive
operations in order to guarantee correct execution. This is
a difficult job and limits the number of programs that can
be compiled effectively for message-passing architectures.

Recently, alternative communication and synchroniza-
tion mechanisms called one-way communication have been
offered. Stricker et al. [48] and Hayashi et al. [26] suggest
that the separation of synchronization from data transfer is
extremely useful for realizing good performance. In the
context of distributed operating systems, a similar separa-
tion of data and control transfer has been suggested by
Thekkath et al. [51]. Split C [13] offers one-way memory
operations and active messages [53] provides a software
implementation of one-way communication. One-way com-
munication is also a part of the proposed Message Passing
Interface standard [41]. The main characteristic of these
techniques is that they separate interprocessor data trans-
fers from producer-consumer synchronization. A number of
(physically) distributed-memory machines, such as the
Fujitsu AP1000+ [26], the Cray T3D [12], the Cray T3E
[47], and the Meiko CS-2 [8] already offer efficient low-level
remote memory access (RMA) primitives which provide a
processor with the capability of accessing the memory of
another processor without the direct involvement of the
latter. To preserve the original semantics, however, a
synchronization protocol should be observed.

In this paper, we focus on the compilation of programs
augmented with HPF-style data mapping directives using
one-way communication operations Put (remote memory
write) and Synch (synchronization). Although we present
our techniques in the framework of (physically) distributed
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memory machines, these techniques are readily applicable
to uniform shared memory architectures as well. Gupta and
Schonberg [19] show that compilers that generate code for
one-way communication can exploit shared-memory archi-
tectures with flexible cache-coherence protocols (e.g.,
Wisconsin Typhoon [45] and Stanford FLASH [27]). To
measure the benefits obtained from one-way communica-
tion (see Section 7), we used a Cray T3E [47] which is a
logically shared, physically distributed memory multi-
processor that supports the PVM [15] and MPI [41]
message-passing libraries, as well as a simple one-sided
communication library provided by Silicon Graphics Inc.

The Put primitiveÐexecuted by the producer of a
dataÐtransfers the data from the producer's memory to
the consumer's memory. This operation is very similar to
the execution of a Send primitive by the producer and the
execution of a matching Recv primitive by the consumer.
There is an important difference, however: The consumer
processor is not involved in the transfer directly and all the
communication parameters are supplied by the producer
[41]. As stated above, in order to ensure correctness,
synchronization operations might be necessary. A large
number of synchronization operations can be used to
preserve the semantics of the program. These include
barriers, point-to-point (or producer-consumer) synchroni-
zations, and locks. The synchronization primitive used in
this paper, namely SynchÐexecuted by the producer of a
dataÐis a point-to-point communication primitive; how-
ever, our approach can be modified to work with other
types of synchronizations as well. Note that both Stricker
et al. [48] and Hayashi et al. [26] use barriers to implement
synchronization. In contrast, our effort is aimed at reducing
the total amount of synchronization using data-flow
analysis and using finer-granularity point-to-point primi-
tives where possible.

Consider Fig. 1a; here, a consumer processor sends a
Synch message to the producer informing that the
producer can put data in a buffer physically located in the
consumer's memory. After receiving the Synch message,
the producer deposits (puts) the data in that buffer. It
should be noted that the Synch operation is necessary if
this communication between the producer and the con-
sumer is going to repeat. This is because, when the producer
wants to deposit new data into the buffer, it must know that
the consumer has indeed consumed the old data in the
buffer. To be precise, after the data has been deposited, the
consumer should send an acknowledge (Ack) message; in

order to keep the presentation simple, we will omit the Ack
messages in this paper.

First, we briefly discuss the Put/Synch one-way
communication framework and the fundamental concepts
used in this paper in Sections 2 and 3, respectively. Then, in
Section 4, we show how the communication sets, as well as
the producer and the consumer sets manipulated by the
one-way communication mechanism, can be implemented
on top of the existing send/receive type of communication
framework of a distributed-memory compiler. Having
determined those, the next issue is to minimize the number
of Put communications, as well as the communication
volume. Section 5 presents an algorithm to achieve this goal.
Our algorithm can take control flow into account (except
ªgotoº constructs) and can optimize programs with all
types of HPF-like alignments and distributions, including
block-cyclic distributions. The solution is based on a linear
algebra framework first introduced by Ancourt et al. [6]; in
addition, our approach is quite general in the sense that
several current solutions to the problem can be derived by a
suitable definition of a predicate. Section 6 discusses how
data-flow analysis can be used to optimize synchronization
and presents a data-flow analysis for this purpose. In
Section 7, we provide results on several benchmarks to
demonstrate the efficacy of our technique. We measure the
effect of our approach on the number of messages,
communication volume, and the overall execution times.
Section 8 discusses related work and Section 9 concludes
the paper with a summary and discussion.

2 ONE-WAY COMMUNICATION

One-way communication (or remote memory access
(RMA)) is a technique where a processor is allowed direct
access to the memory of another processor. To preserve the
integrity of data, however, some kind of synchronization
should be established. In this section, we discuss the
advantages and disadvantages of one-way communication
over the traditional two-way (send/receive type of) com-
munication and explain why we prefer the Put primitive
over Get, which is another primitive that can be used in a
one-way communication scheme. We also discuss the
synchronization elimination problem and informally ex-
plain our approach.

The communication mechanism based on the send/
receive primitives is easy to understand. A data exchange
requires the active involvement of both the producer and the
consumer. The underlying protocol, however, needs to
handle a number of problematic cases. One such case occurs
when the data has been sent, but the process running on the
consumer processor has not issued a Recv command yet. In
that case, the consumer should buffer the data until a Recv
is posted. This requires expensive buffer copying and
increases synchronization costs [19]. Another important
issue is that the compiler should guarantee the correct
ordering of the messages sent from one processor to
another, using message tags whenever necessary. Apart
from these issues, combining data and synchronization
messages prevents a compiler from optimizing them
separately since each data communication involves an
implicit synchronization whether it is needed or not.
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Fig. 1. (a) One-way communication with Put operation. (b) Elimination

of a Synch message.



Clearly, in a compilation framework based on the Put

operation, the correct ordering of memory accesses has to be
imposed by the compiler using the synchronization
primitives. A straightforward approach would insert a
Synch operation just before each Put operation, as shown
in Fig. 1a. The next question to be addressed then is
whether or not every Synch operation inserted that way is
necessary. The answer is no and Section 6 proposes an
algorithm to eliminate redundant synchronization mes-
sages. We refer to a Synch operation as redundant if its
functionality can be fulfilled by other data communications
or other Synch operations present in the program. The
basic idea is to use another message in the reverse direction
between the same pair of processors in the place of the
Synch call, as shown in Fig. 1b. In such a situation, we say
that the communication tj kills the synchronization require-
ment of communication i. We show that our algorithm is
fast and very effective in reducing the number of
synchronizations. This is because of the following:

1. It is very accurate in eliminating redundant syn-
chronization since it works at the granularity of a
processor-pair using the Omega library [34], [44];

2. It can eliminate a synchronization message by using
several data messages;

3. It handles block, cyclic, and general block-cyclic
distributions in a unified manner, whereas the
previous approaches either work only for virtual
processor grids or use an extension of regular section
descriptors (RSDs) [9], which are inherently inaccu-
rate; and

4. It is preceded by a global communication optimiza-
tion algorithm which itself eliminates many of the
messages.

To show the idea behind the algorithm, we consider
Fig. 2a, where eight processors (numbered 0 thru 7) are
involved in a Put communication that repeats itself (as in
a loop); processor i deposits data in the memory of
processor iÿ 1 for 1 � i � 7; the arrows indicate the
direction of communication. Fig. 2b shows the Synch

messages required for the repetitions of this communica-
tion. Suppose that, between successive repetitions of the
communication pattern in Fig. 2a, subsets of processors are
involved in communication patterns using Put shown in
Fig. 2c and Fig. 2d. Our synchronization elimination
algorithm can detect that the communications in Fig. 2c
and Fig. 2d, together, kill the synchronization requirement of
the first communication, i.e., kill the Synch messages
shown in Fig. 2b.

