A Global Communication Optimization
Technique Based on Data-Flow Analysis
and Linear Algebra

M. KANDEMIR

Syracuse University

P. BANERJEE and A. CHOUDHARY
Northwestern University

J. RAMANUJAM

Louisiana State University

and

N. SHENOY

Northwestern University

Reducing communication overhead is extremely important in distributed-memory message-
passing architectures. In this article, we present a technique to improve communication that
considers data access patterns of the entire program. Our approach is based on a combination
of traditional data-flow analysis and a linear algebra framework, and it works on structured
programs with conditional statements and nested loops but without arbitrary goto statements.
The distinctive features of the solution are the accuracy in keeping communication set
information, support for general alignments and distributions including block-cyclic distribu-
tions, and the ability to simulate some of the previous approaches with suitable modifications.
We also show how optimizations such as message vectorization, message coalescing, and
redundancy elimination are supported by our framework. Experimental results on several
benchmarks show that our technique is effective in reducing the number of messages (an
average of 32% reduction), the volume of the data communicated (an average of 37%
reduction), and the execution time (an average of 26% reduction).

The material presented in this article is based on research supported in part by A.
Choudhary’s NSF Young Investigator Award CCR-9357840, the NSF grant CCR-9509143,
DOE AV-6193, and the Air Force Materiels Command under contract F30602-97-C-0026. The
work of P. Banerjee is supported in part by the NSF under grant CCR-9526325 and in part by
the DARPA under contract DABT-63-97-C-0035. The work of J. Ramanujam is supported in
part by the NSF Young Investigator Award CCR-9457768 and the NSF grant CCR-9210422.
Authors’ addresses: M. Kandemir, Department of Electrical Engineering and Computer
Science, Syracuse University, Syracuse, NY 13244; email: mtk@ece.nwu.edu; P. Banerjee, A.
Choudhary, and N. Shenoy, Department of Electrical and Computer Engineering, Northwest-
ern University, Evanston, IL 60208; email: {banerjee; choudhar; nagaraj}@ece.nwu.edu; J.
Ramanujam, Department of Electrical and Computer Engineering, Louisiana State Univer-
sity, Baton Rouge, LA 70803; email: jxr@ee.lsu.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 2000 ACM 0164-0925/99/1100-1251 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999, Pages 1251-1297.

1252 . M. Kandemir et al.

Categories and Subject Descriptors: D.2.6 [Software Engineering]: Programming Environ-
ments—integrated environments; D.3.3 [Programming Languages]: Language Constructs
and Features—frameworks; D.3.4 [Programming Languages]|: Processors—compilers

General Terms: Languages

Additional Key Words and Phrases: Communication optimizations, data-flow analysis, distrib-
uted-memory machines, global optimizations, message vectorization, parallelism

1. INTRODUCTION

Distributed-memory multiprocessors such as the IBM SP-2 and the Intel
Paragon are attractive for high-performance computing in that they offer
potentially high levels of flexibility, scalability, and performance. But the
need for explicit message passing resulting from the lack of a globally
shared address space renders programming these machines a difficult task.
The main objective behind the efforts such as High Performance Fortran
(HPF) [Koelbel et al. 1994] and Fortran D [Hiranandani et al. 1992] is to
raise the level of programming by allowing the user to write programs with
a shared address space view augmented with directives that specify data
mapping. The compilers for such languages are responsible for partitioning
the computation, inserting the necessary commands that implement the
required message passing for access to nonlocal data.

On such machines, the time (cost) to access nonlocal data is usually
orders of magnitude higher than accessing local data. For example, on the
Intel Paragon the processor cycle time is 20 nanoseconds whereas the
remote memory access time is between 10,000 and 30,000 nanoseconds,
depending on the distance between communicating processors [Hennessy
and Patterson 1990]. Therefore, it is imperative that the frequency and
volume of nonlocal accesses are reduced as much as possible. In particular,
in message-passing programs, the startup cost for the messages can easily
dominate the execution time. For example, on the Intel Paragon the
message startup time is approximately 1,720 times the transfer time per
word; in the IBM SP-2 this figure is around 360 [Foster 1994]. These
figures indicate that optimizing communication is very important. Several
software efforts have been aimed at reducing the communication overhead.
The main goal of these optimizations is to increase the performance of
programs by combining messages in various ways to reduce the overall
communication overhead. The most common optimization technique used
by previous researchers is message vectorization [Balasundaram et al.
1990; Banerjee et al. 1995; Bozkus et al. 1994; Hiranandani et al. 1992;
Gerndt 1990]. In message vectorization, instead of naively inserting send
and recv operations just before references to nonlocal data, communication
is hoisted to outer loops. Essentially, this optimization replaces many small
messages with one large message, thereby reducing the number of mes-
sages. For example, consider the program fragment shown in Figure 1(a),
and assume that all arrays are distributed across processors blockwise in

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1253

DO j = 2, 265
DO i =1, 255
A(4,7)=B(,5)+B(i,5-1)

DO j = 2, 256
DO i =1, 255
send {B,p+1,1}, recv {B,p-1,1}

END DO A(,5)=B(i,7)+B(Z,5-1)
END DO END DO
END DO
DO j = 2, 255 D0 j = 2, 255
DO i = 2, 256 DO ¢ = 2, 256
C(i,5)=B(,7-1)+C(i,5) send {B,p+1,1}, recv {B,p-1,1}
END DO C(i,5)=B(i,5-1)+C(3,7)
END DO END DO
END DO
(a) (b)

send {B,p+1,256}, recv {B,p-1,256}

DO j = 2, 255

DO ¢ =1, 285 DO ¢z =1, 255
A(i,7)=B(4,5)+B(i,j-1) A(3,5)=B(4,7)+B(1,7-1)

END DO END DO

END DO END DO

.end {B,p+1,2565}, recv {B,p-1,255}
DO j = 2, 255

send {B,p+1,255}, recv {B,p-1,255}

DO j = 2, 255 D0 j =2, 256

DO i = 2, 256 p0 i = 2, 256
C(i,§)=B(i,j-1)+C(,5) €(%,5)=B(4,j-1)+C(i,5)
END DO END DO
END DO END DO
() (d)

Fig. 1. (a) A code fragment. (b) Naive communication placement. (c) Message vectorization.
(d) Global communication optimization.

the second dimension. Figures 1(b) and (c¢) show naively inserted messages
and message vectorization respectively, for a processor p before loop bounds
reduction (a technique to allow processors to execute only those iterations
which have assignments that write to local memory [Hiranandani et al.
1992]) and guard insertion (a technique that guarantees correct execution
of statements within loop nests). The notation send{B,q,n} means that n
elements of array B should be sent to processor q; recv{B,q,n} is defined
similarly. For this discussion, we are not concerned with exactly which
elements are sent and received. Notice that the version in Figure 1(c)
reduces the message startup cost as well as the latency. Some of the
researchers [Adve et al. 1997; Hiranandani et al. 1992] also considered
message coalescing, which is a technique that combines messages due to
different references to the same array, and message aggregation, which
combines messages due to references to different arrays to the same
destination processor into a single message. In general, due to private
physical memory spaces, generating communication code for message-
passing architectures might be very difficult, because it requires the correct
nonlocal elements to get transferred to the memories of the processors that

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1254 . M. Kandemir et al.

will use them. Optimizing compilers for data-parallel languages automate
this time-consuming task of deriving node programs based on the data
distribution specified by the programmer.

The main problem with the optimizations mentioned above is that they
optimize communication for a single nest at a time. This restriction
prevents a compiler from performing interloop optimizations such as global
elimination of redundant communication. To see this, consider Figure 1(d)
which shows the global optimization of the same program fragment via
elimination of redundant communication. Notice that this version, com-
pared with the message-vectorized program in Figure 1(c), reduces both the
number of messages and the communication volume.

Recently a number of authors have proposed techniques based on data-
flow analysis to optimize communication across multiple loop nests
[Chakrabarti et al. 1996, Gong et al. 1993; Gupta et al. 1995b; Kennedy and
Sethi 1995; Yuan et al. 1997a; 1997b]. Most of these approaches use a
variant of Regular Section Descriptors (RSD) introduced by Callahan and
Kennedy [1998]. Two most notable representations are the Available Sec-
tion Descriptor (ASD) [Gupta et al. 1995b] and Section Communication
Descriptor (SCD) [Yuan et al. 1997a; 1997b]. Associated with each array
that is referenced in the program is an RSD that describes the portion of
the array being referenced. Although this representation is convenient for
simple array sections such as those found in pure block or cyclic distribu-
tions, it is hard to embed alignment and general distribution information
into it. Apart from inadequate support for block-cyclic distributions, work-
ing with section descriptors may sometimes result in overestimation of the
communication sets, since regular sections are not closed under union and
difference operators. The resulting inaccuracy may be linear with the
number of data-flow formulations to be evaluated, thus defeating the
purpose of global communication optimization.

This problem can be illustrated using the program fragment given in
Figure 2(a) assuming that arrays X and Y are distributed blockwise across
two processors, 0 and 1. The RSDs corresponding to these two communica-
tions are also shown next to the loop statements. Notice that all communi-
cation is from processor O to processor 1. The problem here is that a
data-flow approach based on RSDs to combine these communications will
be unable to represent the combined communication as an RSD. This
means that even if all the communication can be hoisted above the i loop,
the two communications can only be concatenated, resulting in redundant
communication as these two sets have some common elements. Moreover,
since the communication cannot be taken out of ¢ loop because of a data
dependence [Wolf 1996; Zima and Chapman 1991], the redundant commu-
nication will occur T times.

On the other hand, we represent these sets in our framework as S; :=
{[d]:3(a:d =1 + 4aand 1 =d = 197)} and S; := {[d]: I(a:1 + d = 3 and
50 = d = 299)}). Then by using the Omega library [Kelly et al. 1995], we
derive the code shown in Figure 2(b) which can enumerate all the elements
in S; + S;. As a result, each element will be communicated once and only

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique .

real X(1000), Y(1000)

1255

for (i = 1; i <= 49; i +=4) {
process_element (i) ;

DOt=1,T)
DO i = 0, 49 =———m-mmmmmm- > S; = (1:200:4) for (i = B0; i <= 197; i++) {
Y(34500) = X(4xi+1) if (Mod(i-1,4) == 0) {
END DO process_element(i);

DO j = 17, 99 —=---—-=-mm—-

S; = (50:300:3)

}
if (Mod(i+1,3) == 0

Y(j+600) = X(3%j-1) && -i-16 <= 12*%Div(-i-10,12)) {
END DO process_element(i);
}
D0 ¢ = 1, 1000 }
X(@2) = £(Y(2),X()) for (i = 200; i <= 299; i += 3) {

END DO process_element (i) ;

END DO }
(a) ()]

Fig. 2. (a) An example code fragment that shows the shortcomings of RSDs. (b) Code

generated by using the Omega to enumerate the communication set in (a). process_ele-
ment () is an implementation-specific function to handle enumerated elements.

once. It should be stressed that the same problem with RSDs can occur
with set difference (—) operations. For instance, the RSD difference be-
tween (1:1000:3) and (1:1000:7) cannot be represented as a single
RSD. Unfortunately, the inaccuracies originating from the union (and
difference) operations on the RSDs accumulate as the data-flow process
proceeds, making the final communication sets imprecise.

In this article, we make the following contributions:

(1) We show that the problem of global communication optimization for
regular scientific codes can be cast in a linear algebra framework. This
allows the compiler to easily apply traditional loop-based optimization
techniques such as message vectorization, message coalescing, and
message aggregation, as well as global optimizations such as redundant
communication elimination and communication hoisting.

(2) We present two different approaches, primarily for hoisting communi-
cation and minimizing the number of messages, respectively, that are
aimed at reducing communication overhead and show the trade-off
between these two. Both these approaches are accurate; using the
linear algebra framework proposed by Ancourt et al. [1997], they are
able to handle the optimization problem at the granularity of individual
array elements.

(3) We show that the global communication sets resulting from our analy-
sis can be enumerated by our use of the Omega library [Kelly et al.
1995; Pugh 1992] from the University of Maryland. Although the
Omega library works on the Presburger formulas, and the best-known
asymptotic upper, bound of any algorithm for verifying the Presburger
formulas is 0(2%*), the library is much more efficient for the practical
cases that arise in compilation.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1256 . M. Kandemir et al.

(4) We compare our approach both qualitatively and quantitatively to the
previous work which focused on a single loop nest at a time.

The remainder of this article is organized as follows. Section 2 briefly
describes some important concepts such as control flow graphs, interval
analysis, dependence analysis, and the linear algebra framework used
throughout the article. We present our approach in detail in Section 3 and
show how it uses both the linear algebra framework and data-flow analysis.
Section 4 discusses the effect of hoisting communication vis-a-vis reducing
the number of messages. In Section 5, we present details of communication
generation. Section 6 reports experimental results on a 16-node IBM SP-2
distributed-memory message-passing machine and shows that our tech-
nique is effective in reducing the number of communication messages,
volume of communication, and execution time. Section 7 discusses related
work, and Section 8 concludes the article.

2. PRELIMINARIES

The main idea of this work is to show that a global communication
optimization problem can be put into a linear algebra framework and that
doing so might be useful in practice. Our approach gives the compiler the
ability to represent communication sets globally as equalities and inequal-
ities as well as to use polyhedron scanning techniques to perform optimiza-
tions such as redundant communication elimination and global message
coalescing which were not possible under the loop-nest-based communica-
tion optimization schemes. The following subsections give information
about the basic concepts used throughout the article.

2.1 Control Flow Graph

We concentrate on structured programs with conditional statements and
nested loops but without arbitrary goto statements. Our technique, how-
ever, can be extended to deal with jumps out of loops as well. We assume
that array subscript functions, loop bounds, and conditional expressions
are affine functions of enclosing loop indices and symbolic constants. We
also assume that the number of processors is known beforehand.

A basic block is a sequence of consecutive statements in which the flow of
control enters at the beginning and leaves at the end without the possibil-
ity of branching except maybe at the end [Aho et al. 1986]. A control flow
graph (CFG) is a directed graph constructed by basic blocks and represents
the flow-of-control information of the program.

For our purposes, the CFG can be thought of as a directed graph ¢ =
(7, €) where each v € ¥ represents either a basic block or a (reduced)
interval that represents a loop, and each e € € represents an edge between
blocks. In this article, depending on the context, we use the term node
interchangeably for a statement, a block, or an interval. Two unique nodes
s and ¢ denote the start and terminal nodes, respectively, of a CFG. One
might think of these nodes as dummy statements. It is assumed that every
node n € ¥ lies on a path from s to . We define the sets of all successors

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1257

_>

new node

Fig. 3. An example application of the edge-split transformation to eliminate critical edges—
the edges going from a node with more than one successor to a node with more than one
predecessor.

and predecessors of a node n as succ(n) = {m | (n, m) € ¢} and pred(n) =
{m | (m, n) € €}, respectively. We say node i dominates node j in the CFG,
if every path from s to j goes through i. We write this relation as j €
dom(i). The CFGs we consider also have the following properties: (a) empty
else branches are added to if/endif constructs; (b) all the nonlocal refer-
ences in the loop bounds and if-conditions are taken just above the
respective constructs; and (c¢) as in Gupta et al. [1995b], any edge that goes
directly from a block with more than one successor to a block with more
than one predecessor is split. This last transformation, shown in Figure 3,
eliminates all critical edges [Knoop et al. 1994].

