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Abstract Efficient execution of large-scale scientific applications requires high-
performance computing systems designed to meet the I/O requirements. To achieve
high-performance, such data-intensive parallel applications use a multi-layer layer
I/O software stack, which consists of high-level I/O libraries such as PnetCDF and
HDF5, the MPI library, and parallel file systems. To design efficient parallel scientific
applications, understanding the complicated flow of I/O operations and the involved
interactions among the libraries is quintessential. Such comprehension helps identify
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I/O bottlenecks and thus exploits the potential performance in different layers of the
storage hierarchy. To profile the performance of individual components in the I/O
stack and to understand complex interactions among them, we have implemented a
GUI-based integrated profiling and analysis framework, IOPro. IOPro automatically
generates an instrumented I/O stack, runs applications on it, and visualizes detailed sta-
tistics based on the user-specified metrics of interest. We present experimental results
from two different real-life applications and show how our framework can be used in
practice. By generating an end-to-end trace of the whole I/O stack and pinpointing
I/O interference, IOPro aids in understanding I/O behavior and improving the I/O
performance significantly.

Keywords MPI-IO · Parallel file systems · Parallel NetCDF · HDF5 ·
I/O software stack · Code instrumentation · Performance visualization

1 Introduction

Users of HPC systems often find an interesting situation: it is not the CPU, memory, or
network that restricts the performance of applications, but the storage systems. In fact,
the prior research [1–13] shows that I/O behavior can be a dominant factor that deter-
mines the overall performance of many HPC applications. Therefore, understanding
the parallel I/O operations and the involved issues is critical to meet the requirements
for a particular HPC system and/or decide I/O solutions to accommodate expected
workloads.

Unfortunately, understanding parallel I/O behavior is not trivial as it is a result of
complex interactions between hardware and a number of software layers, collectively
referred to as the I/O software stack, or simply I/O stack. Figure 1 illustrates a typical
I/O stack used in many (if not most) HPC systems. Note that this figure is intended to
present the software layers and a logical view; it is not meant to illustrate the physical
connectivity and configuration of an I/O stack. At the lowest level is the storage hard-
ware consisting of disks, controllers, and interconnection network connecting multiple
physical devices. At this level, data are accessed at the granularity of blocks across
multiple physical devices such as in a RAID array. Above the storage hardware are the
parallel file systems, such as Lustre [14], GPFS [15], PanFS [16], and PVFS [17]. The
roles of the parallel file system are to manage the data on the storage hardware, present
the data as a directory hierarchy, and coordinate accesses to files and directories in a
consistent fashion. The MPI-IO library [18], part of MPI-2 [19], sits, as a middleware,
on top of the parallel file systems. It provides a standard I/O interface and a suite of
optimizations including data caching and process coordination [1–6].

While the MPI-IO interface is effective and advantageous because of its perfor-
mance and portability, it does not support structured data abstraction for scientific
applications. To provide such structured data format, high-level I/O libraries (e.g.,
Parallel netCDF [20] and HDF5 [21]) are added on top of MPI-IO. These high-
level libraries allow application programmers to better describe how their applications
access shared storage resources. As shown in Fig. 1, a parallel I/O application may
directly call the MPI-IO library or a POSIX I/O function to access the disk-resident
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data sets. Alternatively, large-scale, data-intensive applications may exercise several
layers of the I/O stack. Since the interactions among these layers are complex and
unpredictable, understanding and characterizing those interactions must precede per-
formance tuning and optimization for the HPC applications.

One approach to understanding I/O behavior is to let application programmers or
scientists instrument the I/O software stack manually. Unfortunately, this approach
is extremely difficult and error prone. In fact, instrumenting even a single I/O call
may necessitate modifications to numerous files from the application to multiple I/O
software layers below. Worse, a high-level I/O call from the application program can
be fragmented into multiple calls (subcalls) in the MPI library, which is severely
challenging. Since many parallel scientific applications today are expected to run
on large-scale systems with hundreds of thousands of processes to achieve better
resolution, even collecting and analyzing trace information from them is laborious
and burdensome.

Motivated by these observations, we have developed a performance analysis and
visualization framework for parallel I/O, called IOPro. Instead of manually instru-
menting source code of applications and other components of the I/O stack, IOPro
takes as input the description of the target I/O stack and the application program, auto-
matically generates the instrumented I/O stack to trace the specified I/O operations,
and compiles and builds it. Next, it runs the application with detailed configuration
information for I/O servers (PVFS2 in our case) and an MPI process manager, mpiexec.
Then, it collects and analyzes the trace log data and presents detailed statistics based
on user-specified metrics of interest.