It should also be mentioned that, in machine environ-
ments that support both one-way (Put/Get) and two-way
(Send/Recv) communication mechanisms, it might be the

case that two-way communication mechanisms are imple-
mented using the one-way communication mechanisms.
Because of this reason, one-way communication calls might
have significantly lower startup latencies and higher
bandwidths. Therefore, when used in a communication-
intensive parts of a program, they can result in better
scaling of that portion of the computation. This observation
suggests that, in some architectures, we might be able to
obtain better results using one-way communication. In fact,
the MPI [41] and PVM [15] message-passing libraries on the
Cray T3E are implemented using a one-sided communica-
tion library (SHMEM). In addition to that, with one-way
communication messages, the remote processor is not
interrupted during its computation, instead it can continue
to spend its precious cycles in actual computation. Of
course, this flexibility comes with a certain cost: In those
cases where the communication activity between processors
needs to synchronized, explicit synchronization messages
should be inserted in the code. This might be a problem for
users. Therefore, in this paper, we propose the automatic
insertion and minimization of synchronization calls. Also,
we present preliminary results for several benchmark
programs on the Cray T3E. Our experiments show that,
by using one-way communication primitives, we are able to
reduce the number of data (communication) messages and
synchronization messages and, consequently, obtain sig-
nificant improvements in the overall execution times. We
believe that these are also the first results from a
comprehensive evaluation of synchronization elimination
in one-way communication.1

Finally, as discussed by Gupta and Schonberg [19],
although both Put and Get can be implemented in terms of
each other, we prefer to use Put because of the following
two reasons: First, in general, the handshaking protocol for
the Get primitive involves more messages than that of Put
[19]. Second, the synchronizations originating from the Get
primitive are due to flow-dependences and are in general
difficult to eliminate. On the other hand, the synchroniza-
tion messages in the case of the Put primitive are needed to
satisfy antidependences (pseudodependences) and therefore are
easier to eliminate [19].

3 PRELIMINARIES

In this section, we briefly describe the concepts used in this
paper. We focus on structured programs with conditional
statements and nested loops, but without arbitrary goto
statements. With appropriate modifications, our technique
can handle arbitrary gotos as well. A basic block is defined as
a sequence of consecutive statements in which the flow of
control enters at the beginning and leaves at the end without
the possibility of branching, except perhaps at the end [4]. A
control flow graph (CFG) is a directed graph constructed from
basic blocks and represents the flow-of-control information
of the program. For the purpose of this paper, the CFG can
be thought of as a directed graph G � �V; E�, where each
v 2 V represents either a basic block or a (reduced) interval
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1. Note, however, that in machines without low-level support for one-
way communication, the performance of one-way communication may be
worse than that of the send/receive model.

Fig. 2. Communication and synchronization messages for the first loop

of the program in Fig. 7a.



that represents a loop, and each e 2 E represents an edge
between blocks. In this paper, depending on the context, we
use the term node interchangeably for a statement, a block, or
an interval. Two unique nodes s and t denote the start and
terminal nodes, respectively, of a CFG. One might think of
these nodes as dummy statements. We define the sets of all
successors and predecessors of a node n as succ�n� � fm j
�n;m� 2 Eg and pred�n� � fm j �m;n� 2 Eg, respectively.
Node i dominates node j in the CFG (written as
j 2 dom�i�) if every path from s to j goes through i. We
assume that, prior to communication analysis, any edge that
goes directly from a node with more than one successor to a
node with more than one predecessor is split by introducing
a dummy node [37]. Our technique for minimizing the
communication volume and the number of messages is
based on interval analysis [4]. Interval analysis consists of a
contraction phase and an expansion phase. For programs
written in a structured language, an interval corresponds to
a loop. The contraction phase collects information about
what is generated and what is killed inside each interval.
Then, the interval is reduced to a single node and annotated
with the information collected. This is a recursive procedure
and stops when the reduced CFG contains no more cycles.
In each step of the expansion phase, on the other hand, a
node (i.e., reduced interval) is expanded and the informa-
tion regarding the nodes in that interval is computed.

4 PRODUCERS AND CONSUMERS

We assume that all loop bounds, subscript expressions, and
conditional expressions are affine functions of enclosing
loop indices and the number of processor is known
beforehand. Under these conditions, a loop nest, an array,
and a processor grid can all be represented as bounded
polyhedra. Our approach uses the owner-computes rule [31],
[57], [46], which assigns each computation to the processor
that owns the data being computed. The technique
presented here can be extended to handle cases where this
rule is not adopted. Also, although we assume that data
distributions across processors are specified using HPF-like
directives, our techniques can also be used in conjunction

with automatic data distribution frameworks, such as those
of Kremer [40] and Gupta and Banerjee [18].

Consider the one-dimensional generic loop i shown in
Fig. 3a. LetRL�i� � X�L � i� �L� andRR�i� � Y�R � i� �R�.
Assuming that symbols p and q denote two processors, we
define the following sets where S is the communication
statement and _ and ^ are the logical ªorº and ªandº
operations, respectively:

Own�X; q� � fd j d 2 X ^ is owned by qg
Producers�S� � fq0 j 9i; p0 such that RR�i� 2 Own�Y; q0�

^ RL�i� 2 Own�X; p0� ^ il � i � iu
^ q0 6� p0g

Consumers�S� � fp0 j 9i; q0 such that RR�i� 2 Own�Y; q0�
^ RL�i� 2 Own�X; p0� ^ il � i � iu
^ q0 6� p0g

ProducersFor�S; p� � fq0 j 9i such that RR�i� 2 Own�Y; q0�
^ RL�i� 2 Own�X; p� ^ il � i � iu
^ q0 6� pg

ConsumersFor�S; q� � fp0 j q 2 ProducersFor�S; p0�g
PutSet�S; p; q� � fd j 9i such that

d � RR�i� 2 Own�Y; q�
^ RL�i� 2 Own�X; p� ^ il � i � iu
^ q 6� pg

SendSet�S� � f�q0; p0� j 9d such that

d 2 PutSet�S; p0; q0�g
Pending�S� � f�p0; q0� j �q0; p0� 2 SendSet�S�g:

The set Own(X, p) refers to the elements of array X

mapped onto processor p through compiler directives.
Similar Own sets are defined for other arrays as well. The
sets Producers(S) and Consumers(S) denote, respec-
tively, the processors that produce and consume data
communicated in S. For a specific processor, Produ-

cersFor and ConsumersFor give the set of processors
that send data to and receive data from that processor,
respectively. PutSet(S, p, q) is the set of elements that
should be put (written) by processor q to the memory of
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Fig. 3. (a) Generic loop. (b) Projection functions to manipulate sets (p and q are symbolic names).



processor p without the active involvement of the latter.
SendSet(S) is the set of pairs (q0; p0) such that q0 sends
data to (write data in the memory of) p0. Finally, Pend-
ing(S) is the inverse of SendSet(S) and gives a set of
pairs (p0; q0) such that p0 should send a Synch message to q0

for the repetitions of the communication (in each iteration
of the time-step loop t) occurring in S. For a communica±
tion occurring in i, the set Pending(i) represents a list
of individual Synch messages that should be communi-
cated for the safe repetition of the data communication in i.
That is, a Synch message is between just a pair of
processors. For an i and a Synch, we say whether or not
Synch 2 Pending�i�.