2.2 Interval Analysis

We assume, that, prior to our analysis, the compiler has performed all
loop-level transformations [Banerjee 1994; Wolfe 1996; Zima and Chapman
1991] to enhance parallelism (e.g., loop permutation, loop distribution) and
optimize communication. Our technique is based on interval analysis
performed on the CFG. As explained in Allen and Cocke [1976], the interval
analysis consists of a contraction phase and an expansion phase. For
programs written in a structured language, an interval corresponds to a
loop, and there is a well-defined algorithm to partition a CFG into disjoint
intervals [Aho et al. 1986]. We use a version of the interval detection
algorithm that identifies Tarjan’s intervals [Tarjan 1974].

The contraction phase collects information about what is generated and
what is killed inside each interval. Then the interval is reduced to a single
node and annotated with the information collected. This is a recursive
procedure and stops when the reduced CFG contains no more cycles. In
other words, the main purpose of this phase is to percolate the influence of
each node to the outside into an increasingly more global context.

After the contraction phase, the expansion phase is run. In each step of
this phase, a node (reduced interval) is expanded, and the information
regarding the nodes in that interval is computed. In our case, at each step
of the expansion phase, communication required for the intervals (loops) is
determined.

Figure 4 shows the two phases of the interval analysis for an example
CFG. In this figure, as shown by the dashed arrows, the contraction phase
proceeds from left to right, whereas the expansion phase proceeds in the

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1258 . M. Kandemir et al.

1] [[1234]

****** =~ Contraction Phase
- Expansion Phase

Fig. 4. An example application of interval analysis based on Tarjan intervals. First, the
contraction phase is run, and then the expansion phase is executed.

reverse direction. As an example, the block marked with 3,4 represents an
interval (a loop) containing blocks 3 and 4. It is also possible to adapt our
approach to work with interval-flow graph, which is basically a CFG with
an interval structure imposed on it [Kennedy and Sethi 1997; van Hanxle-
den and Kennedy 1993; 1994].

It should be noted that since we assume that our input programs are
structured, irreducible (intermediate) CFGs [Aho et al. 1986] cannot occur
during our analysis.

2.3 Data Dependence

Let S, and S, be two statements (not necessarily distinct) enclosed by
nested loops. A data dependence determines which iterations of the loops
can be executed in parallel. A flow dependence exists from statement S, to
statement S, if S, writes a value that is subsequently (in sequential
execution) read by S,. Such a dependence implies that instances of S, and
S, must execute as if some of the nest levels must be executed sequentially.
An antidependence exists between S, and S, if S, reads a value that is
subsequently modified by S,. An output dependence exists between S, and
S, if S, writes a value that is subsequently written by S, as well. Data
dependences are loop-independent if the accesses to the same memory
location occur in the same loop iteration; if the accesses occur in different
loop iterations they are said to be loop-carried. Note that in that case not
all loop nest levels need to contribute to the dependence. The outermost
loop level that contributes to the dependence is said to carry that depen-
dence. In-depth discussion of data dependence analysis techniques is
beyond the scope of this article and can be found elsewhere [Wolfe 1996;
Zima and Chapman 1991].

2.4 Linear Algebra Framework

HPF-like languages provide compiler directives that allow the user to
perform data allocation onto local memories. The compiler then uses these
distribution directives to partition computation across processors. It has
been shown in Ancourt et al. [1997] that linear algebra provides a powerful
framework to generate code for distributed-memory message-passing ma-
chines, taking into account compiler directives.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1259

Most of the compilers for distributed-memory message-passing machines
use the owner-computes rule, which simply assigns each computation to the
processor that owns the data being computed [Balasundaram et al. 1990;
Gerndt 1990; Hiranandani et al. 1992]. In this article, we also assume the
owner-computes rule; our framework, however, can be modified to handle
the cases where this rule is relaxed. In such cases, the LHS references can
also introduce communication. For clarity of the presentation, we do not
consider relaxing the owner-computes rule in this article.

Our approach uses the affine framework introduced by Ancourt et al.
[1997]. In this framework, data arrays, templates, and processors are all
declared as Cartesian grids as in HPF [Koelbel et al. 1994]. The data arrays
are first aligned to templates, and then these templates are distributed
across the memories of the processors. Consider the following program
fragment under a compilation scheme based on HPF-like directives and the
owner-computes rule. A cyclic(<€) attribute indicates that the template
(or array) dimension in question will be partitioned into blocks of size €,
and these are assigned to processors in a round-robin fashion. The block
and cyclic(1) are just two common cases for the general cyclic(%)
distribution.

real X(a;:a,)
'HPF$ template T(¢,:t,)
'HPF$ processors PROCp;:p,)
IHPF$ align X(j) with T(axj+8)
'HPF$ distribute T(cyclic(¢)) onto PROC
DOi = iy, i,
X(yp*xi+0r) = -« X(yg*i+0g) - -
END DO
Let Ry = X(ygy, * i + 6;) and Ry, = X(yp * i + 0g). In the rest of the
article, for the sake of simplicity, we will sometimes refer to the subscript

expressions as data (array) elements when the intention is clear. Assuming
p and g denote two processors, we define the following sets.

own(X,q) = {d|d € X and is owned by q}
Compute(X, Ry, q) ={i|y,*i + 0, € Own(X,q) and i, =i =1i,}
View(X , Ry, q) = {d|J¢ st. 1€ Compute(X, R, q) and
d=Xygp*t+ 0p) and i; = v = i,}
CommSet(X, Rg, p,q) = Own(X,q) N View(X, Rg, p).

Intuitively, the set Own(X,q) refers to the elements mapped onto processor
g through compiler directives. The similar Ownsets are defined for other
arrays as well. The set of iterations to be executed by q due to a LHS

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1260 . M. Kandemir et al.

reference R, is given by Compute (X, R, q). Of course, during the execution
of this local iteration set, some elements (local or nonlocal) denoted by the
RHS reference R, will be required; the set View (X, Ry,) defines these
elements. Finally, CommSetX, %, p, q) defines the elements that should be
communicated from processor q to processor p due to reference Rg,.

It should be noted that in general there may be more than one RHS
reference, and the computation may involve multidimensional arrays and a
multilevel nest in which case d and i denote data and iteration vectors
respectively. Also in the most general case, «, y;, and yp are matrices, and
B, 0, and 65 are vectors.

The definition of the Ownset above is rather informal. For a more precise
definition, we take into account the block-cyclic distribution and define the
Ownset as

own(X,q) ={d|3t,c,| suchthatt = a*d +

andt =€*Psxc +¥*q+1| andag; =d =aq,

andp; = g==p,and =t =¢,and0=| =€ — 1},

where P = p, — p;, + 1. In this formulation, t = a * d + B represents
alignment information, and t = € = P * ¢ + € % q + | denotes the
distribution information. In other words, each array element d is mapped
onto a point in a local two-dimensional array. This point can be represented
by a pair (c,|) and gives the local address of the data item in a processor.
Simple block and cyclic(1) distributions can easily be handled within
this framework by setting ¢ = 0 and | = 0, respectively. As an example,
Figure 5(a) shows the global and local addresses of a one-dimensional array
distributed in block-cyclic manner across three processors with € = 4.
Figures 5(b) and (c), on the other hand, illustrate two-dimensional views of
the global and local addresses, respectively. For each processor, the hori-
zontal dimension corresponds to the c coordinate whereas the vertical
dimension denotes | . For example, the 55th element of the (global) array is
mapped onto Processor 1 with ¢ = 4 and | = 3 as local coordinates.

The relationt = a * d + B can be generalized by adding a replication
matrix ¥ which eliminates the replicated dimension from the equations:
V *t = a*d + B. In the case where no replication is specified, V' is the
identity matrix. Also, in order to take the collapsed dimensions (the
dimensions that are not distributed across processors) into account, an-
other projection matrix %Y can be used: ¥ *t = € +*P=*xc + €*q + |.All the
elements on a collapsed dimension are stored on the same processor. Notice
that these projection matrices are only useful if we adhere to a matrix form
for describing the relations. We do not need them if the relations are
described on a per-dimension basis. In the rest of the article we assume (1)
that identity alignment is used and (2) that arrays are directly distributed
across processors. For an in-depth discussion of the linear algebra frame-

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1261

Processor O Processor 1 Processor 2
o 1! 22 3° 40 57 62 7 8]0 9l 102 11°
124 13° 14% 157 16 175 185 197 || 20* 21° 225 237
048 959 92g10 92711 || 288 299 3010 31'1 | 32% 33° 3410 351
3612 3718 3gl4 3915 || 4012 4118 4214 4315 || 4412 4513 461 4713
4816 4917 5018 5119 5216 5317 5418 5519 5616 5717 5818 5919
6020 6121 6222 638 || 6420 6520 6622 672 | 6820 69 7022 71%

(a)
Processor 0 Processor 1 Processor 2
0,0 0,1 0,2 0,30,4 0,5 0,6 0,70,8 0,9 0,10 0,11
1,0 1,1 1,2 1,3(1,4 1,5 1,6 1,7|1,8 1,9 1,10 1,11
2,0 2,1 2,2 2,3(24 2,5 2,6 2,7}28 29 2,10 211
3,0 3,1 32 33|34 35 36 3,738 3,9 310 3,
4,0 4,1 4,2 4,344 4,5 4,6 4,748 4,9 4,10 4,11
50 51 52 53|54 55 56 57|58 59 510 511
(b)
Processor 0 Processor 1 Processor 2
0,0 0,1 0,2 0,3]]o,0 0,1 0,2 0,30,0 0,1 0,2 0,3
1,0 1,1 1,2 1,310 1,1 1,2 1,310 1,1 1,2 1,3
2,0 2,1 2,2 23120 2,1 2,2 23120 2,1 22 23
3,0 3,1 3,2 33130 31 32 33|30 3,1 32 33
4,0 4,1 4,2 4,3(4,0 4,1 4,2 4340 4,1 42 43
50 51 52 53|50 51 52 53350 51 52 53

©

Fig. 5. (a) Global and local addresses. Superscripts denote local addresses. (b) Two-dimen-
sional view of global address (c,p * 6 + |) for processor p. (¢) Two-dimensional view of local
address (c,|) for processor p.

work for compiling distributed-memory programs, we refer the reader to
Ancourt et al. [1997].

2.5 Parafrase-2 and Omega Library

Parafrase-2 [Polychronopoulos et al. 1989] is used as the front end in our
compilation framework. It is a parallelizing compiler implemented as a
source-to-source-code restructurer that consists of several passes for analy-
sis, transformation, parallelism detection, and code generation. In order to
obtain the loops that enumerate the elements in the ownership and
communication sets, we use the Omega library [Kelly et al. 1995]. This
library is essentially a set of C++ classes for manipulating integer tuple
relations and sets defined using Presburger formulas. We implemented a
framework that obtains data access information from Parafrase-2 internal
structures and feeds them into the Omega library; when all the required

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1262 . M. Kandemir et al.

sets have been obtained the framework converts these sets back to internal
Parafrase-2 structures.

3. DATA-FLOW ANALYSIS USING A LINEAR ALGEBRA FRAMEWORK

In this section, we define our data-flow framework in detail. First, we
introduce some important sets and operations on them.

3.1 Definition of Sets and Operations

3.1.1 Communication Descriptors and Communication Sets. A commu-
nication descriptor can be defined as a pair (R, &), where % is an array
identifier (name), and ¥ is the communication set associated with %R. The
exact definition of a communication set depends on the context in which it
is used. Throughout our analysis, a communication set is defined as {d|d is
owned by q and is required by (or should be transferred to or has already
been transferred to) p} except for the KILL set, which defines the set of
elements written (killed) by ¢. In these set definitions d refers to a
multidimensional array element.

3.1.2 Operations on Communication Sets. Since we define a communi-
cation set as a list of equalities and inequalities (this is how the Omega
library represents a set), it can be represented as ¥ = {Zi|@(al)} where %(.)
is a predicate. Let {d|?(d)} and {d|2(d)} be two communication sets. We
define the operations +,, —., and N, on communication sets as follows:

{d|P(d)} +4d|2(d)} = {d|P(d) or 2(d)}
{d|?(d)} —dd|2(d)} = {d|P?(d) and not (2(d))}

{d|2(d)} NAd|2(d)} = {d|?(d) and 2(d)}

”» «

Note that the operations “or,” “and,” and “not” can be performed by using
the corresponding Omega operations on sets which contain equalities and
inequalities.

3.1.3 Operations on Sets of Communication Descriptors. Let 9 =
(R, &) be a communication descriptor. We define two functions: a function
N from communication descriptors space to array identifiers space, and a
function JAl from communication descriptors space to communication sets
space such that N(9) = R and M(D) = &.

Suppose @F; and 9, are two sets of communication descriptors. Three
operations, namely +,, —;, and N,, are defined on these sets as follows:

DL 1+,DFy ={D|D € DS, and VD' € DF, N(D) # N(D')}
U{D|D € 9, and VD' € DF; N(D) # N (D)}
U{2|39" €%, D" € DYy st. N(D)

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1263
= N(@') = N(D") and M(D) = M(D") + M(D")}

DL 1=qDF = {D|D € DF; and VD' € DL, N(D) # N (D)}
U{2|39" € 9%, 9" € DS, st. N(D) = N(D')

= N(D") and M(D) = M(D") — M(D")}
DL, Ny DSy = {D|3D € BF,, D" € B, st. N(D) = N(D")

= N(92") and M(D) = M(D") N, M(D")}

When there is no ambiguity, we also use U, and U, instead of +_, and +,,
respectively. It should be noted that although these operations are similar
to those given by Gong et al. [1993], there is an important difference. Since
we keep the communication sets accurately in terms of equalities and
inequalities, we can optimize (e.g., coalesce) communication messages even
if the messages do not have the same communication pattern (e.g., broad-
cast, point-to-point) or identical sender/receiver sets. Most of the previous
approaches to global communication optimization cannot optimize these
kinds of messages, mainly due to their representation of communication
sets.