A unique aspect of IOPro is to provide an integrated profiling and analysis envi-
ronment for the entire parallel I/O software stack. Our implementation is designed to
profile the performance of individual components in the I/O stack. Using the profiled
results, the bottleneck is identified and a proper solution is applied to eliminate the
bottleneck and, thus, to improve the performance. Section 6.3 explains how IOPro
is used to provide an appropriate I/O strategy in detail. In addition, IOPro can work
with different I/O stacks and user-provided probe code. For instance, with the user-
specified probes, it can trace parallel I/O in Blue Gene/P systems that deploy the I/O
forwarding scalability layer (IOFSL) [22]. Also, it can provide a reconfigurable setup
for the I/O stack. Last but not least, it provides a hierarchical view for parallel I/O.
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In our implementation, every MPI I/O call has a unique identification number in the
MPI-IO layer and is passed to the underlying file system with trace information. This
mechanism helps associate the MPI I/O call from the application with its subcalls in
the file system layer systematically. Using this information, our framework visualizes
detailed I/O performance metrics for each I/O call, including latency, throughput, esti-
mated energy consumption, and the number of I/O calls issued to and from servers
and clients.

We believe that IOPro is a powerful and useful tool for scientists and application
programmers as well as performance engineers. For the scientists and application
programmers who do not have an in-depth knowledge of underlying complexities of
emerging HPC systems, it can provide detailed I/O statistics that helps them under-
stand the characteristics of I/O from the perspective of the applications. Using the
performance measurements of the underlying I/O stack, more optimized code can be
implemented. For the performance engineers, it enables customized instrumentation
for more detailed performance measurements. Therefore, IOPro can enable insights
into the complex I/O interactions of scientific applications and provide an adaptive
I/O strategy.

The rest of this paper is organized as follows. Related work is discussed in Sect. 2. In
Sect. 3, we discuss challenges in characterizing I/O performance of HPC systems. Sec-
tion 4 gives an overview of our approach to I/O instrumentation. Section 5 elaborates
on the details of code instrumentation, computation methodology, and query usages.
An experimental evaluation of the proposed tool is presented in Sect. 6, followed by
concluding remarks in Sect. 7.

2 Related work

There exists prior research in profiling performance and diagnosing the related prob-
lems in large-scale distributed systems. In this section, we discuss the work related to
static/dynamic instrumentation, and tracing and profiling frameworks.

2.1 Static/dynamic instrumentation

Over the past decade, a lot of static/dynamic code instrumentation tools have been
developed and tested that target different machines and application domains. Sta-
tic instrumentation generally inserts probe code into the program at compile time.
Dynamic instrumentation, on the other hand, intercepts the execution of an executable
at different points of execution and inserts instrumentation code at runtime. ATOM [23]
statically instruments the binary executable through rewriting at compile time. FIT [24]
is an ATOM-like static instrumentation tool but aims at retargetability rather than
instrumentation optimization. HP’s Dynamo [25] monitors an executable’s behav-
ior through interpretation and dynamically selects “hot instruction traces” from the
running program. DynamoRIO [26] is a binary package with an interface for both
dynamic instrumentation and optimization. PIN [27] is designed to provide a func-
tionality simulator to the ATOM toolkit; but, unlike ATOM, which instruments an
executable statically by rewriting it, PIN inserts the instrumentation code dynamically
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while the binary executable is executing. Dyninst [28] and Paradyn [29] are designed
for dynamic instrumentation to reduce the overheads incurred during instrumentation.

2.2 Tracing and debugging

Tools such as CHARISMA [30], Pablo [31], and tuning and analysis utilities
(TAU) [32] collect and analyze file system traces [33]. Paraver [34] is designed to
analyze MPI, OpenMP, Java, hardware counter profiles, and operating system activ-
ity. Open|SpeedShop [35] is targeted to support performance analysis of applications.
Kojak [36] aims at the development of a generic automatic performance analysis envi-
ronment for parallel programs, and Stack Trace Analysis Tool (STAT) [37] is designed
to help debug large-scale parallel programs.

2.3 Large-scale distributed system tracing

To understand complex system behavior, Magpie [38] automatically extracts a sys-
tem’s workload during execution and produces a workload model. This work has been
extended to datacenters [39]. Fay [40] provides dynamic tracing of distribute systems
for user- and kernel-mode operations in x86-64 Windows systems. Lee et al. [41]
proposed the dynamic probe class library API for large-scale systems, extended by
DynInst. Darshan [42] captures I/O behavior such as I/O rates, transaction sizes, and
I/O library usage in HPC applications. Vampir [43] provides an analysis framework
for MPI applications, and IOPin [44] performs the runtime profiling of parallel I/O
operations in HPC systems.