In fact, by using appropriate projection functions, all of
those sets can be obtained from a single set, called
CommSet(S), containing triples (p0; q0; d), meaning that
element d should be communicated from q0 to p0 in S. In
general, CommSet(S) or a similar set is used in the
communication optimization phase of distributed-memory
compilers to generate the correct Send and Recv com-
mands. The necessary projection functions can be imple-
mented by using the Omega library [34], [44] and are shown
in Fig. 3b. For instance, ConsumersFor�S; q� is obtained from
CommSet(S) by projecting out d and substituting q for q0;
that is, q is a parameter and ConsumersFor�S; q� enumerates

p0 values in terms of q. Notice that, by building upon an
existing framework, our approach can be extended to
compile programs using a hybrid approach that consists of
both Put/Get and Send/Recv primitives. By taking into

account the alignment and distribution information pro-
vided by the compiler directives, we can define the Own set
more formally as:

Own�Y; q� � fd j 9t; c; l such that �t � � � d� ��
^ �t � C � P � c� C � q � l� ^ �yl � d � yu�^
�pl � q � pu� ^ �tl � t � tu� ^ �0 � l � C ÿ 1�g;

where P � pu ÿ pl � 1. In this formulation, t � � � d� �
represents alignment and t � C � P � c� C � q � l denotes
distribution. In other words, each array element d is
mapped onto a point in a two-dimensional array. This
point can be represented by a pair �c; l� and gives the local
address of the data item in a processor. Simple BLOCK and

CYCLIC(1) distributions can easily be handled within this
framework by setting c � 0 and l � 0, respectively. As an
example, Fig. 4a shows the global addresses of a one-
dimensional array distributed in block-cyclic manner across

four processors with a blocking factor of C � 3. Fig. 4b and
Fig. 4c, on the other hand, illustrate a two-dimensional view
of the global and local addresses, respectively. For each
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Fig. 4. HPF-style data mappings: global and local addresses of the accessed elements of a one-dimensional array along with the two-dimensional

view for a four-processor case with C � 3. (a) Global addresses of array elements. (b) Two-dimensional view of global addresses. Addresses on

processor q are �c; C � q � l�. (c) Two-dimensional view of local addresses �c; l�.



processor, the horizontal dimension corresponds to the

c coordinate, whereas the vertical dimension denotes l. For

example, element 43 of the array is mapped onto

Processor 2 with c � 3 and l � 1 as local coordinates.
These relations can be modified easily to accommodate

replicated arrays and collapsed dimensions. The formula-

tion given here can be generalized to multidimensional

loops, arrays, and processor grids [6], [49]. Consider the

first i-loop in Fig. 7b. Fig. 5a shows the sets for this loop,

assuming that the array bounds start from 0 in the

transformed program. Notice that a processor q is in the

Producers set if there exists a processor p such that q 6� p
and q puts data in p's memory. Similarly, a processor p is in

the Consumers set if there exists a processor q such that

p 6� q and q puts data in p's memory. For this example, if the

distribution directive for the arrays is changed to

CYCLIC(4), then we have the sets shown in Fig. 5b. All

of these sets can easily be represented and manipulated by

the Omega library [34], [44] or a similar polyhedral tool.

Notice that, using the Omega sets to represent producer-

consumer information, we are able to accommodate any

type of HPF-style alignment and distribution in our frame-

work through Own sets.
Let f~d j P�~d�g and f~d j Q�~d�g be two PutSets for the

same multidimensional array, where P�:� and Q�:� are two

predicates and ~d refers to an array element. We define three

operations, _c, ÿc, and ^c, on these PutSets, as shown in

Fig. 5c. In the remainder of this paper,
W

and
V

symbols

will also be used for _c and ^c, respectively, when there is

no confusion.

So far, we have described our method informally and

defined the terminology that will be used in the remainder

of this paper. Next, we explain our communication and

synchronization optimization algorithms in detail.

5 OPTIMIZING COMMUNICATION

The objective of our global communication optimization

framework is to determine the set PutSet�i; p; q� for each

node i in the program globally by taking into account all

the nodes in the CFG that are involved in communication.

5.1 Local (Intrainterval) Analysis

In order to make the data-flow analysis task easier, the CFG

of the program is traversed prior to the local analysis phase

and, for each LHS reference, a pointer is stored in the

header of all enclosing loop nests. The local analysis part of

our framework computes Kill, Gen, and Post_Gen sets

defined below for each array and for each interval. Then,

the interval is reduced to a single node and annotated with

these sets. With reference to Fig. 3a, for array X, the

following sets are computed:

Kill�i; q� � f~d j �~d 2 Own�X; q�� ^ �9~{
such that �~d � RL�~{�� ^ �~il �~{ � ~iu��g;

Modified�i; q� �
_

j2pred�i�
Modified�j; q�

24 35_cKill�i; q�;
assuming that Modified�pred�first�i��; q� � ;, where

first(i) is the first node in i.
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PutSets. (d) Data-flow equations for optimizing synchronization messages.



Kill�i; q� is the set of elements owned and written
(killed) by processor q locally in i and Modified�i; q� is the
set of elements that may be killed along any path from the
beginning of the interval to (and including) the node i. The
computation of the Kill set (and that of the Modified�i; q�
set) proceeds in the forward direction, that is, the nodes
within the interval are traversed in topologically sorted
order. If last(i) is the last node in i, then

Kill�i; q� � Modified�last�i�; q�:
This last equation is used to reduce an interval into a node.
The reduced interval is then annotated by its Kill set.

Gen�i; p; q� is the set of elements to be written by q into
p's memory to satisfy the communication in i. The
computation of the set Gen proceeds in the backward
direction, i.e., the nodes within each interval are traversed
in reverse topological sort order. The elements that can be
written by q into p's memory at the beginning of a node in
the CFG are the elements required by p due to an RHS
reference in the node, except the ones that are written
locally (killed) by q before being referenced by p. Note that
this process involves considering all the LHS references
within an interval. The cost incurred is manageable since
the largest scope for this analysis is a single loop nest and,
as mentioned earlier, prior to analysis we keep pointers to
all LHS references within a loop nest.