It should be noted that our analysis works with sets of equalities and
inequalities. As compared with the previous approaches based on RSDs,
our technique may be slower. In order to alleviate this problem, we do not
operate on the contents of the sets in every data-flow equation to be
evaluated; instead we represent the sets with symbolic names and postpone
the real computation on them until the end of the analysis where the
communication code should be generated. For example, suppose that a
data-flow equation requires combining two sets S, = {[x]:2,(x)} and S, =
{[y]:25(y)} where 2; and 2, are predicates consisting of equalities and
inequalities. Instead of forming the set {[2]:2,(2) \v 24(2)} immediately
and using it in subsequent computations, our approach represents the
resulting set abstractly as S, + S,. When the whole process is finished, the
resulting sets are rewritten in terms of equalities and inequalities, and
then the simplify utility of the Omega library is used to simplify them. Our
experience shows that this approach requires a manageably small symbolic
expression manipulation support and is fast in practice (see Section 6 for a
cost analysis of the compilation time). Next we present our data-flow
framework.

3.2 Local (Intrainterval) Analysis

In order to make the data-flow analysis task easier, the CFG of the
program is traversed prior to the local analysis phase, and for each LHS
reference a pointer is stored in the header of all enclosing loop nests. This
allows the compiler to reach a LHS reference inside a loop quickly during

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1264 . M. Kandemir et al.

1 DO & = 4, iy

2 X(i-2,7) = Y(-1,i-1) + X(i,1)
3 DO .7 = jl: .ju

4 X(i,7) = Y(i-2,i+2)

5 IF (cond)

6 X(i-1,5+2) = Y(i-2,5-2)
7 Y@, = ...

8 ELSE

9 X(i+1,5-3) = Y(i+3,5-3)
10 END IF

11 ZG,5) = Y(@-4,5

12 END DO

13 END DO

Fig. 6. An example program fragment. In this fragment, there are two intervals correspond-
ing to the i and j loops, respectively.

the data-flow analysis. The local analysis part of our framework computes
KILL , GEN and POST_GENsets for each interval. Then the interval is
reduced to a single node and annotated with this information.

Let R4(7) and R4,(7) be the data elements obtained from references R,
and Ry, respectively, with a specific iteration vector 7. The computation of
the KILL set proceeds in the forward direction; that is, the nodes within the
interval are traversed in topological sort order. Let KILL(i,q) be the set of
elements written (killed) by processor q in node i , and let Modified(i,q)
be the set of elements that may be killed along any path from the beginning
of the interval to node i (including node i). Then,

KILLG,q) = {d|d € Own(X,q)

and 3¢, Ryst.d = Re(v) and i, = ¢ = 1.},

Modified(i,q) = U Modified(j,q) U KILL(i,q)
j Epredl(i)
assuming that Modified(pred(first(i)),q) = () where first(i) is the

first node in i . If last(i) is the last node in i , then

KILL(i,q) = Modified(last(i),q)

This last equation is used to reduce an interval into a node. Notice that i is
used to denote a node in the CFG whereas 7 is used for an iteration vector.
In order to see how the computation of the KILL set proceeds, consider
Figure 6. In this example there are two intervals corresponding to the j and
i loops. We concentrate only on the computation of the KILL sets for array X
(the computation of the KILL sets of other arrays can be performed in a

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1265

similar manner). The analysis starts with the first node of the innermost
interval (the j loop), and proceeds as follows:

KILL(4,0) = {d|d € own(X,q) and Ji, jst.d = X1,)) and i; =
L= I’u andjl = J SJu}

Modified(4,q) = KILL(4,q)

KILL(,q) = 0
Modified(5,q) = Modified(4,q) U KILL(5,q)

= Modified(4,q)
KILL(6,q) = (d|d € own(X,q) and Ju, jst.d = X — 1, + 2)
andi; = v =i, andj;, =) = j,}.

Modified(6,q) = Modified(5,q) U KILL(6,q)

KILL(7,q) = 0

Modified(7,q) Modified(6,q) U KILL(7,q)

Modified(6,q)

KILL(9,q) = (d|d € own(X,q) and Ju, jst.d = X + 1, — 3)
andi; = v =i, andj;, =) = j,}.

Modified(9,q) = Modified(5,q) U KILL(9,q)

KILL(10,q) = 0
Modified(10,q) = [Modified(7,q) U Modified(9,g)] U

KILL(10,q)
= Modified(7,q) U Modified(9,q)
KILL(11,g) = 0

Modified(11,q)

Modified(10,q) U KILL(11,9)

Modified(10,q)

[Modified(7,q) U Modified(9,q)]

KILL(4,0) U KILL(6,q) U KILL(9,0)

= {d|d € own(X,q) and (3¢, j st. d = X, J)

ord =Xu—1,] +2 ord =
X+ 1,53 —3)

and i; = v =i, andj;, =) =j,}.

Since last(3,q) = 11, at this point we can reduce the innermost interval
into a single node and annotate it by its KILL set:

KILL(3,q) = Modified(11,q)

Then the analysis continues with the first node of the outer interval (i
loop):

KILL(2,q) = {d|d € Own(X,q)

and Just.d = Xt — 2,0 and i; = v = i,).

Modified(2,q) KILL(2,q)

Modified(3,q) = Modified(2,q) UKILL(3,q)

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1266 . M. Kandemir et al.
= {d|d € own(X,q)
and (J¢, Jst.d =X,)ord =X — 1, + 2)
ord =X+ 1,5 —3)ord=Xt—2,1)

and ;=.v=<i,and j, =) =j,l.

Since last(1,q) = 3, at this point we can reduce the interval into a single
node

KILL(1,q) = Modified(3,q)

Although for the sake of presentation we show the analysis here in terms of
communication sets, the data-flow analysis is actually performed on sets of
communication descriptors, since in general there may be accesses to
several arrays. That is, the KILL set for a program that refers to arrays N;
is as follows:

KILLG,0) = {(N1, KILL (.9), (Na, KILL (i,), - -}

Since we concentrate on computation of the KILL set for a single array, we
use KILL(i,q) . Similar simplification will be used for presentation of the
computation of the GEN(i,q,p) and POST_GEN(,q,p) sets as well.
GEN(i,p,q) is the set of elements required by processor p from processor
g at node i with no preceding write (assignment) to them. The computation
of the GENproceeds in the backward direction, i.e., the nodes within each
interval are traversed in reverse topological sort order. The elements that
can be communicated at the beginning of a node are the elements required
by any RHS reference within the node except the ones that are written by
the owner before being referenced. Notice that this process involves consid-
ering all the LHS references within an interval for a given RHS reference;
this leads to an exponential cost. However, there are two factors that make
the analysis affordable. First, the scope of the analysis is a single interval
(loop nest). In practice the number of distinct references in a loop nest is a
small value. Second, since, as mentioned earlier, prior to analysis we keep
pointers to all LHS references within a loop nest, we do not have to
traverse the parse tree once more to search for the LHS references.

Assuming t = (tq, ..., t,) and it = (v, ..., t,), let ' < T mean that v’
is lexicographically less than or equal to t; and let i’ <,i mean that }; = ;
for all j < &, and (¢}, ..., v),) < (v, ..., t,). Since a node can refer to

multiple RHS references, we first define gen(i, R4, p,q) as the set of
elements to be sent by processor q to processor p at node i due to reference
Rg. In that case we can compute

GEN(i,p,q) = Ugen(i,Rg, p,q).

Ran

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1267

For the sake of explanation, we assume one RHS reference per node, and
we use only GEN(i,p,q) in the following. The extension to the multiple
RHS reference per node is straightforward. Let Comm(i,p,q) be the set of
elements that may be communicated at the beginning of interval i to
satisfy communication requirements from the beginning of i to the last
node in the interval that contains i . Then, for an array X, we have

GEN(i,p,q) ={d|3t,Yst. i, =1 =1i,andd € Own(X,q)
and d = R4(¢) and
R 4(1) € Own(Y,p) and not (3], Ry st. i, =] <1,

and d = R%()) and j < level(i) 0,

Comm(i,p,q) = N Comm(s,p,q) U GEN(i,p,q)

sEsucc(i)

Additionally, we use the following equation to reduce an interval into a
single node:

GEN(,p,q) = Comm(First(i),p,q)

In the definition of GEN Ry, denotes the RHS reference, and %, denotes the
LHS reference of the same statement. R¢, on the other hand, refers to any
LHS reference within the same interval. Notice that while %{, is a refer-
ence to the same array as %Ry, R, can be a reference to any array (e.g.,
array Y in the formulation above). level(i) gives the nesting level of the
interval (loop), with the value 1 corresponding to the outermost loop in the
nest. If the dependence is loop-independent the textual positions of the
references in the nest may also need to be taken into account when
computing the GENset. In that case the formulation of the GENset should
contain terms showing the precedence relations between references. For
the sake of simplicity, we assume that all the dependences that we are
dealing with are loop-carried.

After the interval is reduced, the GENset for it is recorded, and an
operator ¥ is applied to the last part of this GENset to propagate it to the
outer interval:

F(<kt) =] < k-1t

For example, consider Figure 6 once more, this time concentrating on the
computation of GENsets due to array Y. Notice that array Y is written only
in statement (line) 7. The analysis starts with the last statement of the
innermost interval (j loop):

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1268 . M. Kandemir et al.

GEN(11,p,q) = {ZiHL, jst.i;=uv=i,andj, =) =j, and d € Own(Y,q)
andd = Y(1—4, j) and Z(4, }) € Oown(Z,p) and not (3., j’, st.
d=Y(,))andi, = =i,andj, =) =j,and (' = vand)’ <))).

To keep the presentation simpler, we do not show the remaining GENsets in
this interval. The analysis proceeds as follows:

Comm(11,p,q) = GEN(11,p,q)
GEN(10,p,q) =0
Comm(10,p,q) = Comm(11,p,q) U GEN(10,p,q)
= Comm(11,p,q)
Comm(9,p,q) = Comm(10,p,q) U GEN(9,p,q)
GEN(7,p,q) =0
Comm(7,p,q) = Comm(10,p,q) U GEN(7,p,q)
Comm(7,p,q) = Comm(10,p,q)
Comm(6,p,q) = Comm(7,p,q) U GEN(6,p,q)
GEN(5,p,q) =90
Comm(5,p,q) = Comm(6,p,q) N Comm(9,p,q)
Comm(4,p,q) = Comm(5,p,q) U GEN(4,p,q)
=[Comm(6,p,q) N Comm(9,p,q)] U GEN(4,p,q)
=[GEN(11,p,q) U GEN(6,p,q)] N[GEN(11,p,q)
U GEN(9,p,q)]] U GEN(4,p,q)
[GEN(11,p,g) U GEN(6,p,q) U GEN(4,p,q)]
N[GEN(11,p,q) U GEN(9,p,0) U GEN(4,p,q)]
[GEN(11,p,g) U GEN(4,p,q)] U [GEN(6,p,q)

N GEN(9,p,q)]

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

Since first(3)
follows:

A Global Communication Optimization Technique . 1269

= 4, the innermost interval can now be reduced as

GEN(3,p,q) = Comm(4,p,q)

= ({d|3¢, y st.i;=v=i,and j,=) =j, and d € Own(Y,q)

and d = Y(v — 4, j) and Z(1, j) € Own(Z,p)

and not (3¢,), st.d = Y(/,))and i, = ' = i,

andj, = j'=j,and (" = vand)’ <j))}

U {d|3, g st.i;=v=1i, andj, =) =j, and d € Own(Y,q)

andd =Y — 2,) + 2) and

X(1, J) € Own(X,p) and not (3¢, j’, st. d= Y(\/, ")

andi, = J=i,andj, =) = j,and (' =cvand)’ <))}

U ({EZ’HL, jst.i;=v=<i,andj; =)=,

and d € Oown(Y,q) andd =Y(— 2,] — 2) and

X(—1,)+ 2)e0own(X,p)

and not (3,), st. d =Y(/,)) and i, =V =i,

and j; = j’ = j,and (. =t and j’' <))))

N{d|3., jst.i;=v=i,andj, =) =j,

and d € Own(Y,q) andd =Y(.+ 3,; — 3) and

X(t+1,)—3)e0wn(X,p) and not

(3, 3, st.d = Y(i,3)and i; = ' = i,

andj, = j'=j,and (' =cvand)’ <j))})

After GEN(3,p,q)

is recorded, the compiler applies the % operator to

GEN(3,p,q) . The effect of this operator for this example is

(V=rvand)’ <))~ (' =cvor (' =cvand)’ <))).

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1270 . M. Kandemir et al.

That is, at this point the compiler takes into account flow dependences
carried by the i loop as well. Then we continue with the last statement of
the outer interval (i loop):

Comm(3,p,q) = GEN(3,p,q)

Comm(2,p,q) = Comm(3,p,q) U GEN(2,p,q)
Since first(1) = 2, the outer interval can now be reduced:

GEN(1,p,q) = Comm(2,p,q)

Since i is the index of the outermost interval, there is no need to apply the
% operator after this reduction. We should emphasize that computing the
GENsets gives us all the communication that can be vectorized or coalesced
above a loop nest, i.e., our analysis easily handles message vectorization
and message coalescing [Hiranandani et al. 1992]. Finally, POST_GEN
(i,p,q) is the set of elements required by processor p from processor q at
node i with no subsequent write to them. For an array X we have

POST_GEN(i,p,q) = {d|3t, Yst. i, =1 =1i,andd € Own(X,q)
and d = R4(1) and
R4(1) € Own(Y,p) and not

(33, Ry st. zl = j = Zu and d = %,f(j) and ¢ < level(i) j)}

The computation of POST_GEN(,p,q) proceeds in the forward direction.
Its computation is similar to those of the KILL(i,q) and GEN(i,p,q) sets,
so we do not discuss it in detail.

3.3 Data-Flow Equations

In our framework, any communication incurred is placed at the beginning
of the nodes. Here, we concentrate on the computation of a communication
set called RECV The actual send and recv sets used by the code generator
are produced in a later pass of the compiler from the RECVsets discussed
here using two projection functions as explained in Section 5. Our data-flow
analysis framework consists of a backward and a forward pass. In the
backward pass, the compiler determines sets of data elements that can
safely be communicated at specific points. The forward pass eliminates
redundant communication and determines the final set of elements (if any)
that should be communicated at the beginning of each node i. The
data-flow equations that we present here are aggressive in the sense that a
communication incurred by a nonlocal reference is hoisted to the highest
point possible in the CFG. Later in Section 4 we discuss how to refine this
approach to control communication hoisting. The input for the equations

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1271

Backward Analysis:
SAFE_OUT(i,p,q) = (| SAFE_IN(s,p,q) (1)
s€suce(i)
SAFE*IN(iv P, q) = (SAFE>OUT(i’ b, C1) —d KILL(i7 q)) +a GEN(i’ b, q) (2)
Forward Analysis:
RECV_IN(i,p,q) = (] RECV.OUT(j,p,q) 3)
j€epred(i)
GEN(iv P, CI) —d RECV—IN(i7 b, q)
if 3k € succ(i) and k ¢ dom(d)
i = 4
RECV(L,P,9) = | SpFE TN(i,p,q) —o RECV_IN(i,p,q) @
otherwise
RECV_IN(i,p,q) —a KILL(i,q)
if 3k € succ(i) and k ¢ dom(i)
RECV—OUT(ivpvq) = ((RECV(17P7Q) +a RECV,IN(i,p, q)) (5)
—oKILL(i,q)) +a POST_GEN(i,p,q)
otherwise

Fig. 7. Data-flow equations for optimizing communication. The optimization process involves
a backward analysis followed by a forward analysis. At the end, for each i , the RECV(i,p,q)
set is computed.

consists of the GEN(,p,q) , KILL(,q) , and POST_GEN(,p,q) sets for
each i as computed during the local analysis.