Our work differs from the aforementioned efforts in that we provide an integrated
profiling and analysis environment that uses source code analysis to automatically
instrument the entire I/O stack. Also, unlike some of the existing profiling and instru-
mentation tools, our proposed tool can work with different I/O stacks. Supported by
end-to-end tracing functionality, it presents various analytical performance metrics,
such as latency, throughput, energy consumption, and call information, to investigate
detailed I/O behavior using specified query formats, on the fly.

3 Background

In this section, we discuss the challenges in characterizing the I/O performance of
modern HPC systems. We also explain the importance of the collected performance
metrics and their usage to improve the I/O performance.

3.1 Challenges

Modern HPC systems comprise multiple entities such as high-level I/O libraries (e.g.,
PnetCDF and HDF5), the MPI library as a middleware, and POSIX on top of the
underlying parallel file systems. When a scientific application runs on large-scale
systems with hundreds of thousands of processes, its operation is often complex and
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difficult to understand. Frequently, application I/O calls can be optimized in the middle
I/O layer to achieve better performance. Also, the high-level I/O calls from applica-
tions can break down into multiple calls in the MPI library, which make it extremely
challenging to understand and reason about.

Most of the previous research in this area focuses on presenting performance metrics
for the given applications. However, these statistics only reflect quantitative informa-
tion at each layer of the I/O stack rather than a deep understanding of the I/O interaction
and association from the application through the multiple libraries to the underlying
parallel file system. Instead, our scheme provides a qualitative approach to associate
high-level I/O from the application with the operations in the underlying parallel file
system by automatically injecting the probe code, and visualizes the user-provided
metrics of interest for better understanding. As a result, it helps scientists and sys-
tem engineers profile and improve the performance of applications running on deep
storage hierarchies. We want to emphasize that, while in principle a knowledgeable
user can manually instrument an I/O stack, in practice this is very difficult due to
the complex interactions between different layers, which makes it very challenging to
pass/propagate values/metrics of interest across the layers and accumulate results.

3.2 Performance metrics

Depending on I/O demands and data access patterns, a given parallel application
may require bounded execution time, relatively low throughput, or both. In many
parallel applications, the requests from different processes are frequently interleaved
and merged into contiguous portions of the file to reduce the high I/O latency. When
such an optimization, broadly referred to as collective I/O, is used, all the joined
processes broadcast and exchange the information related to the I/O request. If the I/O
access patterns of all processes are contiguous and can benefit from collective I/O, an
aggregator process can access disk-resident data by two-phase I/O: (1) redistribution of
data to the processes (communication phase) and (2) a single, large, contiguous access
to data (I/O phase) in case of write operation. This method has the additional cost of
interprocess communication, but it can significantly reduce the I/O time. Although
collective I/O is performed to improve I/O latency, the performance of collective
I/O can be significantly affected by the critical path from the process to the server.
For example, if the process on the critical path has a small size of temporary buffer
needed for two-phase I/O, frequently copies the data into the buffer, and communicates
other processes for redistribution, it can degrade the performance. In this case, the
critical path from the aggregator process to the server dominates the overall application
performance. Also, the I/O server on the critical path can be a major bottleneck in
certain situations such as explosion of I/O requests to the server, network hardware
failure, or faulty I/O server. Since the I/O operations interfere with each other during
the execution of multiple applications, it is also important to figure out the number of
I/O operations issued and the server(s) the I/O requests from the applications target.
In case of burst I/O to the server, by setting MPI hints the application can perform I/O
operations without striping data to the bottleneck I/O server. Using our framework,
therefore, users can easily/automatically generate the instrumented I/O stack to capture
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Fig. 2 Overview of IOPro. It takes as input an application program and I/O stack information, and builds
an instrumented I/O stack to profile I/O operations, separately from the original I/O stack. After configuring
the PFS server (PVFS in our case) and MPI program launcher, mpiexec, it runs the application program.
The query analyzer then collects trace log files and returns the statistics based on the metrics of interest

latency, throughput, and I/O call access information that affect the performance, and
analyze those metrics by visualization.

4 High-level view of instrumentation, execution, and visualization

In this section, we first give a high-level view of IOPro. As shown in Fig. 2, IOPro
consists of three main components: instrumentation engine, execution engine, and data
processing engine. Each of these components works with its corresponding front-end
(i.e., setup view, configuration view, and query analyzer, respectively), as will be
explained in the following subsections.