Assuming ~{ � �{1; . . . ; {n� and ~{0 � �{01; . . . ; {0n�, let ~{0 �~{
mean that ~{0 is lexicographically less than or equal to
~{ and ~{0�k~{ mean that {0j � {j for all j < k and
�{0k; . . . ; {0n� � �{k; . . . ; {n�. Let Comm�i; p; q� be the set of
elements that may be communicated at the beginning of
interval i to satisfy communication requirements from the
beginning of i to the last node of the interval which
contains i. Then, from Fig. 3a, we have:

Gen�i; p; q� � f~d j 9~{ such that �~il �~{ � ~iu�
^ �~d � RR�~{� 2 Own�Y; q��
^ �RL�~{� 2 Own�X; p��
^ :�9~|;RL0 such that �~il �~| � ~iu�
^ �~d � RL0�~|�� ^ �~|�level�i�~{��g;

Comm�i; p; q� �
^

s2succ�i�
Comm�s; p; q�

24 35 _c Gen�i; p; q�:
The negated condition eliminates all the elements written
by q locally in an earlier iteration than the one in which p
requires them. In addition, we use the following equation to
reduce an interval into a single node:

Gen�i; p; q� � Comm�First�i�; p; q�:
In the definition of Gen, RR denotes the RHS reference and
RL denotes the LHS reference of the same statement. RL0,
on the other hand, refers to any LHS reference within the
same interval. Notice that, while RL0 is a reference to the
same array as RR, in general, RL can be a reference to any
array; level(i) gives the nesting level of the interval
(loop) with a value 1 corresponding to the outermost loop in
the nest. As a note, we should mention that there are more
subtle issues here as lexical positions of the statements may

also need be taken into account when Gen is computed. For
the sake of simplicity of the presentation, we omit these
details.

After the interval is reduced, the Gen set is recorded, and
an operator N is applied to the last part of this Gen set to
propagate it to the outer interval:

N�~|�k~{� �~|��kÿ1�~{:
It should be emphasized that computation of the Gen sets
gives us all the communication that can be vectorized and
hoisted out of a loop nest, i.e., our analysis easily handles
what is known as message vectorization [31], [49] in Send/
Recv based message-passing frameworks. A naive imple-
mentation may set Put Set�i; p; q� to Gen�i; p; q� for every i,
p, and q. But, such an approach often retains redundant
communication which would otherwise be eliminated.

Finally, Post Gen�i; p; q� is the set of elements to be
written by q into memory of p at node i with no subsequent
local write to them by q:

Post Gen�i; p; q� � f~d j 9~{ such that �~il �~{ � ~iu�
^ �~d � RR�~{� 2 Own�Y; q��
^ �RL�~{� 2 Own�X; p��
^ :�9~|;RL0 such that �~il �~| � ~iu�
^ �~d � RL0�~|�� ^ �~{�level�i�~|��g:

The computation of Post Gen�i; p; q� proceeds in the forward
direction. Its computation is very similar to those of Kill
and Gen sets, so we do not discuss it further.

5.2 Data-Flow Equations

In our framework, one-way communication calls are placed
at the beginning of nodes in the CFG. Our data-flow
analysis consists of a backward and a forward pass
(performed for each array). In the backward pass, the
compiler determines sets of data elements that can safely be
communicated at specific points. The forward pass, on the
other hand, eliminates redundant communication and
determines the final set of elements that should be
communicated (written by q into p's memory) at the
beginning of each node i. The input for the equations
consists of the Gen, Kill, and Post_Gen sets.

The data-flow equations for the backward analysis are
given by Equations (1) and (2) in Fig. 6. Basically, they are
used to combine and hoist communication. Safe In�i; p; q�
and Safe Out�i; p; q� are sets of elements that can safely be
communicated at the beginning and at the end of node i,
respectively. Equation (1) says that an element should be
communicated at a point if and only if it will be used in all
of the following paths in the CFG. Equation (2), on the other
hand, gives the set of elements that can safely be
communicated at the beginning of i. Intuitively, an element
can be written by q into p's memory at the beginning of i if
and only if it is either required by p in i or it reaches at the
end of i (in the backward analysis) and is not overwritten
(killed) by the owner (q) in it. The predicate P�i� is used to
control communication hoisting. If P�i� is true, commu-
nication is not hoisted to the beginning of i. P�i� � false
implies aggressive communication combining and hoisting.
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An algorithm can include a condition to test the compat-
ibility between the sets Gen(i, p, q) and Safe_Out(i, p, q).
For example, two left-shift communications are compatible,
whereas a left-shift and a right-shift are incompatible [10].
The other possibilities include avoiding message splitting
�Kill�i; q� 6� ;�, clustering �Gen�i; p; q� � ;�, and avoiding
the buffer pressure [36]. In the experiments we did, we
combined and hoisted communication aggressively for
codes except for tomcatv, where we checked the compat-
ibility before combining. Note that a redefinition of P�i� can
totally change the behavior of the algorithm, as well as the
empirical results. It should also be noted that, for some
applications, ignoring the control predicates may affect the
correctness of the resulting code as well [36]. An in-depth
discussion of different control predicates, however, is
beyond the scope of this paper.

The task of the forward analysis phase, which makes use
of Equations (3), (4), and (5) in Fig. 6, is to eliminate
redundant communication by observing the following: 1) A
node in the CFG should not have a nonlocal datum which is
exclusively needed by a successor unless it dominates that
successor; and 2) a successor should ignore what a
predecessor has so far unless that predecessor dominates
it. The sets Put In�i; p; q� and Put Out�i; p; q� denote the set
of elements that have been written so far (at the beginning
and end of node i, respectively) by q into memory of p.
Equation (3) conservatively says that the communication set
arriving in a join node can be found by intersecting the sets
for all the joining paths. Equation (4) is used to compute the
PutSet set which corresponds to the elements that can be
communicated at the beginning of the node except the ones
that have already been communicated (Put_In). The
elements that have been communicated at the end of
node i (that is, Put_Out set) are simply the union of the
elements communicated up to the beginning of i (that is,
Put_In set), the elements communicated at the beginning
of i (that is, PutSet set) (except the ones which have been
killed in i), and the elements communicated in i and not
killed subsequently (that is, Post_Gen set).

5.3 Overall Interval Analysis

Our approach starts by computing the Gen, Kill, and
Post_Gen sets for each node. Then, the contraction phase
of the analysis reduces the intervals from the innermost
loop to the outermost loop and annotates them with the
Gen, Kill, and Post_Gen sets. When a reduced CFG
with no cycles is reached, the expansion phase starts and
the PutSets for each node is computed from the
outermost loop to the innermost loop. There is one
important point to note: Before starting to process the
next graph in the expansion phase, the Put_In set of the
first node in this graph is set to the PutSet of the
interval that contains it to avoid redundant communica-
tion. More formally, in the expansion phase, we set
Put In�i; p; q�kth pass � PutSet�i; p; q��kÿ1�th pass. This assign-
ment then triggers the next pass in the expansion phase.
Before the expansion phase starts, Put In�i; p; q�1st pass is set
to the empty set. Note that the whole data-flow procedure
operates on sets of equalities and inequalities which can be
manipulated by the Omega library [34] or a similar
polyhedral tool. Note also that the SendSet and Pending

sets should be updated accordingly after global commu-
nication optimization.

5.4 Discussion

It should be noted that the analysis presented so far works
with sets of equalities and inequalities. Compared to
previous approaches based on RSDs, our technique may
be slower. In order to alleviate this problem, we do not
operate on the contents of the sets in every data-flow
equation to be evaluated; instead, we represent the sets with
symbolic names and postpone the actual computation on
them until the end of the analysis. For example, suppose
that a data-flow equation requires combining two sets Sx �
f�x� : Q1�x�g and Sy � f�y� : Q2�y�g, where Q1 and Q2 are
predicates consisting of equalities and inequalities. Instead
of forming the set f�z� : Q1�z� _ Q2�z�g immediately, our
approach represents the resulting set abstractly as Sx � Sy.
When the whole process is finished, the resulting sets are
rewritten in terms of equalities and inequalities and the
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simplify utility of the Omega library [34] is used to simplify
them. Our experience shows that this approach requires a
reasonable support for the manipulation of symbolic
expressions and is fast in practice.