The data-flow equations for the backward analysis are given by Eqs. (1)
and (2) in Figure 7. The symbol N in this figure denotes N,. SAFE_
IN(i,p,q) and SAFE_OUT(i,p,q) are the sets of communication descrip-
tors; these denote the elements that can safely be communicated at the
beginning and end of node i, respectively. Equation (1) says that an
element should be communicated at a point if and only if it will be used in
all of the following paths in the CFG. This is the fundamental rule that our
data-flow analysis, as well as some of the previous approaches as in
Kennedy and Sethi [1995], adheres to. Equation (2), on the other hand,
gives the set of elements that can safely be communicated at the beginning
of node i , and makes use of the GENand KILL sets. Intuitively, an element
can be communicated at the beginning of node i if and only if it is either
required (generated) by node i or reaches the end of node i (in the
backward analysis) and is not overwritten (killed) in it. It should be noted
that if the elements contained in SAFE_IN sets are directly communicated
without any further analysis, there would be significant amounts of redun-
dant communication. The task of the forward analysis phase is to eliminate
redundant communication.

The data-flow equations for the forward analysis are given by Eqgs. (3),
(4), and (5) in Figure 7; these equations observe the following two rules:

(1) a node should not fetch data needed by a successor unless it dominates
that successor and

(2) a successor should ignore what a predecessor has received so far unless
that predecessor dominates it.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1272 . M. Kandemir et al.

RECV_IN(,p,q) and RECV_OUT(i,p,q) denote the set of communication
descriptors containing the elements that have been communicated so far (at
the beginning and end of the node i, respectively) from g to p. On the other
hand, RECV(i,p,q) denotes the set of communication descriptors contain-
ing the elements that should be communicated from g to p at the beginning
of node i and is finally used by the communication generation portion of
the compiler to generate the actual send and recv commands as explained
in Section 5. Equation (3) simply says that the communication set arriving
in a join node can be found by intersecting the sets for all the joining paths.
Equation (4) is used to compute the RECVset which corresponds to the
elements that can be communicated at the beginning of the node except the
ones that have already been communicated (RECV_IN). The elements that
have been communicated at the end of node i (that is, RECV_OUTset) are
simply the union of the elements communicated up to the beginning of i,
that is, the elements communicated at the beginning of i provided that the
condition in Eq. (5) is not satisfied (except the ones that have been
overwritten (killed) in i) and the elements communicated within i and not
written subsequently (POST_GEN again provided that the condition in the
equation is not satisfied. It should be emphasized that all these sets are
communication descriptor sets, and the order of operations as indicated by
the parenthesis is important.

3.4 Global Data-Flow Analysis

Our approach starts by computing the GEN KILL , and POST_GENsets for
each node. Then the contraction phase of the analysis reduces the intervals
from innermost to outermost and annotates them with GEN KILL , and
POST_GENsets. When a reduced CFG with no cycles is reached, the
expansion phase starts, and RECVsets for each interval is computed, this
time from outermost to innermost. There is one important point to note:
before starting to process the next inner graph, the RECV_INset of the first
node in this graph is set to the RECVset of the interval that contains it.
More formally, in the expansion phase, we set

RECV_IN(i,p,q) *hress = RECV(i,p,q) * Vthpass, (6)

This assignment then triggers the next pass in the expansion phase. Before
the expansion phase starts RECV_IN(i,p,q) '*7%** is set to 0. Figure 8
shows the overall algorithm COMM-OPTollowed by compiler to generate the
send and recv sets. Notice, that, due to Eqgs. (1) and (2) in Figure 7 a datum
can only be communicated when it is safe to do so (i.e., the semantics of the
program is preserved). In the forward analysis, the RECVsets contain only
the elements needed to be communicated; therefore no stale data are used,
and the correctness is ensured.

3.5 Example

We use the synthetic benchmark program in Figure 9(a) to illustrate our
framework. We concentrate on the communication placement at the higher-

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1273

INPUT: A connected CFG.
OUTPUT: A processed CFG with optimized communication calls.

Step (a) Pre-processing phase:

(a.1) The CFG is traversed and in each loop a pointer for each LHS it
encloses is stored;

(a.2) The CFG is traversed to add empty else branches to “if”” con-
structs and to eliminate the critical edges;

(a.3) The “dominance” relation for each node in the CFG is com-
puted.

Step (b) Initialization phase: For each node in the initial CFG, KILL, GEN
and POST_GEN sets are computed in terms of symbolic set names;

Step (¢) Contraction phase: Until a CFG with no cycles is reached, recur-
sively each CFG is handled by reducing its intervals and annotating
each interval by its KILL, GEN and POST_GEN sets;

Step (d) Expansion phase: For each intermediate CFG, the following is
repeated:

(d.1) Using data-flow Equations (1) and (2) in Figure 7, the SAFE_IN
sets are computed in backward direction;

(d.2) Using data-flow Equations (3), (4) and (5) in Figure 7, the RECV
sets are computed in forward direction;

(d.3) The CFG is expanded; the equation 6 is used to trigger the data-
flow activity in the new CFG;

Step (e) Substitution phase: The symbolic set names in the resultant
RECV sets are replaced with actual sets consisting of equalities and
inequalities;

Step (f) Set generation phase: The Omega library is called to generate
send and recv sets used by the code generator from the RECV sets.

Fig. 8. Communication optimization algorithm COMM-OPbased on data-flow analysis. This
algorithm computes the send and recv sets.

level CFG that is acyclic. Figure 9(b) shows the message vectorized pro-
gram with communication calls before the loop bounds reduction and guard
insertion. The notation send{B,q} means that some elements of array B
should be sent to q; recv{B,q} is defined similarly. We omitted from the
figure the number of elements communicated to make the code look clear.
In this example, communication arises only due to references to array B. A
loop-based communication analysis places eight send and eight recv calls
(in fact these are themselves loop nests) for eight RHS references marked
as bold in Figure 9(b). The communication points for these references are
just above the corresponding loop nests. For example, communication
required due to reference B(i —1,j —1) in line 33 in Figure 9(b) would be
performed in line 29. Notice that in this example array B is written only
once (in line 38).

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1274 .

M. Kandemir et al.

'HPF$ processors PROC(0:3)
'HPF$ distribute (cyclic(4),*)
onto PROC :: &, B, C, D
implicit none
integer %, j, cond
real A(128,128), B(128,128),
€(128,128), D(128,128)
D0 ¢ = 2, 127
DO § = 64, 127
C(z,7)=C(%,7)+B(i-1,5-1)+1

END DO
END DO
D0 i =2, 127
D0 j =2, 31

A(4,5)=(B(3-1,7-1)+B(i-1,5-1)
+B(i,7))/8.0

END DO

END DO

IF(cond .GT. 0.0) THEN
DO ¢ = 2, 127

D0 j = 2, 127
C(7,7)=A(3,7)4C(3,5)+D(3,5)+1

END DO

END DO

ELSE

D0 i = 2, 127
DD j =2, 127

A, 7)=B(i-1,7-1)+1

END DO

END DO

ENDIF

D0 i =2, 31

D0 j = 2, 127
D(i,5)=(B(i,5)*B(4,5))

+B(i-1,7-1)+1

END DO

END DD

D0 ¢ = 1, 127

D0 j =1, 127
B(i,5)=B(4,7)-C(1,§)+A(d,)
END DO

END DO

D0 i =2, 127

DO j = 2, 127
4(3,5)=(BG-1,5)

+B(i-1,7+1))/2.0

END DO

END DO

D0 i =2, 127

D0 j =2, 127
€(1,5)=(B(3,5)+B(i-1,5-1))/2.0
END DO

END DO

END

{(a) Original program.

VHPF$ processors PROC(0:3)
1HPF$ distribute (cyclic(4),%)
onto PROC :: A, B, C, D
implicit none
integer ¢, j, cond
real A(128,128), B(128,128),
€(128,128), D(128,128)

1 send{B,p+1}], I:cv{B,p—l}
2 DO : = 2, 127

3 D0 =64, 127

4 €(i,5)=C(i,7)+B(-1,j-1)+1
5

6

T

END DO
END DO

send{B,p+1} |, | recv{B,p-1}

8 send{B,p+1} |, | recv{B,p-1}
9 Do ¢ = 2, 127

10 DO j =2, 31

11 A4, 7)=(B(i-1,5-1)*B(i-1,5-1)
12 +B(4,5))/3.0

13 END DO

14 END DO

16 IF{(cond .GT. 0.0) THEN

16 DO i =2, 127

17 D0 =2, 127

18 C(i,5)=h(i,5)4C(4,5)+D(i,5)+1
19 END DO

20 END DO

21 ELSE

22 send{B,p+1} l, [recv{B,p-l}

23 DO =2, 127
24 Do j = 2, 127
25 AG,7)=B(i-1,5-1)+1

26 END DO
27 END DO
28 ENDIF

29 | send{B,p+1} I, Irecv{B,p‘l}
30 DO i =2, 31

31 D0 j =2, 127

32 D(i,7)=(B(i,)*B(i,5))

33 +B(-1,5-1)+1
34 END DO
35 END DO

36 DO i =1, 127

37 D0 j =1, 127

38 B(i,5)=B(i,5)-C(3,7)+A(Z,5)
39 END DO

40 END DO

41 | send{B,p+1} |, | recv{B,p-1}

42 | send{B,p+1} |, | recv{B,p-1}

43 DO : = 2, 127

24 DO j =2, 127

45 AGL7)=(B(-L)*B(-1,j+1))/2.0
46 END DO

47 END DO

48 | send{B,p+1} l, lrecv{B,p—i}
49 DD ¢ = 2, 127

50 DO j =2, 127

51 C(3,5)=(B(i,j)+B(i-1,j-1))/2.0
52 END DO

53 END DO

54 END

(b) Message vectorized program.

'HPF$ processors PROC(0:3)
{HPF$ distribute (cyclic(4),*)
onto PROC :: A, B, ¢, D
implicit none
integer ¢, j, cond
real A(128,128), B(128,128),
C(128,128), D(128,128)

Fend{B,pH} J, [recv{B,p—l}

DO 7 = 2, 127

D0 j = 64, 127
C(i,7)=C(z,j1+B(i-1,7-1)+1

END DO
END DO
B0 ¢ = 2, 127
Do j =2, 31

A(4,5)=(B(4-1,j-1)+B(i-1,5-1)
+B(3,7))/3.0

END DO

END DO

IF(cond .GT. 0.0) THEN
DO ¢ = 2, 127

D0 j = 2, 127
C(i,7)=A(1,5)+C(4,5)4D(4,5)+1

END DO

END DO
ELSE

send{B,p+1}J|, rrecv{B,p-iﬂ
D0 ¢ = 2, 127

DO j = 2, 127
A(2,7)=B(i-1,5-1)+1

END DO

END DO

ENDIF

DD i =2, 3t

Do j = 2, 127
D(i,5)=(B(2,5)*B(4,5))

+B(i-1,7-1)+1

END DO

END DO

D0 i =1, 127

DD j =1, 127
B(4,7)=B(3,5)-C(i,) +A(i,7)

END DO

END DO

send{B,p+1} \, Fecv{B,p—l} I
DO ¢ = 2, 127

D0 j = 2, 127

Ai,5)=(B(i-1,5)
+B(4-1,7+1))/2.0

END DO

END DD

D0 i =2, 127

Do j = 2, 127
C(i,7)=(B(i,j)+B(i-1,j-1})/2.0

END DO

END DO

END

(¢) Global communication optimization.

Fig. 9. A synthetic benchmark program (a) with message-vectorized (b) and globally opti-
mized (c) versions. The message-vectorized program is obtained using the popular vectoriza-
tion approach based on dependence analysis. After determining the outermost loop at which
the vectorization can be applied, the itemwise messages are combined and are lifted out of the
enclosing loops. The globally optimized version is generated using the approach discussed in

this article.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1275

Without loss of generality, assume after local analysis that the GENand
KILL sets are obtained as shown in the second and third column of Table I
respectively. The corresponding line numbers are shown in the first col-
umn. Notice for this example that POST_GEN(,p,q) is 0 for every i
(column 4). The fifth column in Table I shows the SAFE_IN sets for array B
after backward analysis corresponding to the lines given in the first column
of the same table. Notice that the communication set S,5 cannot be hoisted
above line 22 due to the conditional branch. The sixth column, on the other
hand, shows the final RECVsets for the same array after the forward
analysis and simplifications. Notice that the write to array B in line 38 kills
all the communication before it.

For this example, the data-flow analysis framework achieves the follow-
ing:

—The communication sets due to references B(i —1,)) and B(i —1,j +1)
in line 45 of Figure 9(b) are combined; that is, our approach handles
message coalescing easily.

—Communication due to reference B(i —1,j —1) in line 51 is combined
with the communication in line 45; and this combined communication
can be performed above line 43.

—Similarly, the communication sets due to references in lines 33, 11, and 4
can be combined and performed above line 2 in Figure 9(b).

—The communication in line 22 is reduced in volume (from 4,032 elements
per processor to 3,024 elements per processor).

—The communication in lines 7, 8, 29, and 48 are entirely eliminated.

—Overall, for a single processor, 16 communication calls (eight send and
eight recv) are replaced by six communication calls.

The resulting optimized program is shown in Figure 9(c). It should be
emphasized that the final communication sets are precise, i.e., there is no
overestimation. Moreover, these communication sets can be enumerated
using the Omega library [Kelly et al. 1995]. Notice that all communication
sets are enumerated in terms of abstract processors p and q; in general, if
desired, message aggregation can also be performed easily.