4.1 Instrumentation engine

To provide an automated I/O tracing functionality for parallel applications, IOPro
accepts the necessary information from the setup view (Fig. 3). This information
includes the directory locations of an application and the I/O software stack such as the
parallel file system (e.g., PVFS), the MPI library (e.g., MPI-IO), and the high-level I/O
library (e.g., HDF5). It also takes the location of trace log files generated by each layer
of the I/O stack. As shown in Fig. 3, an instrumented file for a high-level I/O library is
automatically chosen, depending on the selected high-level I/O library. In the example,
H5FDmpio.c would be instrumented when targeting HDF5. In addition, the make
option “make -f Makefile.bb flash_benchmark_io” is given to compile
the FLASH I/O benchmark [45]. Further, if desired, a trace option can be chosen here
to track a specific operation and code range (i.e., write, read, or both) and application
source code lines (1–5,000 in this case). Note that the current implementation targets
a user-level parallel file system. Unlike other system-level parallel file systems such as
Lustre, GPFS, and PanFS, PVFS2 clients and servers can run at user level.1 Therefore,

1 PVFS2 also supports an optional kernel module that allows a file system to be mounted as in other file
systems.
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Fig. 3 The front-end (setup view) of the instrumentation engine of IOPro

we can easily implement the functionality to trace and profile I/O operations in a
hierarchical fashion, without kernel modifications that are normally not allowed in
system-level file systems.

As a back-end of setup view, an instrumentation engine consists of a probe selector
and a probe inserter. In this context, a probe is a piece of code being inserted into the
application code and I/O software stack (e.g., in the source code of the high-level I/O
library, the MPI library, and PVFS2), which helps us collect the requested statistics.
Using the user-provided information from the setup, the instrumentation engine inserts
the probe into the appropriate locations in the I/O stack automatically, and generates
an instrumented version of PVFS2, the MPI-IO library as well as the high-level I/O
library. More details are provided in Sect. 5.

4.2 Execution engine

After creating the instrumented I/O stack and the application program successfully in
the previous stage, the execution engine builds and compiles them. Also, as in Fig. 4,
the front-end (configuration view) in the execution engine takes information about the
file systems, storage locations, endpoints that each server manages, metadata servers,
and I/O servers. Using the user-provided information, it creates a global PVFS2 server
configuration file (e.g., fs.conf). In general, PVFS2 servers are deployed using this
global configuration file shared by all PVFS2 servers. Figure 4 shows an example of
the front-end of the execution engine where the user-provided information is taken
to run the application. In this example, bb18 is configured as a metadata server and
bb05, bb06, bb07, and bb08 as I/O servers. The 512 MPI processes specified in the
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Fig. 4 The front-end (configuration view) of the execution engine

mpd.hosts file that has node information would be launched by mpiexec to run the
executable flash_benchmark_io.

We want to emphasize that the instrumented I/O stack is separately built from
the non-instrumented one. Therefore, the application can run either on the instru-
mented I/O stack or on the non-instrumented (original) I/O stack by setting
LD_LIBRARY_PATH.

4.3 Data process engine

After running the application with the user-provided information in the execution
engine, the data process engine collects all trace log files from each layer of the target
I/O stack. Table 1 lists a representative set of high-level metrics that can be profiled

Table 1 Statistics that can be analyzed by IOPro

I/O latency experienced by each I/O call in each layer (MPI library, client, server, or disk) in I/O stack

Average I/O access latency in a given segment of the program

Throughput achieved by a given I/O read and write call

Disk power consumption incurred by each I/O call

Number of disk accesses made by each I/O call

Amount of time spent during inter-processor communication in executing a collective I/O call

Number of I/O nodes participating in each collective I/O
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Fig. 5 The front-end (query analyzer view) of data processing engine

and visualized by our prototype of IOPro. Based on the user’s query taken in the front-
end of the data process engine (Fig. 5), the data process engine calculates the statistics
using the collected trace log files, returns the performance metrics, and visualizes it for
further investigation. The detailed query specification is discussed later in Sect. 5.4.

5 Technical details

In this section, we go over the code instrumentation component of IOPro and the use
of probes, the configuration of the servers, the role of the query analyzer, and various
sample queries.