5.5 Example

Consider the synthetic benchmark given in Fig. 7a. In this
example, communication occurs for three arrays, B, D,
and F. A communication optimization scheme based on
message vectorization alone, can place the communica-
tions and the associated synchronization, as shown in
Fig. 7b before the loop bounds reduction and guard
insertion. Note that a Synch message in that figure in
fact represents a number of point-to-point synchroniza-
tion messages. In particular, for a communication occur-
ring at i, a processor p must get synchronized with every
processor q that satisfies the condition: �p; q� 2 Pending�i�.
An application of our global communication optimization

method generates the program shown in Fig. 7c.
Compared to the message vectorized version, there is a
50 percent reduction (from 28 to 14) in the number of
messages and 40 percent in the communication volume
(from 35 to 21) across all processors. We note that we
can optimize this program even when the distribution
directive is changed to CYCLIC(K) for any K. Most of
the previous approaches are not able to handle the
global communication optimization for K � 2, mostly
due to the representations they use for the communica-
tion sets. In fact, when the distribution directive is
CYCLIC(4), we have a 50 percent reduction (from 48 to
24) in the number of messages and 32 percent reduction
(from 139 to 94) in the communication volume across all
processors. Note that our approach here reduces the
number of synchronization messages as well (from 28 to
14 for the BLOCK distribution and from 48 to 24 for the
CYCLIC(4) case). We investigate the conditions under
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which the synchronization messages can be further
decreased in the following section.

6 OPTIMIZING SYNCHRONIZATION

In this section, we assume that the compiler has conducted
the data-flow analysis described in Section 5 and deter-
mined the optimal communication points and communica-
tion sets. Assuming that these communications will be
implemented using Put operations, we present a data-flow
analysis to minimize the number of Synch messages. We
assume that communication patterns (i.e., producer-con-
sumer relationships) are identical for each repetition of a
communication during the loop execution. For example, in
Fig. 7c, the producer-consumer pattern for the communica-
tion occurring in 1 is identical for every repetition of time-
step loop t. The problem formulation and the conditions
under which the redundant synchronization can be
eliminated for the varying producer-consumer case can also
be obtained by extending our approach. Our experience,
however, shows that, in that case, only a small fraction of
the Synch messages can be eliminated.

Our approach first makes a single pass over the current
interval and determines some synchronizations that cannot
be eliminated by the analysis to be described. Informally, if
a synchronization is repeated in the program in different
places with the same producer-consumer and is associated
with (the part of a same) buffer and there is no intervening
communication in the synchronization direction, then that
synchronization cannot be eliminated. We call the set of
synchronizations (associated with a node i) that cannot be
eliminated SynchFix(i).

The data-flow technique described here starts with the
deepest loops and works its way through loops in a bottom
up manner, handling one loop at a time. It then reduces the
loop to a node and annotates it with its final synchroniza-
tion requirements that cannot be eliminated. Since the
approach starts from the deepest loops, it tends to eliminate
the synchronization requirements from the most frequently
executed parts of the program first. The synchronization is
introduced at the least executed parts of the code only to
preserve correctness. The procedure works on an augmen-
ted CFG, where each communication loop is represented by
a single node. In the following discussion, the symbol i
refers to such a node.

For a given i, we can define the set SynchSet as a
set of processor pairs that should be synchronized after
our analysis. In a straightforward implementation,
SynchSet(i) = Pending(i) for each i. We would like
to reduce the cardinality of SynchSet(i) for each i. We
say that no synchronization is required for a communica-
tion i if SynchSet(i) becomes an empty set after our
data-flow analysis.

If the compiler wants to eliminate a Synch message for
communication i from p to q, it needs to find a message tj
for another communication from p to q and use it as
synchronization. Such a message should occur between
repetitions of i and after the data value communicated at
i is consumed. Suppose that a specific producer q and a
consumer p are involved in a communication in i. Consider
all k communications tj (1 � j � k) occurring after the value

communicated in i is consumed by p and before the next
repetition of i. Then, if the following holds, the Synch

message from p to q can be eliminated:

�9j j �1 � j � k� ^ q 2 ConsumersFor�tj; p��:
An interesting case occurs when all the Synch messages
contained in the set Pending(i) for a specific i are
eliminated. We can formalize this condition as:

8p8q���p; q� 2 Pending�i�� ) 9j��p; q� 2 SendSet�tj���;
�6�

assuming 1 � j � k. Notice that the j values can be different
for each q. If we additionally require that all j values should
be the same for all q values, then we obtain:

8p8q9j���p; q� 2 Pending�i�� ) ��p; q� 2 SendSet�tj���: �7�
We note that Condition (7) leads to the synchronization
elimination algorithms offered by Gupta and Schonberg
[19] and Hinrichs [30].

Claim. The synchronizations eliminated by Condition (7) are a
subset of the synchronizations that can be eliminated by
Condition (6).

Proof. Let the set of synchronizations eliminated by scheme
(6) be S1 and those eliminated by scheme (7) be S2. We
need to show that S2 � S1.

Consider a synchronization, �p; q� 2 S2. Since
�p; q� 2 S2, Condition (7) above implies that 9j s.t.
q 2 ConsumersFor�tj; p�. From Condition (6) above, this
implies that �p; q� 2 S1.

Now, consider a case where there are two
synchronization requirements �p1; q1� and �p2; q2�. Let
j1; j2�j1 6� j2� be such that q1 2 ConsumersFor�tj1

; p1�
and q2 2 ConsumersFor�tj2

; p2� and there is no other
j which meets this condition. By Condition (6),
f�p1; q1�; �p2; q2�g 2 S1. H o w e v e r , s i n c e j1 6� j2,
f�p1; q1�; �p2; q2�g=2S2 by Condition (7). Hence, S2 � S1. tu

Even if a Pending(i) set cannot be totally eliminated,
we can reduce its cardinality by eliminating as many Synch
messages as possible from it. That is, after our analysis, for
every i,

SynchSet�i� � Pending�i� ÿc f�p; q� j 9j such that

q 2 ConsumersFor�tj; p�g_cSynchFix�i�:
�8�

As an example, let us consider the program shown in Fig. 7c.
In this program, communication occurs at three points: 1, 2,
and 3. A straightforward implementation inserts three sets
of Synch operations, corresponding to 1, 2, and 3, as
shown in that figure. Let us now focus on the communica-
tion in 1. In fact, this communication is a combination of
communications due to references B(i+1), B(i+1), and
B(i+2) in lines 4 and 10 in Fig. 7b. Fig. 2a shows the
messages sent (Put operations) for this communication.
Fig. 2b, on the other hand, shows the required synchroniza-
tion messages for the repetitions of this communication.
Finally, Fig. 2c and Fig. 2d show the communication
messages in 2 and 3, respectively. Notice that, by using
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the condition given in (6), the synchronization require-

ments for 1 can be eliminated, i.e., the communications

occurring in 2 and 3 together kill the synchronization

requirements for the repetitions of the communication in

1. If we consider Fig. 2c and Fig. 2d separately for the

condition given by (7), however, none of them individu-

ally can eliminate the synchronization for 1. Using a

similar argument, it can be concluded that the commu-

nications in 2 and 3 do not need any synchronization

either, as their synchronization requirements are killed by
the communication taking place in 1.