3.6 Extension for Interprocedural Analysis

It is relatively straightforward to extend our analysis to work interproce-
durally. In a simple interprocedural setting, our approach can be used as
follows. We first build a call graph [Aho et al. 1986] where each node
corresponds to a procedure and where there is a directed edge between two
nodes P; and P, if and only if P; calls P,. We assume that there is no
recursive procedure call. We then traverse the call graph in two steps
corresponding to backward and forward analyses. In the backward analy-
sis, we traverse the graph in such a way that a node is visited only after all
of the nodes it calls have been visited. When a node P, is visited, the
compiler runs our algorithm for the backward analysis. After the algorithm
terminates, we summarize this node’s communication by using three sets:

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

0

mwm. u+ ﬁmm

0

0

(58 7+ TS T4 78) T (s T+ Ug)
0

mmmwx_ﬁ ﬁﬁmu+ wm

=

wmm. 2 Amv_m‘ oy Em.v
S 7+ (588 7= (7S 7+ 99)

B8 7+ (58 T+ (%58 "= (T8 T+ T99))

PSP+ (P T+ (%%8 7 (TS T+ MS))

TS+ ('S T+ (58 T+ (%58 7= (T8 T+ M99)))

[SIRSSIRSSIRSSIRSSIRSS IR S
SERSIRSSIRSS)

6V
v
9€
0€
€6
6

14

NAO3d

oury

M. Kandemir et al.

1276

‘SIsA[eur [BQO[3 I97JB paure}qo aae s19SADIY pue NI 34VS
oy} pue ‘sIsA[eue [e20] 193Je PAUTEI]o I8 SIPNID 1SOd PUE * TN NID oY, 6 oanSL] Ul umoyg o[dwexy oy} 10} $30§ MO[I-EIed

‘T °I9BL

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1277

Table II. Possible ?(i) Predicates to Control Communication Hoisting. Any logical
combination of those predicates can also be used. Note that changing %(i) changes behavior
of the optimization algorithm completely. With appropriate %(i) predicates, most of the
previous optimization algorithms can be simulated.

Pa) Comment
KILL(i,q) #0 avoids message splitting
GEN@(,p,q) =490 avoids hoisting too far—clustering
Buffer_Length(i) = limit avoids protocol delays and hot spots
Number_of_Buffers(i) = limit avoids buffer pressure

GEN KILL , and POST_GENNotice that these three sets completely define
the communication behavior of P,. Subsequently, P, is transformed to a
new single node and is annotated by these sets (of course, all formal
parameters are replaced with actual parameters). When the whole program
is reduced to a single node, the forward analysis starts. This time we
traverse the call graph in such a way that a node is visited only after all the
nodes that call it have been visited. During the visit of a node, we compute
the RECVsets for each node of it.

It should be noted that there are several interprocedural communication
optimization algorithms (e.g., Creusillet and Irigoin [1995], and Hall et al.
[1992; 1995]) with different degrees of sophistication, and the detailed
analysis of communication optimization across procedure boundaries is
beyond the scope of this article. However, we believe that for most of the
algorithms found in the literature, the summarized communication infor-
mation represented by GEN KILL , and POST_GENwould be sufficient to
optimize communication interprocedurally.

4. HOISTING COMMUNICATION VERSUS MINIMIZING THE NUMBER OF
MESSAGES

The approach explained so far is focused on hoisting communication as far
as possible, and in general, it results in reduction in communication volume
as well as in the number of messages. However, as also pointed out by
others, hoisting the communication too eagerly can, under some circum-
stances, lead to an excessive buffer requirement [Kennedy and Sethi 1995]
and an increase in the number of communication calls inserted
[Chakrabarti et al. 1996]. In particular, failing to take resource constraints
into account may affect the correctness of the communication placement.
For example, if the buffer requirements exceed the maximum available
buffer, the program may stall [Kennedy and Sethi 1997]. One way to
prevent these problems is to avoid hoisting communication aggressively
and to reduce breaking of messages into smaller ones. Since the optimal
placement of communication is NP-hard [Garey and Johnson 1979], we
present a simple heuristic that stops accumulating communication sets as
soon as it encounters a node that satisfies a predicate ?(i). The content of
this predicate depends on a specific implementation. A few alternatives are
presented in Table II. For example, Kennedy and Sethi [1995] use the third

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1278 . M. Kandemir et al.

t s+ s

...... - B(g®®)
s

s

(a) () (© (D

Fig. 10. Handling communication during backward analysis in a node using different
approaches. (a), (b), and (c) by the approach given in Figure 7; (a), (b), and (d) by the approach
given in Figure 11.

alternative. An implementation can also employ a combination of these
alternatives. For example, consider the predicate obtained by the conjunc-
tion of the first and second alternatives, i.e., (i) = {KILL(i,q) # 0 and
GEN(,p,q) = 0}.

The data-flow equations given in Figure 11 are very similar to those
shown in Figure 7. The only difference is in the computation of the
SAFE_IN(,p,q) set in which the predicate is taken into account. The
reason for this is to prevent a communication set from breaking into
smaller sets each requiring a message of its own. This also eliminates some
of the complexity of the resultant code. A possible impact of the new
approach is shown in Figure 10. In this figure S; and Sk denote the GEN
and KILL sets respectively for the node shown. The two approaches
described in this article behave similarly for the cases shown in Figures
10(a) and (b). But when a node performs only writes and no reads, the
approach in Figure 7 still hoists the communication as shown in Figure
10(c), whereas the approach in Figure 11 stops hoisting as shown in Figure
10(d). That is, the new approach does not issue a communication call unless
there are additional elements required by the node. This, in turn, reduces
the number of communication calls.

To compare our new approach with the previous one (Figure 7), consider
the example program fragment given in Figure 12, a modified version of the
last part of the program shown in Figure 9. Columns two, three, and four of
the top part of Table III shows the GEN KILL , and POST_GENsets respec-
tively corresponding to the line numbers given in the first column. The fifth
and sixth columns of the top part of the table show the SAFE_IN and RECV
sets respectively of the previous approach. Although we obtain some
reduction in communication volume, the number of messages is three
which is larger than that of the loop-based approach (column 7) that uses
message vectorization alone. The bottom part of Table III, on the other
hand, presents SAFE_IN and RECVsets obtained by our new approach. In
that case the number of messages is 1, and we have reduction in communi-
cation volume as well.

The main advantages of the new approach are less computation time
during the compilation, less complex send/recv loops, and a reduced
number of communication messages. However, in real programs when a
communicated array is written by the owner processor, it is usually written
entirely; therefore, the two approaches discussed behave similarly in prac-
tice.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1279

Backward Analysis:
SAFEOUT(i,p,q) = [] SAFEIN(s,p,q) M
s€suce(i)
) _ | GEN(i,p,q) it P(1) 8
SAFE_IN(i,p,q) = { (SAFE_QUT(4, p,q) —« KILL(4, q)) +a GEN(i,p,q) otherwise ®

Forward Analysis:

RECV.IN(i,p,q) = [BECV.0UI(3,p,q) ©
jEpred(i)
RECV(i _ GEN(i, p,q) —a RECV_IN(i, p,q) if Ik € succ(i) and k ¢ dom(i) a0
Wpa) = SAFE_IN(i,p,q) —a RECV.IN(i,p,q) otherwise
. _ RECV_IN(i,p,q) —a KILL(i,q) if 3% € succ(i) and k ¢ dom(i) 1
RECV.0UT(i, p,q) = { ((RECV(4, p, q) -+« RECY_IN(i, p,q)) —a KILL(4,q)) +4 POST-GEN(i,p,q) otherwise an

Fig. 11. Data-flow equations for optimizing communication. These equations are very similar
to those presented in Figure 7. The only difference is the use of the P(i) predicate to control
communication hoisting.

IHPF$ processors PROC(0:3)

IHPF$ distribute (cyclic(4),*) onto PROC :: A, B, C, D
real A(128,128), B(128,128), C(128,128), D(128,128)
DO 7 = 32, 63

2 DOj=1, 63

3 B(z,j)=D(i,5)+2
4 END DO

5 END DO
6

7

8

fury

DO i =1, 31
DO j =1, 63
B(7,7)=B(i,5)-C(3,5)+A(i,5)
9 END DO
10 END DO
11 DO i = 2, 127
12 D0 j =2, 127
13 A,)=(BGi-1,§)+B(i-1,5+1))/2.0
14 END DO
15 END DO
16 DO i = 2, 127
17 DO j = 2, 127
18 C(3,5)=(B(,j)+B(i-1,5-1))/2.0
19 END DO
20 END DO

Fig. 12. An example program fragment to show solution to the problem due to aggressive
hoisting. Aggressive communication hoisting does not work for this example.

5. COMMUNICATION GENERATION

Our communication code generator uses the Omega library from the
University of Maryland [Kelly et al. 1995; Pugh 1992]. After the
RECV(i,p,q) sets are obtained in terms of symbolic expressions, they are
rewritten in terms of equalities and inequalities. Then the Omega library is
called to generate the send and recv loops.

Let us now consider the example given in Figure 9 (and Table I) once
more to show how the communication sets are generated. We first concen-
trate on the computation of S, +,S;; +. S33. The compiler keeps this set

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

M. Kandemir et al.

1280

1] 8tg 9T
mﬁm‘unTmﬁm‘ mHWuLﬂwHW HH
[0 9
[0 1
AD3H NI 34vS aury
8tg 0 8tg 0 0 S 91
erg (s’ (' 7+ #'9)) °— (!'s °+ 5'g) Erg 7+ 8tg 0 0 erg 11
0 (S °— (8 °— ('S °+ ®19)) °— (88 °— (°'g °+ ¥'9)) 89 °— (TS °+ ®19) 0 5S [9
0 97— (58 °— (°'S °+ ®19)) S °— (58 °— (°'S °+ ®19) 0 £S [I
poseq doo] AD3Y NI 34vS NID 1SOd TUM NID ourg

'S98BSSOW JO JoqUINU 9} SZIWIUTW 03 PA[[0IIU0D ST FUIISIOY UOTRITUNWIWO)) :W03}0g "SOFBSSOW UOIJBITUNTIUIO)
JO JOqUINU 9AISS9IXd UB UI $3[NSdI SUIISIOY UOIJROTUNWIWO0D 9AISSIS3Y :doJ, ‘g 2anS1] ur umoys ojdwexy ayj I0J s3o8 Mmo[jf-ere ‘III °Iqel

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1281

Sy = {[q,p,d1,d2): A, c1,li,c0,02,03,03:2< i <31A16c1 +4q+1 =di A0S q<3A0< C3Ai—1=d;
AlBes+dp+1l3 =iA0<Is <3A16cs+dp+ia=di A—1 < <3A0<P<3IA2<d +1<12TAP £ Q)
S = {lap d1,da] s 30l ezl 0,03 1 2 << 12T AL6c1 + 4+ =d A0S q<BA0< L <BAiI—1=d
Al6cs+dp+1s =iA0<I3 <3A16co +4p+lp =di A—1 <l <3A0<p<3IAN2<da+1<3LAP#Q)
S33 = {[ap d1,dz]: 30, er,l,en,la,ca,ls 2 <i<127AL6c +4q+ 1l =d1 A0S q<IAOSh <3Ai-1=d
Al6cs+4p+la=iA0<I3 <3A16co+4p+ly=di A—1<le <3A0<Pp<IA64<dy+1<12TAp# Q)
s = {la,q+1,d1,d2):Ia:d1 =3+49+16aA0<q<2A1<da <126 Adq+3 <dy <4q+19)}

U{[q,p,d1,d2] 1 dp+ 15 < d1 <4q+3A1<dp <126 Aq<3A0<p}

U{a,pd1,de] i Ha:1<d; <4q+99AL<dy <30Aq<3A13+d) <4q+16aAdp+16a <1+diAD<p)}
U{la, g+ 1,d1,do} s Her:dy =3+49+160A0<q<2A1<dp <30A4q+3<d; < 4q + 115)}
Ufla,p,d1,d2]: a1 1< dy <4q+99A63<dp <126Aq<3A13+dy <4g9+16aAdp+16a <1+d;A0<p)}
U{lq,q +1,d1,d] : I :d; =3+ 4q+16aA0<q<2A63<d <126A4q+3<dg < 4q + 115}

Fig. 13. Omega Relations corresponding to the example shown in Figure 9. The actual send
and recv sets are derived from these Omega representations using projection functions.

as a symbolic expression until the code generation phase where it inserts
equalities and inequalities corresponding to S,, S;;, and S35, and then
calls the Omega library to enumerate the elements. Figure 13 shows the
communication sets for S,, S;;, S33, and S" = S, +, S;; +, S35 as
represented in Omega. A set element in this figure is represented as a
quadruple [g, p, d ;, d,] meaning that the array element indexed by
[d,, d,] should be transferred from q to p. Later in the code generation,
the projection function projp := {lq, P, d ;, d,] — [q, d ;, d]} is ap-
plied to this set to generate the recv set, and similarly the projection
function projg := {[P, p, d ;, d,] — [p, d;, d,]} is applied to generate
the send set, for a particular processor P. Notice that deriving send and recv
sets from a common set ensures correctness. In Figure 13, [, and ¢, denote
the coordinates of an element to be communicated in the source (sending)
processor whereas [, and ¢, denote its coordinates in the target (receiving)
processor. [; and cg, on the other hand, refer to coordinates of the LHS
reference in the same statement. Notice that the bounds on [/, are adjusted
in the appropriate directions to accommodate the received (nonlocal) ele-
ments; and the entire procedure works on the local address space similar to
the one shown in Figure 5(c).

After the projection functions are applied, the code generator part of the
Omega library is called to generate the loops to enumerate [q,d ;,d ,] and
[p,d ;,d ,] triples. Finally, the loops are converted to Fortran, and the
internal data structures of the compiler are updated. As an example, the
code enumerating the triples for (Sy5 +,. S33) —, (S, +,. S11 +. S33) is
shown in Figure 14(a) as C code for the send set and in Figure 14(b) for the
recv set. In these codes, process(.) is an implementation-specific function
that handles the resulting elements. These codes enumerate the elements
and only the elements that should be communicated between q and p. The
remaining sets are computed and enumerated similarly. Notice that redun-
dant equalities and inequalities can be eliminated before the code genera-
tion phase by using the “simplify” utility provided by the Omega library.

As a final note, although our use of Omega library increases the compi-
lation time as compared to the previous approaches based on RSDs, this
increase was not an issue for the programs we experimented with and was

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1282 . M. Kandemir et al.

if (P ==3) { if (P>= 1 && P <=3) {
for (j = 31; j <= 111; j += 16) { for (j = 4xP+31; j <= 4xP+111; j += 16) {
for (k = 31; k <= 62; k++) { for (k = 31; k <= 62; k++) {
process_element (0,j,k); process_element (P-1,j,kJ;
} ¥
} }
¥ }
if (P >= 0 && P <= 2) { if (P == 0) {
for (j = 4xP435; j <= 4%P+115; j += 16) { for (j = 31; j <= 111; j += 18) {
for (k = 31; k <= 62; k++) { for (k = 31; k <= 62; k++) {
process_element (P+1,j,k); process_element(3,] ,k)
3 ¥
} ¥
} 3
(a) send set. (b) recv set.

Fig. 14. Code for enumerating (S,5 +.S33) —. (S4 +,.S11 +. S33) for the example shown in
Figure 9 for a specific processor P. process_element () is an implementation-specific function
that handles the set of elements to be communicated.

more than compensated by the run-time gains due to optimized communi-
cation, as explained in the next section.