5.1 Code instrumentation

Using the information provided in the setup view (Fig. 3), IOPro automatically patches
PVFS, the MPI library, and the high-level I/O libraries, such as PnetCDF and HDF5, as
a preparation for code instrumentation. Using the probe library that maintains probe
template codes for PVFS, MPI, PnetCDF, and HDF5, the instrumentation engine
generates actual probes that contain the trace log file location. In this context, a probe is
a piece of code inserted into the I/O software stack software to help collect the required
statistics. IOPro then creates a probe location file from a provided template file (as in
Listing 1) that specifies the appropriate location in the MPI library and PVFS where the
probes should be inserted. The syntax given in Listing 1 is for illustrative purposes and
is based on an initial prototype of IOPro that is currently under development. Probe
selector, a sub-component of the instrumentation engine, parses the probe location
file and extracts the location information for the probe code to be inserted. Using
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Listing 1 A sample template file specifying probe locations. In this template file, five different probes are
specified for the application, MPI I/O library, PVFS client, PVFS server, and disk layers, including probe
names and location information to be inserted as well as file names to be instrumented in the I/O stack.

[−1;App;common;Lib/APP/APP−common−probe1;−n 0]
[−1;App; write ;Lib/APP/APP−write−probe;−l MPI_File_write ( ; before]
[−1;App; write ;Lib/APP/APP−write−probe;−l MPI_File_write_at ( ; before]
[−1;App; write ;Lib/APP/APP−write−probe;−l MPI_File_write_at_all ( ; before]
[−1;App; write ;Lib/APP/APP−write−probe;−l MPI_File_write_all ( ; before]
[−1;App; read ;Lib/APP/APP−read−probe;−l MPI_File_read( ; before]
[−1;App; read ;Lib/APP/APP−read−probe;−l MPI_File_read_at ( ; before]
[−1;App; read ;Lib/APP/APP−read−probe;−l MPI_File_read_at_all ( ; before]
[−1;App; read ;Lib/APP/APP−read−probe;−l MPI_File_read_all ( ; before]
[0;MPI; latency ;Lib/MPI−IO/MPI−start−probe;−n 73;src /mpi/romio/mpi−io / read . c]
[0;MPI; latency ;Lib/MPI−IO/MPI−end−probe;−n 164;src /mpi/romio/mpi−io / read . c]
[0;MPI; latency ;Lib/MPI−IO/MPI−start−probe;−n 75;src /mpi/romio/mpi−io / read_all . c]
[0;MPI; latency ;Lib/MPI−IO/MPI−end−probe;−n 120;src /mpi/romio/mpi−io / read_all . c]
[0;MPI; read ;Lib/MPI−IO/MPI−rw−probe1;−n 158;src /mpi/romio/ adio /common/ad_read_col l . c]
[0;MPI; read ;Lib/MPI−IO/MPI−rw−probe2;−n 730;src /mpi/romio/ adio /common/ad_read_col l . c]
[0;MPI; latency ;Lib/MPI−IO/MPI−start−probe;−n 73;src /mpi/romio/mpi−io / write . c]
[0;MPI; latency ;Lib/MPI−IO/MPI−end−probe;−n 171;src /mpi/romio/mpi−io / write . c]
[0;MPI; latency ;Lib/MPI−IO/MPI−start−probe;−n 75;src /mpi/romio/mpi−io / write_all . c]
[0;MPI; write ;Lib/MPI−IO/MPI−rw−probe2;−n 526;src /mpi/romio/ adio /common/ad_write_c oll . c]
[0;MPI; write ;Lib/MPI−IO/MPI−rw−probe1;−n 679;src /mpi/romio/ adio /common/ad_write_c oll . c]
[1;Client ; latency ;Lib/PVFS/ client−start−probe;−n 377;src / client / sysint / sys−io .sm]
[1;Client ; latency ;Lib/PVFS/ client−end−probe;−n 402;src / client / sysint / sys−io .sm]
[2;Server ; latency ;Lib/PVFS/ server−start−probe;−n 152;src / server / io .sm]
[2;Server ; latency ;Lib/PVFS/ server−end−probe;−n 5270;src / io / job / job . c]
[3;Disk; latency ;Lib/PVFS/ disk−read−start−probe;−n 190;src / io / flow/ flowproto−bmi−t
rove / flowproto−multiqueue . c]

[3;Disk; latency ;Lib/PVFS/ disk−read−end−probe;−n 1010;src / io /flow/ flowproto−bmi−t r
ove/ flowproto−multiqueue . c]

[3;Disk; latency ;Lib/PVFS/ disk−write−start−probe;−n 1343;src / io / flow/ flowproto−bmi
−trove / flowproto−multiqueue . c]
[3;Disk; latency ;Lib/PVFS/ disk−write−end−probe1;−n 1514;src / io /flow/ flowproto−bmi−
trove / flowproto−multiqueue . c]

the extracted probe location information, the probe inserter automatically inserts the
appropriate probes into the proper locations in the I/O stack.