6.1 Data-Flow Analysis

We now present our data-flow analysis for eliminating

redundant synchronization messages. The data flow
equations are shown in Fig. 5d. Our analysis consists

of iterative forward passes on the augmented CFG. Let

us first concentrate on the second equation in that

figure and explain the functionality of F i. In that

equation, PENDING_IN(i) represents the synchroniza-

tion requirements of all the communications traversed

so far up to the beginning of i. PENDING_OUT(i) is

defined analogously for the end of i.
Assuming that Pk is the synchronization requirement (in

terms of pairs of processors) for node k up to i in the analysis

and PENDING IN�i� � fP1; P2; . . . ; Piÿ1; Pi; Pi�1; . . . ; Pmg, we

can define F i as:

F i�PENDING IN�i�� �
ffi�P1�; fi�P2�; . . . ; fi�Piÿ1�; Pi; fi�Pi�1�; . . . ; fi�Pm�g;

where fi�Pk� � Pk ÿc SendSet�i�. In other words, when a

node i is visited, the synchronization requirements for all

other communications are checked to see whether any

synchronization can be eliminated by using the commu-
nication occurring at i. Prior to the analysis, Pi is set to

Pending(i) for the first node. After a fixed state is

reached, PENDING_OUT set of the last node gives the

synchronization requirements to be satisfied. In fact, except

for the statements in the conditionally executed blocks, in

steady state, all PENDING_OUT sets should be the same. The

resulting PENDING_OUT is then reduced to a single set and

is used to represent the synchronization requirements of

this loop to the next upper level.

We now consider the first equation of Fig. 5d and explain
the

F
operator appearing there. In the join nodes, the

compiler takes a conservative approach by computing the
union of the synchronization requirements for the same
communication. Suppose that, for each j 2 pred�i�,
PENDING OUT�j� � fPj1; Pj2; . . . ; Pjmg, where Pjk is the
synchronization requirement of communication k up to
the end of j. Assuming then that the resulting
PENDING IN�i� � fP1; P2; . . . ; Pmg, each Pl 2 PENDING IN�i�
can be computed as Pl � _cPjl, where _c is performed over
the j values. We note that this algorithm is more accurate
and faster than those proposed by others [19], [29], [30]; the
approach presented by Gupta and Schonberg [19] con-
verges within three iterations, whereas Hinrichs does not
provide a bound for her approach [29], [30].

Claim. The data-flow procedure defined by equations given in
Fig. 5d can reach a steady state after at most two iterations.

Proof. Consider an arbitrary statement i in the interval
which needs synchronization �p; q�. Assume that this can
be eliminated by a communication �p; q� in any statement
tj by Condition (6). There are two possibilities.

Case 1. j > i : Since we are doing a forward pass over
the interval, we would visit node j sometime in the first
iteration itself and eliminate �p; q�.

Case 2. j < i : We will miss node j in the first iteration,
but surely we will visit it in the second iteration. tu

Example. The top part of Table 1 shows the SendSet and
Pending sets (in an open form rather than in terms of
equalities and inequalities) for the program shown in
Fig. 7c. Note that SendSet(1) and Pending(1) are
computed from the SendSet and Pending sets,
respectively, given in Fig. 5a. The sets for 2 and 3 are
computed similarly. Before the data-flow analysis starts,
PENDING_IN(1) is initialized as follows:

PENDING IN�1� � fPending�1�; Pending�2�; Pending�3�g
� ff�0; 1�; �1; 2�; �2; 3�; �3; 4�; �4; 5�; �5; 6�; �6; 7�g;
f�1; 0�; �2; 1�; �3; 2�g; f�4; 3�; �5; 4�; �6; 5�; �7; 6�gg:

The bottom part of Table 1 demonstrates applica-
tion of our data-flow algorithm to this example.
After the fixed state is reached, an examination of
PENDING_OUT(3) reveals that the program can be
executed without any synchronization. We note that
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many frequently occurring computation patterns,
such as stencil computations, reduction, and prefix
operations, that involve reciprocal producer-consu-
mer relationships between processors can benefit
significantly from synchronization elimination.

6.2 Eliminating Synch Messages Using Other
Synch Messages

In some cases, when all the communication is in the same
direction, the Synch messages cannot be eliminated by data
messages. However, they can still be eliminated by other
Synch messages. In our experiments, this happened with
the stfrg benchmark whose message-vectorized version
contains six similar communications in the same direction.
The algorithm that we use for eliminating Synch messages
with Synch messages is rather straightforward. We check
all the possible subsets of Synch messages and determine
how many Synch messages are eliminated if we use that
subset. We then choose the subset that eliminates the
greatest number of messages. In the case of a tie, we choose
the alternative with the least number of elements in an
attempt to reduce the code complexity. Note that, although
this approach requires a kind of exhaustive search (i.e., it is
exponential in number of Pending sets), since a large
portion of the Synch messages will be eliminated by global
communication analysis, the cost is manageable.

7 EXPERIMENTS

In order to examine the applicability and usefulness of the
optimization framework presented in this paper, we
applied it to a number of floating-point codes. The
application codes used in our study and their important
characteristics are listed in Table 2. Most of the codes are
from standard benchmarks such as Spec and Perfect Club
and run with standard inputs. We experimented with
BLOCK, B-CYC (block-cyclic with C � 4) and CYCLIC

distributions on eight processors to measure the static
improvements in communication volume, number of data
messages, and number of synchronization messages, as well
as the runtime (dynamic) improvements in execution times.
We also investigate the scalability of our approach using
different processor sizes.

Our experimental platform is a 256-node Cray T3E
multiprocessor [47]. The Cray T3E is a scalable shared-
memory multiprocessor based on the DEC Alpha 21164
microprocessors running at 300 MHz. This machine in-
cludes a number of novel architectural features designed to
tolerate latency, enhance scalability, and deliver high
performance. It provides a shared address space over a
3D torus interconnect. There are two levels of caching on a
DEC Alpha 21164 chip: 8 KB L1 instruction and data caches
and a unified, three-way associative, 96 KB L2 cache. The
on-chip caches are kept coherent with local memory
through an external back-map. I/O is performed through
the GigaRing channel, with sustainable bandwidths of
267MB/per second input and output for every four
processors. The Cray T3E network latency for the MPI
library is 14 microseconds and the sustainable bandwidth is
260 MB/sec. The programs written using HPF-style data
alignment and distribution directives are translated auto-
matically using Parafrase-2 [43] and the resulting codes are
then compiled using the native compiler on the Cray T3E.
Parafrase-2 is a parallelizing compiler implemented as a
source-to-source code re-structurer that consists of several
passes for analysis, transformation, parallelism detection,
and code generation. Our framework is implemented as a
separate pass in Parafrase-2. In order to obtain the loops
that enumerate the elements in the ownership, producer,
consumer, and communication sets, we use the Omega
library [34]. Currently, our implementation works on a
single procedure at a time and does not use any inter-
procedural analysis [22], [23]. In our experiments, we
measured that, on the average, approximately 41 percent
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of the total compilation time is spent in our global
communication and synchronization approach. However,
it should be mentioned that nearly 24 percent of the
compilation time is spent in the Omega library itself. We
also compared the compilation time taken by our Omega-
based approach with that of an approach based on
processor-tagged descriptors (PTDs) [49], an enhanced form
of RSDs built on top of Parafrase-2. PTDs provide an
efficient way of describing distributed sets of iterations and
regions of data and are based on a single set representation
parameterized by the processor location for each dimension
of a virtual mesh. Our results show that using the Omega
library instead of an RSD-based representation scheme
increases compilation time by approximately 16 percent.
Given the fact that, with the Omega library, we are able to
keep communication sets much more accurately and able to
compile the general block-cyclic distributions, we believe
that this additional compile time overhead is bearable.