6. EXPERIMENTS

In this section we report experimental results for eight programs that
exhibit regular communication behavior. The salient characteristics of
these programs are given in Table IV. addx and eflux are two subpro-
grams from the Perfect Club Benchmarks. The hydro_m code is a modified
version of hydro . To obtain this version two modifications have been made
to the program aimed at highlighting the difference between our two global
optimization techniques. First, the second loop nest is distributed over its
statements. Second, the loop bounds in the first loop nest are reduced to
1/4th of the original values. The REFS column shows the number of
references in the program in question whereas the C REFScolumn gives the
number of references that require communication. The ITER column shows
how many times the outermost timing loop has been iterated for each
program. Except for some hard-coded (small) values of array dimensions,
the size of each dimension of an array used in the experiments is set to the
value shown in the SIZE column. In tred2 for 8 and 16 processors we used
60 and 120, respectively, as the SIZE parameter. The DISTR column shows
how the highest-dimensional arrays in the program are distributed. A “D’
in a dimension means that the dimension is distributed across processors
while an asterisk denotes a nondistributed dimension as in HPF [Koelbet et
al. 1994].

The distributed dimensions shown in the table are the best distributions
for these programs as far as the communication is concerned. For example,
selecting a (#,D) distribution for tomcatv would prevent message vector-
ization. For each distributed dimension we experimented with four differ-
ent distributions: block (BLK) , cyclic (CYC), cyclic(4) (CYC(4)), and cy-
clic(7) (CYC(7)). The last two distributions are taken into account to
demonstrate the effectiveness of our approach with block-cyclic distribu-

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1283

A Global Communication Optimization Technique

UoTONpal XLIjeu 1 031/09 (= ‘a) 144 (44 dr om) ‘qg omy soedsty zpan
‘duwrod pajerar ysouw 01 0009 (CEN¢) e1 9L g duo ‘(g anoj qn 99)10d xnyo
"durod pajerar ysow 1 761 (= ‘) 44 oL g dUo ‘qg °AY qn 929510d Xppe

I9A0s uorjenba I03EM 0% e1¢ (+ ‘Q) (5% 961 (g ue93anoj z6o9dg wims
uorjeIoULS Ysew (g 01 00% (= ‘Q) 0% G) T oM} ‘(g UoAdS z6oedg AYeswo)

POYIOW dATjRINT 01 00% (¢ 'a') 9 ee AT 921} ‘qg 29I} SIOULISAL] Ipe

0IpAY payyrpowt 0% 00% (@) 01 4] g euru SIOULIDAIT] wolpAy
SOTWRUAPOIPAY (g 0% 00% (@) 01 14 g duru SIOWLIDAT] oipAy
uorydLIdsa(] Jorig g3l 371 d1sia S434 O S43d sferry 92Inog urexdorg

“UOTSUSWITP POJNLIJSTPUOU B S9J0UIP YSLISISB UR J[IYM ‘SI10S59001d SSOIOR PIINQLIISIP ST UOISUSWIP
911 JBYj) SUBSOW UOISUSWIP B Ul (], Y ‘POINqLISTPp o1 werdold B Ul SABIIB [RUOISUSWIP-}SOYSIY 9Y) MO SMOUS UWN[0d Y S|d 9y, "Uwnod Jj7|S
9Y)} UI UMOUS 9N[BA 91} 0} 10§ SI SJUOWLIdAXd 91} Ul pasn AvLIB UB JO UOISUSWIP Yory ‘werdord yoeo I0J pojerojl usaq sey doo] Surur) }SOuLIoIno
9y} sowr} AUBW MOY SMOYS UWN[0d YJ|| 9Y], "UOIJBITUNWWIOD SIINDaI JBY) S90USI9JAI JO JOQUINU 9Y) SOALS UWN[0ISHTY O 9YJ SBaIaym
‘arexSoxd oY} UT S9JUSISJAI JO JOqUWINU 9Y) SMOYS UWN[0dS4TY dYJ, ‘SOIISLIoJORIRYY) IO, PUR 108 jUuewWLIadXy N Ul swerdold Al o[qel

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1284 . M. Kandemir et al.

tions where most of the previous techniques fail. Two cyclic factors, namely
4 and 7, are selected arbitrarily, one being a power of two whereas the
other one is prime. Gupta and Banerjee [1992] note for tred2 that the
block-cyclic distribution is the best choice. We also found in addx that
block-cyclic distribution performs best (depending on the number of proces-
sors used).

We have found that except hydro_m for all of these programs our two
global optimization approaches given in Figures 7 and 11 result in the
same optimized code. For each program except hydro_m we experiment
with two different versions of the code. The base version does not perform
any global communication optimization but does perform message vector-
ization. In fact, a direct application of the owner-computes rule without any
optimization results in run-time resolution. In run-time resolution the
ownership and communication for each reference are computed at run-
time. Since each processor must execute the entire iteration space to
compute ownership, this method results in large amounts of overhead.
Communication for resolution programs is also very inefficient, as it
involves transmission of a large number of small messages [Palermo et al.
1994]. Instead we considered the message-vectorized version with loop
bounds reduction as the base version. Since most of the compilers for
message-passing architectures apply some kind of message vectorization,
we felt that it would be unfair to compare our method against run-time
resolution without loop bounds reduction. Notice, however, even in a single
loop nest our global optimization approach subsumes most local optimiza-
tions including message vectorization, message coalescing, and message
aggregation. For all the programs except hydro_m we refer to the globally
optimized version as opt . In the hydro_m code, opt refers to the approach
given in Figure 7 whereas opt * denotes the approach given in Figure 11.
For all the programs and the versions, we also applied an optimization that
we call communication pattern reuse. For example, assuming a (*,D)
distribution for all arrays, in a statement such as X(i, j) = Y(,j — 1) +
Z(i,j — 1), arrays Y and Z have the same communication structure;
therefore, we can generate communication loops only once and reuse the
communication patterns with a different name for each array. This optimi-
zation has not been fully implemented yet.

We now briefly discuss the implementation status of our framework. We
have finished the implementation of local communication analysis, Omega-
Parafrase data structure interfacing, and communication loop generation
parts. Currently, the global communication analysis part and communica-
tion pattern reuse optimizations are being implemented. Experimenting
with different message-combining techniques (different %(i) predicates)
and extension to an interprocedural setting are in our future plans. Below,
we present the first results from our implementation.

We measure the effectiveness of our approach in terms of three different
but correlated parameters: number of communication messages across all
processors, data volume to be communicated across all processors, and
execution time. The number of messages and the communication volume

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1285

Table V. Results for hydro on an IBM SP-2. Top: Number of communications for different
versions. Middle: Communication volume in megabytes for different versions. Bottom:
Execution times in seconds for the different versions.

of PROCS = 8 # of PROCS = 16

version (#BLK)(#CYC)(#*CYC@)(#CYC()(#BLK)(#CYC)(*CYC@)(#CYC(7)

base 1,410 1,440 1,440 1,440 3,005 3,880 3,880 3,880
opt 1,120 1,280 1,280 1,280 2,424 2.560 2,560 2,660
of PROCS = 8 # of PROCS = 16

version (#,BLK) (#CYC)(*CYC@))(#CYC(7))(#BLK)(%CYC)(*CYC@)(*CYC(7))

base 2.1 108.9 27.1 14.8 5.1 111.0 28.8 17.1
opt 1.9 97.0 24.2 12.0 4.3 99.1 26.0 13.9
of PROCS = 8 # of PROCS = 16

version (#BLK) (#CYC)(*CYC@)(*CYC(7))(#BLK)(#CYC)(*CYC@)(*CYC(7))

base 4.12 4.75 5.09 4.83 2.81 3.33 3.83 3.06
opt 3.07 3.74 3.87 3.37 2.11 2.75 2.94 2.80

are counted dynamically during the execution. The execution times are
obtained on a 16-node IBM SP-2 at the Center for Parallel and Distributed
Computing at Northwestern University. Each node of this machine has
128MB memory, 2GB disk, and an IBM Power2 processor.

Tables V through XII give the number of communications, the communi-
cation volume, and the execution times (in seconds) for our programs for
the base and opt versions. Table XIII summarizes the improvement in
number of messages for our programs. For hydro m there are two rows
corresponding to our two methods (opt and opt * from top). Overall there is
a 32% reduction in the number of messages. Improvement with 16 proces-
sors is slightly higher than that with 8 processors. This is because with the
16 processors in general there are more communication messages to opti-
mize. It is also interesting to note that our optimization technique achieves
33% improvement with block-cyclic distribution (CYC(4) and CYC(7))
where most of the previous techniques fail. As expected, for hydro_m our
second approach which controls communication hoisting performs better
than aggressive hoisting.

Table XIV shows the percentage improvement in communication volume
across all processors. We note that in both 8- and 16-processor cases we
have on average 37% improvement over the base version. Considering
block-cyclic distributions alone, we have a 40% improvement. As mentioned
earlier these counts are collected dynamically at run-time using the perfor-
mance analysis tools available on the SP-2. Also it should be emphasized
that most of the improvements on adi and tomcatv result from a single
nest, meaning that an aggressive loop-level optimizer that applies a combi-
nation of vectorization, coalescing, and aggregation could also obtain simi-
lar improvements.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1286 . M. Kandemir et al.

Table VI. Results for hydro_m on an IBM SP-2. Top: Number of communications for
different versions. Middle: Communication volume in megabytes for different versions.
Bottom: Execution times in seconds for the different versions.

of PROCS = 8 # of PROCS = 16

version (#BLK)(#CYC)(#*CYC@)(#CYC()(#BLK)(#CYC)(*CYC@)(#CYC(7)

base 1,540 1,604 1,604 1,604 3,318 3,810 3,810 3,810

opt 1,110 1,227 1,227 1,227 2,400 2611 2,611 2,611

opt * 1,110 1,180 1,180 1,180 2,330 2.555 2,555 2,555
of PROCS = 8 # of PROCS = 16

version (#,BLK)(#CYC)(*CYC@)(#CYC(7))(#BLK)(*CYC)(*CYC@)(*CYC(7))

base 2.0 75.4 19.1 11.0 4.9 85.2 19.8 11.7

opt 1.8 17.0 4.2 3.1 4.1 17.8 4.3 3.9

opt 1.8 5.9 3.2 2.8 3.9 6.6 4.4 4.1
of PROCS = 8 # of PROCS = 16

version (#BLK)(#CYC)(#*CYC@)(#CYC()(#BLK)(#CYC)(*CYC@)(#CYC(7)

base 3.65 4.96 3.97 3.99 2.40 2.82 3.10 2.88
opt 2.67 3.05 3.14 2.98 1.90 1.99 1.97 1.98
opt 2.30 2.82 2.95 2.81 1.73 1.80 1.87 1.78

Table VII. Results for adi on an IBM SP-2. Top: Number of communications for different
versions. Middle: Communication volume in kilobytes for different versions. Bottom:
Execution times in seconds for the different versions.

of PROCS = 8 # of PROCS = 16

version (#BLK) (#CYC)(#*CYC@)(#CYC()(#BLK)(#CYC)(*CYC@)(#CYC(7)

base 710 968 968 968 1,640 1,922 1,922 1,922
opt 288 480 480 480 644 960 960 960
of PROCS = 8 # of PROCS = 16
version (#BLK) (#CYC)(*CYC@)(#CYC()(#BLK)(#CYC)(*CYC@)(#CYC(7))
base 20.1 187.2 46.8 27.0 84.0 187.2 46.8 27.0
opt 11.4 94.0 23.3 13.0 53.9 94.0 23.3 13.0
of PROCS = 8 # of PROCS = 16

version (#BLK) (#CYC)(*CYC(@))(#CYC(7))(*BLK)(*CYC)(*CYC@))(#CYC(7))

base 0.58 0.79 0.64 1.11 1.08 1.13 1.10 1.98
opt 0.43 0.52 0.47 0.58 0.81 0.87 0.88 0.84

Finally, Table XV gives the improvement in execution times. We note
that the performance improvement for some programs such as hydro , adi ,
tomcatv , and swim is very good whereas for eflux and tred2 the improve-
ment is only modest. This is due to the fact that the communication for this
second group of codes is either small compared to the total execution time
or difficult to optimize. Therefore, there is not much opportunity for

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1287

Table VIII. Results for tomcatv on an IBM SP-2. Top: Number of communications for
different versions. Middle: Communication volume in megabytes for different versions.
Bottom: Execution times in seconds for the different versions.

of PROCS = 8

of PROCS = 16

version (*,BLK) (*,CYC)(*,CYC(4))(

#BLK)(#CYC)(*CYC@)(#CYC(7)

base 140 6,396 1.612
opt 56 124 124

300 6,498 1,694 998
120 252 252 252

of PROCS = 8

of PROCS = 16

version (*,BLK) (*CYC)(*CYC(4))(

*BLK) (*,CYC)(*,CYC(4))(=CYC(7))

base 0.35 19.2 4.9
opt 0.06 6.1 1.5

0.75 19.2 4.9 2.8
0.11 6.1 1.5 0.86

of PROCS = 8

of PROCS = 16

version (*,BLK) (*CYC)(*CYC(4))(

#BLK) (#CYC)(*CYC@)(*CYC(7))

base 1.39 3.19 2.39
opt 1.06 1.31 1.44

1.30 2.25 2.26 2.29
0.88 1.06 1.09 1.07

Table IX. Results for swim on an IBM SP-2. Top: Number of communications for different
versions. Middle: Communication volume in megabytes for different versions. Bottom:
Execution times in seconds for the different versions.

of PROCS = 8

of PROCS = 16

version (*,BLK) (*CYC)(*CYC(4))(

#BLK)(#CYC)(*CYC@)(#CYC(7))

base 3,967 120,142 31,598
opt 3,678 84,182 22,358

8,215 125,142 34,598 21,593
7,615 88,182 26,358 19,753

of PROCS = 8

of PROCS = 16

version (#BLK)(#*CYC)(#CYC(4))(

#BLK) (#CYC)(*CYC@)(#CYC(7))

base 7.4 240.2 62.2
opt 7.1 163.8 44 .4

15.8 248.0 68.0 42.4
14.2 168.0 48.5 30.1

of PROCS = 8

of PROCS = 16

version (#BLK) (#CYC)(*CYC(@))(#CYC(7))(*BLK)(*CYC)(*CYC@))(#CYC(7))

base 11.31 36.55 21.14 19.64 7.03 19.22 12.20 12.24
opt 10.48 25.47 18.47 16.13 6.71 11.12 10.78 10.31

improvement. Overall we have 26% improvement. Our approach improves
performance in all cases, and more importantly we see a 27% improvement
in block-cyclic distributions showing through a global analysis that it is
possible to optimize communication globally even in the existence of
block-cyclic distributions.

Having established the benefits of our global optimization approach, we
now quantify the additional costs incurred by our approach at compile-time
and run-time. The results of our cost analysis are summarized in Tables

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1288 . M. Kandemir et al.