Figure 6 illustrates how the instrumentation engine works. In this figure, IOCallIDs
is a small array that contains information of each layer such as the MPI I/O call ID,
PVFS client ID, PVFS server ID, disk operation ID, I/O type, and the start timestamp
and the end timestamp of each layer. When IOCallIDs are passed from the upper layer
to the layers below, the inserted probes extract the information from them and generate
the trace log files with latency statistics at the boundary of each layer.

Note that a high-level MPI I/O call can be fragmented into multiple small subcalls.
For example, in two-phase I/O [6], which consists of an I/O phase and a communication
phase, tracing an I/O call across the boundaries of the layers in the I/O stack is not
trivial. In our implementation, each call has a unique identification number in the
current layer and passes it to the layers below. This helps us associate the high-level
call with its subcalls in a hierarchical fashion. It also helps analyze trace log data
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Fig. 6 Illustration showing how probes are inserted into the different layers of the I/O stack components
by the instrumentation engine. Left I/O call flows when MPI_File_write_all() is issued. Right the
instrumented I/O stack

by combining the statistics that come from different layers in a systematic way (for
example, all the variables that hold latency information at different layers are associated
with one another using these IDs).

In the PVFS server, a unique data structure, called flow_descriptor, maintains all the
information to perform requested I/O operations from the PVFS clients. This structure
is used by our tool. In Fig. 6, for example, the Server-start-probe inserted into the PVFS
server layer extracts the necessary information passed from the PVFS client and packs
it into the flow_descriptor. Since the flow_descriptor is passed to the entire PVFS
server, the probes inserted in the server can extract the necessary information from it
and manipulate the statistics to trace I/O calls without much difficulty.

5.2 Configuration of the execution environment

After PVFS is installed, the user specifies which nodes in the cluster will serve as
metadata servers and I/O nodes. The user also determines how many MPI processes
will be used to run the application. Unfortunately, manually configuring the PVFS
servers and running the parallel application on them can be very tedious and challeng-
ing. Instead of manual configuration, our tool provides a simple mechanism to specify
configuration of running environments (see Fig. 4). It takes the configuration metrics
for the servers such as metadata server(s) and I/O server(s) as well as a filename storing
this configuration, protocol, port number, storage location, and a log filename for each
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Table 2 Accepted query format

Latency Breakdown Inclusive process_id mpi_call_id

Latency Breakdown Exclusive process_id mpi_call_id

Latency Operation List process_id mpi_call_id pvfs_call_id server_id

Latency Operation Max process_id mpi_call_id pvfs_call_id server_id

Latency Operation Min process_id mpi_call_id pvfs_call_id server_id

Latency Operation Avg process_id mpi_call_id pvfs_call_id server_id

Thru. process_id mpi_call_id pvfs_call_id server_id

Energy active_p inactive_p process_id mpi_call_id pvfs_call_id server_id

Call process_id mpi_call_id pvfs_call_id server_id

Bold italic indicates user input

server. It also takes a filename that specifies the host machine(s) from which the MPI
job launcher, mpiexec, is launched and the number of processes (or clients) to be used
for running the given application.

This simple configuration method also provides us with the flexibility of running
a single application and/or multiple applications using different configuration options
without recompilation of the instrumented I/O stack. For example, we can easily run
the application program(s) on the instrumented I/O stack with different combinations
of configurations such as (1) running the same application but varying the number of
metadata server(s), I/O server(s), or PVFS clients; (2) running different applications
on the same configuration; (3) different mixes of the previous two; and (4) running
multiple applications on the same configuration and/or a different one.

5.3 Computation methodology

After running the application program, the data process engine collects all trace log
files from each layer of the I/O stack. Based on the user’s queries, it then processes
the trace log and returns the corresponding statistics. As shown in Fig. 5, our cur-
rent implementation provides functionalities to analyze latency, throughput, estimated
energy consumption, and the number of calls issued from clients to servers. We want
to emphasize however that, if desired, IOPro can be easily extended to accommodate
additional/new statistics. Table 2 shows the input query formats accepted by the cur-
rent implementation of our tool. The detailed description of our query will be given
in Sect. 5.4.

Figure 7 illustrates the computation of latency and throughput. For each I/O call,
the I/O latency value computed at each layer is the maximum value of the I/O latencies
from the layers below it.