The experiments to be presented shortly investigate two
main issues. First, we would like to see how one-way
communication performs against the more traditional two-
way send/receive type of communication. In order to
measure this, we first compiled and ran two versions of
each code in our suite on the Cray T3E machine [47]. The
send/receive version uses the MPI message-passing library
[41], whereas the one-way version uses the SHMEM library
[47]. In both versions, we employed message-vectorization as
the only communication optimization. In the one-way
version, both communication messages and synchroniza-
tion messages are vectorized. With the SHMEM library, the
data sending involves only one processor in that the source
processor simply puts that data into the memory of the
destination processor. Likewise, a processor can read data
from another processor's memory without interrupting the
latter. The target processor is not made aware that its
memory has been read or written. In our framework, the
compiler provides the necessary synchronization. As

mentioned earlier, MPI is implemented on the T3E using
SHMEM calls, so, intuitively, the one-way version should
incur less overhead. In the best possible scenario, every
MPI_SEND-MPI_RECV pair can be replaced by a
SHMEM_PUT call, thereby reducing the number of
messages by half. In reality, however, the one-way com-
munication version needs synchronization messages to
ensure correct execution (Note that Synch calls are also
implemented using SHMEM_PUT calls). In the experi-
ments, using one-way communication, we were able to
reduce the total number of messages by 11 to 50 percent, as
compared to the send/receive version. The execution times
(in seconds) for the message-passing (send/receive) and one-
way communication versions are presented in Table 3. This
table also gives the percentage reduction (improvement) in
execution times obtained using one-way communication
instead of more conventional two-way send/receive type of
message-passing. We see that, on the average, we get
13.4 percent, 12.7 percent, and 9.8 percent improvements for
the BLOCK, B-CYC, and CYCLIC distributions, respectively.
These results show that the one-way communication
scheme is able to bring decent improvements over the
classical send/receive message-passing paradigm on the
Cray T3E. Of course, whether similar results can be
obtained on other architectures depends largely on how
efficiently one-way and two-way communications are
implemented in those architectures.

The second issue that we investigate is the performance
of our scheme to eliminate redundant communication and
synchronization messages, with respect to a (relatively)
unoptimized one-way communication framework that uses
message-vectorization alone (the execution time results for
this framework are given above). First, Table 4 shows the
communication volume (total number of elements trans-
ferred between processors) and number of data messages
for the message-vectorized version of one-way communication
scheme. Note that the execution times for this version are
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given in Table 3. From now on, we refer to this version as
base. This is the one-way communication version opti-
mized using message-vectorization alone. We use this
message-vectorized version as the base version because,
today, almost every compiler for data-parallel languages
uses some form of message-vectorization. Table 5 shows the
percentage improvements obtained by using our frame-
work that minimizes the number of data messages and
communication volume (i.e., the framework presented in
Section 5) over the base version. These results are
promising and indicate that, on the average, we have a
26.8 percent reduction in communication volume and a
25.8 percent reduction in number of data messages. These
improvements reflect on execution times as a 19.7 percent

reduction, considering all three types of data distributions
experimented with. Although not presented here, applying
two additional communication optimizations (message
coalescing [31] and message aggregation [31]) brought only
an additional 6.1 percent improvement in execution time (of
the message-passing send/receive version) for the bench-
marks in our experimental suite.

It is also useful to compare the results of this globally
optimized code with the results of a send/receive commu-
nication framework that also uses global optimizations. In
order to achieve this, we generated two different send/
receive codes for each benchmark using the same data
communication optimization algorithm (of Section 5): a
version that uses the Omega library (called version-1)
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TABLE 5
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and another version that uses a variant of section
descriptors [49] to represent communication and ownership
sets (called version-2). Note that version-1 is different
from our optimized code as it does not contain explicit
synchronization messages and the synchronization activity
is captured in the data messages (i.e., it uses MPI).
Therefore, the data messages are more costly in
version-1. Also note that version-1 is more powerful
than many of the previous techniques proposed for
optimizing communication globally as it uses the Omega
library to determine the communication sets more accu-
rately, uses global data-flow analysis to optimize the
internest communication, and can handle block-cyclic
distributions. Table 6 presents the percentage improve-
ments provided by our optimized codes over the codes
generated by version-1 and version-2. The table
shows that our optimized version improves performance
by 13.2 percent over version-1. This says that, even with
comparable communication optimizations, the one-way
communication paradigm might be the choice of commu-
nication model in Cray T3E. It should be noted, however,
that these results may change if we move to a different
platform, because they are largely dependent on how these
two communication mechanisms are implemented on a
given platform and whether there is low-level support in
the architecture for one-way communication. Compared to
version-2, our approach brings even more improvement
(19.7 percent on average). This is due to the fact that the
processor-tagged descriptors (PTDs) (an enhanced form of
RSDs) used in version-2 cannot provide the same
accuracy (in obtaining the communication sets and hoisting
the communications) as our polyhedral tool.

Having shown that our approach is able to reduce
execution times significantly as compared to a message-
vectorized version and as compared to a globally-optimized
send/receive version, we now turn to the problem of
minimizing the number of synchronization messages and the

impact of this in the overall execution times. The left part of
Table 7 presents the reductions in the number of synchro-
nization messages obtained through our redundant syn-
chronization elimination technique (i.e., the framework
presented in Section 6) over our ªone-wayº communication
optimization approach whose improvements are given in
Table 5. The results show that we have approximately
45 percent improvement (reduction in the number of
synchronization messages) on the average. The impact of
these improvements in the overall execution times is
presented in the right part of Table 7. We see that we have
an additional 14.5 percent reduction in execution times.
These results reveal that our synchronization elimination
technique is very successful in practice and brings addi-
tional improvements over a technique that optimizes only
data messages. As a side note, if we use barrier synchro-
nizations instead of point-to-point synchronizations in our
framework, the overall improvements in execution times
are 9.1 percent, 8.5 percent, and 8.3 percent for BLOCK,
B-CYC, and CYCLIC distributions, respectively. This in-
dicates that using point-to-point synchronization messages
instead of barrier synchronization allows small differences
in execution times of individual processors to even out and
results in better overall execution times.

Finally, we consider the effect of our approach on the
scalability of the codes in our suite. For this purpose, we use
different processor sizes on the Cray T3E machine. The
results, given in Table 8, are the average values over the
following data distributions: BLOCK, CYCLIC(1),
CYCLIC(4), CYCLIC(7), and CYCLIC(16). For each code
and processor-size combination, we present two speedups:
that of the base version and that of our optimized version
(denoted opt). Note that the speedups are measured over
the best sequential version of each code. The results
illustrate that the codes in our suite significantly benefit
from our optimizations and our framework is robust across
different types of data distributions. In most cases, our
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approach is able to first reduce the number of data
messages and then reduce the number of synchronization
messages, thereby improving the overall scalability of
applications.

8 RELATED WORK

Several methods have been presented for optimizing
communication on distributed-memory message-passing
machines. Most of the efforts have considered communica-
tion optimization at the loop (or array assignment state-
ment) level. Although each approach has its own unique

features, the general idea is to apply an appropriate
combination of message vectorization, message coalescing,
and message aggregation [7], [31], [57].