Table X. Results for addx on an IBM SP-2. Top: Number of communications for different
versions. Middle: Communication volume in megabytes for different versions. Bottom:
Execution times in seconds for the different versions.

of PROCS = 8

of PROCS = 16

version (*,BLK) (*,CYC)(*,CYC(4))(

#BLK)(#CYC)(*CYC@)(#CYC(7)

base 91,470 92,014 91,462
opt 57,266 57,538 57,190

98,078 98,622 98,614 101,342
61,426 61,698 61,690 63,466

of PROCS = 8

of PROCS = 16

version (*,BLK) (*CYC)(*CYC(4))(

*BLK) (*,CYC)(*,CYC(4))(=CYC(7))

base 0.37 0.38 0.37
opt 0.23 0.23 0.23

0.40 0.40 0.40 0.41
0.26 0.26 0.26 0.27

of PROCS = 8

of PROCS = 16

version (*,BLK) (*CYC)(*CYC(4))(

#BLK) (#CYC)(*CYC@)(*CYC(7))

base 5.18 6.65 5.10
opt 3.33 4.94 4.12

5.99 6.48 6.89 5.70
3.08 4.79 4.07 3.36

Table XI. Results for eflux on an IBM SP-2. Top: Number of communications for different
versions. Middle: Communication volume in megabytes for different versions. Bottom:
Execution times in seconds for the different versions.

of PROCS = 8

of PROCS = 16

version (*,BLK) (*CYC)(*CYC(4))(

#BLK)(#CYC)(*CYC@)(#CYC(7))

base 203 470 470
opt 84 408 408

435 950 950 950
180 816 816 816

of PROCS = 8

of PROCS = 16

version (#BLK)(#*CYC)(#CYC(4))(

#BLK) (#CYC)(*CYC@)(#CYC(7))

base 0.07 30.3 7.4
opt 0.04 30.1 7.0

0.15 30.3 7.4 4.3
0.09 30.1 7.0 4.0

of PROCS = 8

of PROCS = 16

version (*,BLK) (*,CYC)(*,CYC(4))(

#BLK) (#CYC)(#CYC@))(*CYC(7))

base 5.90 13.10 13.10
opt 5.76 12.90 12.97

4.22 7.46 8.78 7.41
3.99 7.28 6.98 6.72

XVI and XVII. All the compilation times shown in the rest of the article
have been obtained on a Model 712/60 HP workstation with a 132MHz PA
RISC processor, 64KB first-level cache, 1MB second-level cache, and a
256MB memory.

Table XVI shows the compilation times in milliseconds for our programs
under different distributions. For each distribution the compilation time is
divided into three components: GLO is the time it takes for our global
data-flow analysis to run; OMEis the time the Omega library takes to

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1289

Table XII. Results for tred2 on an IBM SP-2. Top: Number of communications for different
versions. Middle: Communication volume in megabytes for different versions. Bottom:
Execution times in seconds for the different versions.

of PROCS = 8 # of PROCS = 16

version (#BLK)(#CYC)(#*CYC@)(#CYC()(#BLK)(#CYC)(*CYC@)(#CYC(7)

base 1,706 1,759 1,740 1,721 2,028 2,300 2,286 2,280
opt 1,650 1,719 1,718 1,711 1,988 2,015 2,004 1,996
of PROCS = 8 # of PROCS = 16

version (#,BLK) (#CYC)(*CYC@))(#CYC(7))(#BLK)(%CYC)(*CYC@)(*CYC(7))

base 11.5 12.1 11.9 11.9 14.2 15.5 15.1 15.2
opt 11.1 11.8 11.4 11.3 13.7 15.0 14.7 14.7
of PROCS = 8 # of PROCS = 16

version (#BLK) (#CYC)(*CYC@)(*CYC(7))(#BLK)(#CYC)(*CYC@)(*CYC(7))

base 0.83 0.90 0.80 0.76 0.91 1.16 0.90 0.89
opt 0.78 0.78 0.73 0.69 0.90 1.05 0.82 0.79

Table XIII. Percentage Improvements in Number of Messages

of PROCS = 8 # of PROCS = 16

program(#BLK)(*CYC)(*CYC())(#CYC(7))(#BLK)(#CYC)(*CYC@))(#CYC(7))

hydro 21 11 11 11 19 34 34 34
hydro_m 28 24 24 24 28 31 31 31
hydro_m 28 26 26 26 30 33 33 33
adi 59 50 50 50 61 50 50 50
tomcatv 60 98 92 87 60 96 85 75
swim 7 30 29 22 7 29 24 9
addx 37 37 37 37 37 37 37 37
eflux 47 13 13 13 59 14 14 14
tred2 3 2 1 1 2 12 12 12
average 33 33 32 30 33 37 35 33

generate communication loops; and REMis the remaining time in compila-
tion including parsing and code generation. The extra time required to
write intermediate code into disk files is excluded from these figures.

The first three columns of Table XVII show the percentages for GLQ OME
and REMin compilation time, considering all the distributions used in the
programs. The GLP column gives us the sum of the columns GLOand OME
and represents the percentage of the compilation time that our global
optimization approach takes (global analysis + generating communication
loops). We can see on the average that 64% of the compilation time is spent
on our global approach. However, it is also important to observe how much
compilation time the base version using the Omega library would take. For
the case where we do not use any global optimization but still use an
Omega-based loop-level optimization, the percentages of compilation time
the Omega library takes to generate communication loops are shown under

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1290 . M. Kandemir et al.

Table XIV. Percentage Improvements in Communication Volume

of PROCS = 8 # of PROCS = 16

program(#BLK)(#CYC)(*CYC@)(#CYC(7)(#BLK)(*CYC)(#CYC@)(*CYC(7))

hydro 10 11 11 19 16 11 10 19
hydro_m 10 77 78 72 16 79 78 67
hydro_m 10 92 83 75 20 92 77 65
adi 43 50 50 52 36 50 50 52
tomcatv 83 68 69 69 85 68 69 69
swim 4 32 29 31 10 32 29 29
addx 38 39 38 35 35 35 35 34
eflux 43 1 5 7 40 1 5 7
tred2 3 2 4 5 4 3 3 3
average 27 42 41 40 29 41 39 38

Table XV. Percentage Improvements in Execution Time

of PROCS = 8 # of PROCS = 16

program (#,BLK) (#CYC)(*CYC@)(#CYC(7)(#*BLK)(*CYC)(*CYC@)(#CYC(7))

hydro 25 21 24 30 25 17 23 8
hydro_ m 27 39 21 25 21 29 36 30
hydro_m 387 43 26 30 28 36 40 36
adi 26 34 27 48 25 23 20 58
tomcaty 24 59 40 44 32 53 52 53
swim 7 30 13 18 5 42 12 16
addx 36 26 19 41 49 32 41 41
eflux 2 2 1 7 5 2 21 9
tred2 6 13 9 9 1 9 9 11
average 21 30 20 28 21 27 29 29

column LOP. Even if we do not use the global framework, we see that just
using the Omega library takes 50% of the compilation time on the average.
The DIF column shows the difference (GLP—LOP) between the global optimi-
zation approach and the loop-nest-based optimization approach, both using
the Omega library. We see that the additional burden of our framework
over the existing framework is only 14%.

We can conclude that a hypothetical global optimization approach using
RSDs to represent communication sets may be able to eliminate at most
64% of the compilation time. This is a theoretical bound, as we do not know
of any RSD-based framework with zero cost that can handle block-cyclic
distributions globally. Given the gains in execution time, we believe that
the extra overhead that our approach incurs at compile-time is tolerable. In
general, over several runs, the extra compilation time will be amortized.
Moreover, we can expect the Omega-like tools to be much faster in the
future.

The RUN column shows the percentages of execution times spent on
executing the communication loops (without communication statements).
On the average, only 7% of the execution time is spent on communication

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1291

Table XVI. Compilation Times in Milliseconds for Different Distributions. For a given
distribution, the compilation time is divided into three components: GLOis the time it takes
for our global data-flow analysis to run. OMEis the time the Omega library takes to generate
communication loops. And REMis the remaining time in compilation, including parsing and

code generation.

BLK cyc CYC(4) CYC(7)

program GLO OME REM GLO OME REM GLO OME REM GLO OME REM

hydro 157 1,883 1,414 211 1,945 1,466 213 2,267 1,176 213 2,280 1,466
hydro_m 166 1,900 1,290 188 1,906 1,400 199 2444 1,176 180 2,200 1,366
adi 161 955 1,100 161 970 1,134 174 984 1,100 176 976 1,132
tomcatv 167 2,308 1,100 200 2,616 1,232 217 3,008 1,200 217 2,867 1,186
swim 300 2,967 1,800 284 3,817 1,834 266 3,767 1,834 384 3,783 1,834
addx 200 1,283 1,155 254 1,367 1,184 198 1,417 1,184 242 1,555 1,180
eflux 183 2,017 1,104 184 2,082 1,106 187 2,300 1,134 187 2,117 1,130
tred2 180 2,417 1,334 183 2,584 1,334 184 2,466 1,366 187 2,484 1,360
average 189 1,966 1,245 208 2,161 1,274 205 2,332 1,271 223 2,283 1,269

Table XVII. Cost Analysis of Our Approach Over All Distribution Types. On average, half
the compilation time is spent in generating the communication loops. All the values are in
percentages of the total compilation time (except the RUNcolumn). The run-time overhead of
executing these loops is not very high.

Breakdown (%)

program GLO OME REM GLP LOP DIF RUN
hydro 5 57 38 62 48 14 6
hydro_m 5 59 36 64 48 16 6
adi 7 43 50 50 36 14 4
tomcatv 5 66 29 71 47 24 5
swim 5 63 32 68 58 10 9
addx 8 50 42 58 54 4 8
eflux 5 63 32 68 54 14 7
tred2 3 62 35 65 55 10 9
average 6 58 36 64 50 14 7

loops; therefore, the overhead incurred by our Omega-based approach at
run-time is reasonable.

We also compared the compilation time taken by our Omega-based global
approach with that of an approach based on processor-tagged descriptors
(PTDs) [Su et al. 1994], an enhanced form of RSDs built on top of
Parafrase-2. PTDs provide an efficient way of describing distributed sets of
iterations and regions of data and are based on a single-set representation
parameterized by the processor location for each dimension of a virtual
mesh. Table XVIII shows the overall compilation times of the Omega-based
approach (OME, the PTD-based approach (PTD), and the percentage in-
crease (INC) when going from PTD to OMEfor pure block (BLK) and pure
cyclic (CYQ distributions, as the PTDs cannot compile for general block-
cyclic distributions. The results show that the use of Omega instead of an
RSD-like approach increases the compilation time 7% to 27%, averaging on
19% for both block and cyclic distributions.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1292 . M. Kandemir et al.

Table XVIII. Total Compilation Times in Milliseconds of the Omega-Based Approach and
the PTD-Based Approach. The OMEcolumn and the PTDcolumn give the compilation times
obtained using the Omega-based and the PTD-based approaches, respectively. The INC
column shows the percentage increase when going from PTDto OME

BLK CcYC
program OME PTD INC OME PTD INC
hydro 3,454 2,715 27 3,622 2,927 24
hydro_m 3,356 2,644 25 3,494 2,801 25
adi 2,216 2,044 8 2,265 2,086 9
tomcatv 3,575 3,148 14 4,048 3,290 23
swim 5,067 4,426 15 5,935 5,015 18
addx 2,638 2,241 18 2,805 2,615 7
eflux 3,304 2,650 25 3,372 2,814 20
tred2 3,931 3,355 17 4,101 3,390 21
average 3,443 2,903 19 3,705 3,117 19

7. RELATED WORK

Several papers have addressed the problem of generating local address and
communication sets for HPF programs where arrays are distributed using
the general block-cyclic distributions [Ancourt et al. 1997; Chatterjee et al.
1995; Gupta et al. 1996; Kennedy et al. 1995; 1996; Thirumalai and
Ramanujam 1996; Venkatachar et al. 1997]. Of these, Ancourt et al. use a
linear algebra framework; this renders their approach general. The rest of
the approaches are very efficient for a restricted class of mappings. Consid-
ering the lack of generality of these approaches, their use in the communi-
cation optimizations of the kind discussed in this article appears to be
limited.

Most of the previous efforts considered communication optimization at
the loop level. Although each approach has its own unique features, the
general idea has been the use of an appropriate combination of message
vectorization, message coalescing, and message aggregation [Bala-
sundaram et al. 1990; Banerjee et al. 1995; Bozkus et al. 1994; Gerndt
1990; Hiranandani et al. 1992; Zima and Chapman 1991].

More recently some researchers have proposed techniques based on
data-flow analysis in order to optimize communication across multiple loop
nests. Agrawal and Saltz [1997] present a framework for partial redun-
dancy elimination for communication optimization in data-parallel pro-
grams with irregular data access patterns. Amarasinghe and Lam [1993]
present several algorithms to optimize communication on machines with
distributed address spaces. Their approach uses the last write tree repre-
sentation to eliminate redundant messages within a single loop nest.
Although their technique is also based on data-flow information, they do
not allow loop nests within conditionals.

Granston and Veidenbaum [1991] propose an algorithm that applies
combined flow and dependence analysis to programs with parallel con-
structs. Their algorithm detects partial redundancies across loop nests and

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1293

in the presence of conditionals. However, their approach is not directly
applicable to programs with general data distributions.

Gong et al. [1993] describe optimizations that reduce communication
overhead and execution time. Their optimizations include elimination of
redundant communication and combining messages. However, their ap-
proach cannot handle general types of distributions, and they offer no
optimizations to eliminate the excessive number of communication calls
due to split operations.

Gupta et al. [1995b] present a framework to optimize communication
based on data-flow analysis and available section descriptors. Their ap-
proach is aggressive in exploiting the locally available data, but fails to
support general block-cyclic distributions, and the representation that they
use makes it difficult to embed alignment and distribution information.
Moreover, the communication set information they compute may not be
precise.

Hanxleden and Kennedy [1993; 1994] present a code placement frame-
work for optimizing communication caused by irregular array references.
Although the framework provides global data-flow analysis, it treats arrays
as indivisible entities; thus, it is limited in exploiting the information
available in compile-time. In contrast, Kennedy and Nedeljkovic [1995]
offer a global data-flow analysis technique using bit vectors. Although this
approach is efficient, it is not as precise as the approach presented in this
article. They do not give any clue how their method can be extended to
handle general type block-cyclic distributions.