Latencyi = Max(Latencyi−1 A, Latencyi−1 B, Latencyi−1C) (1)

However, the computation of I/O throughput in Fig. 7b is additive; in other words, I/O
throughput at any layer is computed by summing the sizes of data coming from the
layers below below it.
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Latencyi
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Layer(i-1)
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Fig. 7 Computation of latency and throughput. I/O latency computed at each layer is equal to the maximum
value of the I/O latencies obtained from the layers below it. In contrast, I/O throughput is the sum of I/O
throughput coming from the layers below. a Computation of I/O latency, b computation of I/O throughput
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process_id

server_id server_id

disk_op_id

MPI

PVFS
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PVFS
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PVFS
Disk
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LDisk

disk_op_id

pvfs_call_idpvfs_call_id

Fig. 8 Inclusive (dotted arrow) and exclusive (solid arrow) latency computations

T hroughputi =
∑

(T hpti−1 A, T hpti−1 B, T hpti−1C) (2)

To compute (estimate) the energy consumption for I/O call, we employ the power
model described in [46].

In our work, inclusive latency means the time spent in the current layer, which
includes the latency in the layers below. Exclusive latency is the time spent in the current
layer and excludes the sublayers. That is, it can be calculated from inclusive latency
by subtracting the sublayer latency from the current layer. Figure 8 demonstrates how
the inclusive and exclusive latencies are computed (the dotted arrows denote inclusive
latency, and the solid arrows indicate exclusive latency). The figure also shows the
employed tracing mechanism, which identifies and distinguishes I/O calls at each
layer. Each layer generates a unique ID such as process_id, mpi_call_id, pvfs_call_id,
and server_id when an I/O call is passed. This unique number is cumulatively carried
down to the sublayers. All information for the I/O calls passed through the entire I/O
stack is stored in the last layer. By matching and identifying these IDs, one can easily
relate the high-level MPI I/O call to the subcalls.
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Fig. 9 Computation of
inclusive latency 0
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Figure 9 shows the computation of inclusive latency in more detail. When, for
instance, a collective I/O call is issued, this I/O call can be fragmented into multiple
I/O calls in the MPI library if the size of requested I/O is larger than that of the buffer
in the MPI library. For example, in the figure, mpi_call_id 0 is fragmented into two
pvfs_call_id’s 0 and 1. In the PVFS client layer, each split I/O call has its own ID, 00
and 01 for the mpi_call_id 0, respectively. When these calls reach servers 0 and 1, the
cumulative trace information is 000 and 001 for cumulative ID 00 (blue line), and 010
and 011 for ID 01 (red one). This relationship is maintained until the end of the I/O
stack is reached. Therefore, for mpi_call_id 0, the inclusive latency computed at the
PVFS client layer is

Latencyclient =
∑

(L00, L01), (3)

and the inclusive latency at the PVFS server layer is

Latencyserver =
∑

(Max(L000, L001), Max(L010, L011)), (4)

where L denotes latency. Exclusive latency, on the other hands, can be calculated as
shown in Fig. 8.

5.4 Query model

As listed in Table 2, the current implementation of our tool provides four user metrics
to be analyzed: latency, throughput, energy, and call information. Below, we discuss
the details of our queries (metrics in square brackets are the user-provided input).

– Latency Breakdown Inclusive [process_id] [mpi_call_id]
This query returns the inclusive latency information given process_id and
mpi_call_id. For example, the query ‘Latency Breakdown Inclusive [0–1] [1–10]’
returns the inclusive latency for the mpi_call_id 1 to 10 issued from the process 0
and 1 to all servers in breakdown fashion, as described in Sect. 5.3. This is also
applied to compute exclusive latency.
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– Latency Operation List [process_id] [mpi_call_id] [pvfs_call_id] [server_id]
This returns all latency information, listing detailed latency statistics for all match-
ing process–server combinations. For example, a query such as Latency Operation
List [0–4] [1–10] [–] [1–3] returns all combinations for mpi_call_id 1 to 10 issued
from the process 0 to 4 to the server 1 to 3. In this case, all possible combinations
are 15. In the parameter pvfs_call_id, “-” means all. By default, pvfs_call_id is set
to “-” for simplicity since it is implicitly fragmented depending on the size of the
I/O request.