More recently, some researchers have proposed techni-
ques based on data-flow analysis in order to optimize
communication across multiple loop nests for the two-way
(send/receive) communication model. Several works [1],
[2], [3], [10], [16], [20], [36], [55], [56] present similar
frameworks to optimize the send/receive communications
globally. Almost all these approaches (except for the work
of Adve et al. [1], [2]) use a variant of Regular Section
Descriptors (RSD) introduced by Callahan and Kennedy [9].
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Speedups for the Message-Vectorized (base) Version and Our Version



For each array referenced in the program, an RSD is defined
which describes the portion of the array that is referenced.
Although this representation is convenient for simple array
sections, such as those found in pure block or cyclic
distributions, it is hard to embed alignment and general
distribution information into it. Apart from inadequate
support for block-cyclic distributions, working with section
descriptors may result in overestimation of the commu-
nication sets. The inaccuracy resulting from these estima-
tions may be linear with the number of data-flow
formulations to be evaluated, thus defeating the purpose
of global communication optimization.

For example, Gupta et al. [20] present a framework to
optimize two-way communication based on data-flow
analysis and available section descriptors. Their approach
is aggressive in exploiting the locally available data, but
fails to support general block-cyclic distributions, and the
representation that they use makes it difficult to embed
alignment and distribution information. Moreover, the
communication set information they compute may not be
precise. Similarly, Hanxleden and Kennedy [24], [25]
present a code placement framework for optimizing
communication caused by irregular array references.
Although the framework provides global data-flow analy-
sis, it treats arrays as indivisible entities; thus, it is limited in
exploiting the information available in compile-time. In
contrast, Kennedy and Nedeljkovic [35] offer a global data-
flow analysis technique using bit vectors. Although this
approach is efficient, it is not as precise as the approach
presented in this paper. They do not give any information
about how their method can be extended to handle general
type block-cyclic distributions. Kennedy and Sethi [36]
show the necessity of incorporating resource constraints
into a global communication optimization framework. Their
approach takes constraints such as limited buffer size and
uses strip-mining where necessary to improve communica-
tion placement. Although their approach works with
multiple nests, it does not handle general block-cyclic
distributions. Since they do not give any experimental
results, a direct quantitative comparison of this work with
ours is not possible. They do not use a linear algebra
framework; later work from the dHPF project at Rice [1], [2]
makes use of the Omega library for message optimizations.
The IBM pHPF compiler [10], [21] achieves both redun-
dancy elimination and message combining globally. But,
message combining is feasible only if the messages have
identical patterns or one pattern is a subset of another. The
general block-cyclic distributions, however, can lead to
complicated data access patterns and communication sets
which, we believe, can be more precisely represented
within a linear algebra framework. Yuan et al. [55], [56]
present a communication optimization approach based on
array data-flow analysis. The cost of the analysis is
managed by partitioning the optimization problem into
subproblems and solving the subproblems one at a time.
Since that approach is also based on RSDs, it has difficulty
in handling block-cyclic distributions. Adve et al. [1], [2]
describe an integer set-based approach for analysis and
code generation for data parallel programs that uses the
Omega library [34]. They consider performing message

vectorization and message coalescing for general access
patterns. Their method can also work with computation
decomposition schemes that are not based on the owner-
computes rule. These papers do not show how their
techniques handle global communication optimization for
multiple loop nests in the case of block-cyclic distributions.
Note that none of these techniques considers optimizing
synchronization separately. Our results in this paper show
that separately optimizing data and synchronization mes-
sages in a one-way communication framework may bring
additional improvements on a machine like the Cray T3E.
Our approach is based on a linear algebra framework and
can represent all HPF-like alignment and distribution
information accurately. It should be emphasized that the
data communication optimization part of our approach can
also be used for optimizing send/receive type of commu-
nication on distributed memory machines [32], [33].

Duesterwald et al. [14] present a data-flow framework
for array reference analysis that provides information
which can be used in communication optimization. The
main limitations of their approach are that sometimes they
have to make conservative assumptions in performing kill
analysis and that, in order to handle multidimensional
arrays, they may first need to linearize them; this can affect
subsequent compiler analyses severely. Also, they have not
extended their techniques to handle coupled array sub-
scripts as in A�i� j; iÿ j�, where both i and j are loop index
variables.

The approaches of Gupta and Schonberg [19] and
Hinrichs [29], [30] examine the problem of eliminating
redundant synchronization operations by piggy-backing
them on data messages. While Hincrichs [29], [30] uses
barrier synchronizations, Gupta and Schonberg [19] focus
on point-to-point synchronization messages. Gupta and
Schonberg's technique [19], as well as Hinrichs' solution
[29], [30], work with alignment information (virtual
processors) and take distribution into account only for
simple distributions such as pure block distributions. Their
techniques do not handle general block-cyclic distributions.

Subhlok [50] addresses the problem of synchronization
in Fortran programs with parallel loop constructs. His
approach determines whether the current synchronization
points in the program are sufficient. Instead, we employ a
communication analysis that can aggressively optimize
synchronization even in shared memory systems.

Hayashi et al. [26] and Stricker et al. [48] discuss the
separation of data transmission and synchronization and
give reasons for that. Our approach presented in this paper
supports their claims.

O'Boyle and Bodin [42] and Tseng [52] focus on
synchronization elimination problem on shared virtual
memory and distributed shared memory systems, respec-
tively. There is an important difference between our work
and theirs. They eliminate synchronizations which are
introduced by the insufficient communication analysis
performed by the shared memory compilers. A compiler
approach based on distributed-memory paradigm (like
ours) does not insert those synchronizations in the first
place. In our case, we start with an unoptimized program
in which those types of artificial synchronizations are
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nonexistent to begin with. We focus, rather, on elimination
of synchronizations that are caused by mandatory data
communications. Such types of synchronizations are not
eliminated by using either O'Boyle and Bodin's solution
[42] or Tseng's approach [52], although Tseng's solution
[52] replaces barriers with software-implemented counters
in certain cases leading to improvements in performance.

9 SUMMARY

Minimizing communication and synchronization costs is
crucial to realizing the performance potential of parallel
machines. In this paper, we have presented an approach
based on data-flow analysis combined with a linear algebra
framework to minimize synchronization and data transfer
costs. We have presented data-flow algorithms to reduce
the number of data messages, communication volume, and
number of synchronization messages in a communication
generation framework based on one-way communication
using Put/Synch primitives. The reduction in these
parameters has resulted in substantial savings in execution
times on the Cray T3E multiprocessor machine. Our
approach argues for separation of data transfer and
synchronization and for optimization of each of them using
data-flow analysis techniques. Several machines, such as
the Cray T3D [12], the Cray T3E [47], the Fujitsu AP1000+
[26], and the Meiko CS-2 [8] offer remote memory access
primitives that allow efficient implementation of the Put/
Synch primitives. In addition, one-way communication is a
key part of the proposed extensions to the Message Passing
Interface standard [41]. Therefore, our solution to the
problem of minimizing synchronization and data transfer
costs will be useful in practice.

The data-flow algorithms we have presented represent
the the communication requirement exactly with Presbur-
ger formulae using the Omega library [34]. As a result, our
analysis is more powerful and more accurate than many
other methods proposed previously. Experimental results
reveal that our approach is quite successful in practice,
leading to a significant reduction in the number of data and
synchronization messages for message-vectorized pro-
grams. These results are on standard benchmarks from
scientific computing codes. We plan to develop techniques
for compiling data-parallel programs with Get primitives.
In addition, we will focus on the elimination of synchroni-
zation and potential deadlocks in programs compiled under
hybrid approaches that employ both Put/Get and Send/
Recv primitives.
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