Kennedy and Sethi [1995; 1996; 1997] show the necessity of incorporat-
ing resource constraints into a global communication optimization frame-
work. They take into account limited buffer size constraint and illustrate
how strip-mining improves the efficacy of the communication placement.
Their approach works with multiple nests but not for general block-cyclic
distributions. Since they do not give any experimental results, a direct
quantitative comparison of this work with ours is not possible. Their work
defines a data-flow variable called SAFE which can be used in a similar
manner as our predicate ?(i). Kennedy and Sethi [1995; 1996; 1997] do not
use a linear algebra framework; later work from the dHPF project at Rice
[Adve and Mellor-Crummey 1998; Adve et al. 1997] includes the use of the
Omega library for message optimizations.

The IBM pHPF compiler [Chakrabarti et al. 1996; Gupta et al. 1995a]
achieves both redundancy elimination and message combining globally. But
message combining is feasible only if the messages have identical patterns,
or if one pattern is a subset of another. The general block-cyclic distribu-
tions, however, can lead to complicated data access patterns and communi-
cation sets which, we believe, more precisely can be represented within a
linear algebra framework.

Yuan et al. [1997a; 1997b] present a communication optimization ap-
proach based on array data-flow analysis. The cost of the analysis is
managed by partitioning the optimization problem into subproblems and

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1294 . M. Kandemir et al.

then solving the subproblems one at a time. Since that approach is also
based on RSDs, it has difficulty in handling block-cyclic distributions.

Adve et al. [Adve and Mellor-Crummey 1998; Adve et al. 1997] describe
an integer-set-based approach for analysis and code generation for data-
parallel programs that uses the Omega library [Kelly et al. 1995]. They
consider performing message vectorization and message coalescing for
general access patterns. Their method can also work with computation
decomposition schemes that are not based on the owner-computes rule.
These papers do not show how their techniques handle global communica-
tion optimization for multiple loop nests in the case of block-cyclic distribu-
tions.

Interval analysis used in this article was first introduced by Allen and
Cocke [1976]. They used it to solve several data-flow problems; the analysis
was then extended by Gross and Steenkiste [1990] to array sections. The
approach proposed by Gupta et al. [1995b] mentioned above refines the
technique by Gross and Steenkiste using loop-carried dependences.

In this article we used ideas from the linear algebra framework [Ancourt
et al. 1997] and data-flow analysis [Aho et al. 1986; Allen and Cocke 1976]
developed for performing optimizations on the CFG representation of the
programs. We have shown that these two techniques blend together in a
nice manner, which makes dealing with the global communication optimi-
zation problem feasible even in the presence of general block-cyclic distri-
butions. We should emphasize that the data-flow equations given by
Figures 7 and 11 are only two representative solutions to show how the
global communication problem can be put into the linear algebra frame-
work. We believe most of the previous approaches can also be put into this
framework by redefining the communication and ownership sets in terms of
equalities and inequalities. This would not only give those approaches the
capability to handle arbitrary alignments and distributions, but also pro-
vides high accuracy in manipulating the communication sets.

8. SUMMARY

Management of accesses to nonlocal data to minimize communication costs
is critical for scaling performance on distributed-memory message-passing
machines. We presented here a global communication optimization scheme
based on two complementary techniques: data-flow analysis and a linear
algebra framework. The combination of these techniques allows us to
optimize communication globally and use polyhedron scanning techniques
to enumerate global communication sets effectively for HPF-like align-
ments and distributions including block-cyclic distributions. Our frame-
work takes into account control flow and achieves message vectorization,
message coalescing, message aggregation, and redundant communication
elimination, all in a unified framework. The cost of the analysis is managed
by keeping the communication sets symbolically until the end of the
data-flow analysis where the Omega library is called to generate actual
sets in terms of equalities and inequalities. The experimental results

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1295

demonstrate the effectiveness of our approach in reducing the number of
messages and the volume of the data to be communicated. Future work will
address the development of performance models to provide the compiler
with the ability to estimate the profitability of message aggregation and
coalescing globally.

ACKNOWLEDGMENTS

The authors would like to thank Evan Rosser for his help in installing the
Omega library and Omega calculator, a high-level interface to the Omega
library.

REFERENCES

AGRAWAL, G. AND SALTZ, J. 1997. Inter-procedural data flow based optimizations for distrib-
uted memory compilation. Software Practice and Experience, 27, 5, 519-545.

ADVE, V., MELLOR-CRUMMEY, J., AND SETHI, A. 1997. An integer set framework for HPF
analysis and code generation. Technical Report TR97-275, Computer Science Dept., Rice
University.

ADVE, V. AND MELLOR-CRUMMEY, J. 1998. Advanced code generation for High Performance
Fortran. In Languages, Compilation techniques, and Run-time Systems for Scalable Parallel
Systems, S. Pande and D. Agrawal (Eds.), Chapter 18, Lecture Notes in Computer Science
Series, Springer-Verlag. To appear.

AHO, A. V., SETHI, R., AND ULLMAN, J. 1986. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, second edition.

ALLEN, F. E. AND COCKE, J. 1976. A program data flow analysis procedure. Communications
of the ACM, 19, 3, 137-147, March.

AMARASINGHE, S. AND LAM, M. 1993. Communication optimization and code generation for
distributed memory machines. In Proc. SIGPLAN’93 Conference on Programming Language
Design and Implementation, pages 126—-138, Albuquerque, NM, June.

ANCOURT, A., COELHO, F., IRIGOIN, F., AND KERYELL, R. 1997. A linear algebra framework for
static HPF code distribution. Scientific Programming, 6, 1, 3—28, Spring.

BALASUNDARAM, V., Fox, G., KENNEDY, K., AND KREMER, U. 1990. An interactive environ-
ment for data partitioning and distribution. In 5¢h Distributed Memory Computing Confer-
ence, Charleston, SC.

BANERJEE, U. 1994. Loop Parallelization. Kluwer Academic Publishers.

BANERJEE, P., CHANDY, J. A., GuprTA, M., HopGEs IV, E. W., HoLM, J. G., LAIN, A., PALERMO,
D. J., Ramaswamy, S., AND Su, E. 1995. The PARADIGM compiler for distributed-memory
multicomputers. IEEE Computer, 28, 10, 37—-47, October.

Bozkus, Z., CHOUDHARY, A., Fox, G., HaupTt, T., AND RANKA, S. 1994. A compilation approach
for Fortran 90D/HPF compilers. Languages and Compilers for Parallel Computing, U.
Banerjee et al. (Eds.), Lecture Notes in Computer Science, Volume 768, pages 200-215.

CALLAHAN, D. AND KENNEDY, K. 1998. Analysis of inter-procedural side effects in a parallel
programming environment. Journal of Parallel and Distributed Computing, 5, 5, 517-550,
October.

CHAKRABARTI, S., GupTA, M., AND CHOI, J.-D. 1996. Global communication analysis and
optimization. In Proc. ACM SIGPLAN’96 Conference on Programming Language Design and
Implementation, pages 68-78, Philadelphia, PA, May.

CHATTERJEE, S., GILBERT, J., LONG, F., SCHREIBER, R., AND TENG, S. 1995. Generating local
addresses and communication sets for data-parallel programs. Journal of Parallel and
Distributed Computing, 26, 1, 72—84, April.

CREUSILLET, B. AND IRIGOIN, F. 1995. Inter-procedural array region analyses. In Proc. 8th
International Workshop on Languages and Compilers for Parallel Computers, pages 46—60,
Columbus, Ohio.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

1296 . M. Kandemir et al.

FosTER, I. 1994. Designing and building parallel programs. Addison-Wesley Publishing
Company, Reading, MA.

GAREY, M. AND JOHNSON, D. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company.

GONG, C., GupTa, R., AND MELHEM, R. 1993. Compilation techniques for optimizing commu-
nication on distributed-memory systems. In Proc. International Conference on Parallel
Processing, Volume II, pages 39-46, St. Charles, IL.

GRANSTON, E. AND VEIDENBAUM, A. 1991. Detecting redundant accesses to array data. In
Proc. Supercomputing’91, pages 854—865, Albuquerque, NM.

GRroOss, T. AND STEENKISTE, P. 1990. Structured data-flow analysis for arrays and its use in
an optimizing compiler. In Software-Practice and Experience, vol 20, no 2, pages 133-155,
February.

GupTA, M. AND BANERJEE, P. 1992. Demonstration of automatic data partitioning tech-
niques for parallelizing compilers on multicomputers. IEEE Transactions on Parallel and
Distributed Systems, 3, 2, 179-193, March.

GupTa, M., MIDKIFF, S., SCHONBERG, E., SESHADRI, V., SHIELDS, D., WANG, K., CHING, W., AND
Ngo, T. 1995a. An HPF compiler for the IBM SP-2. In Proc. Supercomputing 95, San
Diego, CA.

GupTA, M., SCHONBERG, E., AND SRINIVASAN, H. 1995b. A unified data-flow framework for
optimizing communication. In Languages and Compilers for Parallel Computing, K. Pingali
et al. (Eds.), Lecture Notes in Computer Science, Volume 892, pages 266-282.

GurTa, S. K. S., KaUsHIK, S. D., HuaNG, C.-H., AND SADAYAPPAN, P. 1996. Compiling array
expressions for efficient execution on distributed-memory machines. Journal of Distributed
and Parallel Computing, 32, 2, 155-172, February.

Harr, M. W., HiraNnaNDANI, S., KENNEDY, K., AND TSEnG, C.-W. 1992. Inter-procedural
compilation of Fortran D for MIMD distributed-memory machines. In Proc. Supercomput-
ing’92.

HaLL, M. W., MURPHY, B., AMARASINGHE, S., L1ao, S., AND Lam, M. 1995. Inter-procedural
analysis for parallelization. In Proc. 8th International Workshop on Languages and Compil-
ers for Parallel Computers, pages 61-80.

HENNESSY, J. L. AND PATTERSON, D. A. 1990. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers, San Mateo, CA.

HiraNaNDANI, S., KENNEDY, K., AND TSENG, C. 1992. Compiling Fortran D for MIMD
distributed-memory machines. Communications of the ACM, 35, 8, 66—80, August.

KeLLY, W., MasLov, V., PucH, W., ROSSER, E., SHPEISMAN, T., AND WONNACOTT, DAVID. 1995.
The Omega Library interface guide. Technical Report CS-TR-3445, CS Dept., University of
Maryland, College Park.

KENNEDY, K. AND NEDELJKOVIC, N. 1995. Combining dependence and data-flow analyses to
optimize communication. In Proc. 9th International Parallel Processing Symposium, pages
340-346.

KeENNEDY, K. AND SETHI, A. 1995. A constrained-based communication placement frame-
work, Technical Report CRPC-TR95515-S, CRPC, Rice University.

KeNNEDY, K. AND SETHI, A. 1996. A communication placement framework with unified
dependence and data-flow analysis. Proc. 3rd International Conference on High Performance
Computing.

KENNEDY, K. AND SETHI, A. 1997. Resource-based communication placement analysis. In
Languages and Compilers for Parallel Computing, D. Sehr et al. (Eds.), Lecture Notes in
Computer Science, Volume 1239, pages 369-388, Springer-Verlag.

KENNEDY, K., NEDELJKOVIC, N., AND SETHI, A. 1995. A linear-time algorithm for computing
the memory access sequence in data parallel programs. In Proc. the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Santa Barbara, CA, pages
102-111.

KENNEDY, K., NEDELJKOVIC, N., AND SETHI, A. 1996. Communication generation for cyclic(k)
distributions. In Languages, Compilers, and Run-Time Systems for Scalable Computers, B.
Szymanski and B. Sinharoy (Eds.), Chapter 14, Kluwer Academic Publishers.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

A Global Communication Optimization Technique . 1297

Knoop, J., RUTHING, O., AND STEFFEN, B. 1994. Optimal code motion: Theory and practice.
ACM Transactions on Programming Languages and Systems, 16, 4, 1117-1155, July.

KoELBEL, C., LOVEMEN, D., SCHREIBER, R., STEELE, G., AND ZOSEL, M. 1994. High Perfor-
mance Fortran Handbook. The MIT Press.

PaLErMO, D. J., Su, E., CHANDY, J. A., AND BANERJEE, P. 1994. Communication optimiza-
tions used in the PARADIGM compiler for distributed-memory multicomputers. In Proc.
International Conference on Parallel Processing.

PovLycHrRONOPOULOS, C., GIRKAR, M. B., HaGgHiGHAT, M. R., LEE, C. L., LEUNG, B. P., AND
SCHOUTEN, D. A. 1989. Parafrase-2: An environment for parallelizing, partitioning, syn-
chronizing, and scheduling programs on multiprocessors. In Proc. the International Confer-
ence on Parallel Processing, St. Charles IL, August 1989, pages II 39-48.

PuchH, W. 1992. A practical algorithm for exact array dependence analysis. Communications
of the ACM, 35, 8, 102-114, August.

Su, E., LAIN, A., RAMASWAMY, S., PALERMO, D. J., HoDGES IV, E. W., AND BANERJEE, P. 1995.
Advanced compilation techniques in the PARADIGM compiler for distributed-memory
multicomputers. In Proc. 9th ACM International Conference on Supercomputing, pages
424-433.

Su, E., PaLErmO, D. J., AND BANERJEE, P. 1994. Processor tagged descriptors: a data
structure for compiling for distributed-memory multicomputers. In Proc. Conf. on Parallel
Architectures and Compilation Techniques.

TarJAN, R. E. 1974. Testing flow graph reducibility. Journal of Computer and System
Sciences, 9:355-365.

THIRUMALAI, A. AND RAMANUJAM, J. 1996. Efficient computation of address sequences in
data-parallel programs using closed forms for basis vectors. Journal of Parallel and
Distributed Computing, 38, 2, 188—-203, November.

VAN HANXLEDEN, R. AND KENNEDY, K. 1993. A code placement framework and its application
to communication generation. Technical Report CRPC-TR93337-S, CRPC, Rice University.
VAN HANXLEDEN, R. AND KENNEDY, K. 1994. Give-n-take—a balanced code placement frame-
work. In Proc. ACM SIGPLAN’94 Conference on Programming Language Design and

Implementation.

VENKATACHAR, A., RAMANUJAM, J., AND THIRUMALAI, A. 1997. Communication generation for
block-cyclic distributions. Parallel Processing Letters, 7, 2, 195-202, June.

WoLrgE, M. 1996. High Performance Compilers for Parallel Computing, Addison-Wesley
Publishing Company.

Yuan, X., GupTA, R., AND MELHEM, R. 1997a. An array data flow analysis based communi-
cation optimizer. In Proc. 10th Annual Workshop on Languages and Compilers for Parallel
Computing.

Yuan, X., GuprTa, R., AND MELHEM, R. 1997b. Demand-driven data flow analysis for commu-
nication optimization. Parallel Processing Letters, 7, 4, 359-370, December.

GERNDT, M. 1990. Updating distributed variables in local computations. Concurrency—
Practice and Experience, 2, 3, pages 171-193, September.

Ziva, H. AND CHAPMAN, B. 1991. Supercompilers for Parallel and Vector Computers, ACM
Press.

Received March 1998; revised July 1998; accepted November 1998

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.