– Latency Operation Max/Min [process_id] [mpi_call_id] [pvfs_call_id] [server_id]
This is similar to the list latency format except that it returns the maximum/mini-
mum latency. For example, Latency Operation Max [0–4] [1–10] [–] [1–3] returns
the maximum latency for mpi_call_id 1 to 10 issued from processes 0 to 4 to
servers 1 to 3. Unlike list latency, this shows only the maximum latency among the
given servers and the corresponding server number. Note that this query provides
the latency statistics from the process’s and server’s points of view. More specif-
ically, from the process’s point of view, we can easily identify in which server a
given mpi_call_id experiences the maximum latency. From the server’s point of
view, we can identify the process that has the most latency in that server. Also,
unlike inclusive/exclusive latency, it presents detailed latency, not in breakdown
fashion. For example, if an mpi_call_id 0 is split into ten subcalls, it returns the
maximum latency among all ten individual subcalls.

– Latency Operation Avg [process_id] [mpi_call_id] [pvfs_call_id] [server_id]
This returns the average latency given the ranges of processes, MPI I/O calls, and
servers for each MPI I/O call.

– Throughput [process_id] [mpi_call_id] [pvfs_call_id] [server_id]
This calculates disk throughput in each PVFS server for each mpi_call_id from
the process’s and server’s points of view.

– Energy [active_power] [inactive_power] [process_id] [mpi_call_id] [pvfs_call_id]
[server_id]
This calculates the estimated energy consumption in server class disks [46]. It also
plots both the process’s and the server’s views. Here, active_power is the amount
of power consumption (in watts) when the status of disk is active; inactive_power
is the power consumption when the disk is not active.

– Call [process_id] [mpi_call_id] [pvfs_call_id] [server_id]
This returns statistics about the number of issued I/O calls from processes to
servers. Using this query, one can detect which I/O server is suffering the most
from the I/O requests.

6 Evaluation results

Most of the GUI components of IOPro have been implemented in Java and the
JFreeChart library. Our implementation was evaluated on the Breadboard cluster at
Argonne National Laboratory. In our experiments, we built an I/O stack with pvfs-
2.8.2, mpich2-1.2.1p1, pnetcdf-1.2.0, and hdf-1.8.5. Then, IOPro automatically gen-
erated an instrumented version of this I/O stack using IOPro. Note that we opted to use
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Fig. 10 Average execution time comparison. Two benchmarks run on 512 MPI processes with 1 metadata
server and various number of I/O servers. It can be seen that, in both benchmarks, the overheads caused by
our implementation are about 8.5 %. a FLASH I/O, b S3D I/O

Table 3 Overhead comparison

Benchmark I/O server Non-instrumented (s) Instrumented (s) Overhead (%)

FLASH I/O 4 49.66 52.85 6.4

8 31.32 34.96 11

S3D I/O 4 39.86 43.16 8.3

8 36.39 39.40 8.3

PVFS, the user-level parallel file system, so that we could easily implement a tracing
and profiling mechanism without kernel modifications.

To evaluate the overhead caused by our implementation, we measured the average
execution time after 20 iterations, running two I/O intensive benchmarks, S3D I/O and
FLASH I/O. In each run, we dropped cache both in the servers and in compute nodes
to minimize the effect on cache. Figure 10 compares the average execution time of
two benchmarks running with 512 MPI processes and various number of I/O servers
on a non-instrumented I/O stack and an instrumented one. The result shows that the
overhead from all combinations is approximately 8.5 %, on average. Table 3 presents
the detailed statistics.

To demonstrate the capabilities of IOPro, we next present the detailed results with
two benchmarks.

6.1 FLASH I/O

FLASH I/O benchmark is the I/O kernel of the FLASH application [45], a block-
structured adaptive mesh hydrodynamics code that solves fully compressible, reactive
hydrodynamic equations, developed for studying nuclear flashes on neutron stars and
white dwarfs. The computational domain is divided into small blocks that are dis-
tributed across different MPI processes. The FLASH block is a three-dimensional
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Fig. 11 Number of I/O calls issued to all servers from one process using the HDF5 interface. We see that
each server receives the same number of calls from that process

array and there are 80 blocks on each MPI process. Each block contains inner blocks
with additional four element of guard cells to hold the state variables of the neigh-
boring blocks. The inner block surrounded by guard cells has 24 data array variables,
e.g., density, velocities, energy, and pressure. Every process writes these blocks into a
checkpoint file using 24 collective I/Os, in a manner that the checkpoint file appears as
the data for variable 0 up to variable 23. FLASH I/O generates one checkpoint file and
two visualization files that contain centered and corner data. FLASH I/O works with
both the PnetCDF and HDF5 interfaces to save data and metadata in each high-level
I/O format.

In our evaluation, we ran the FLASH I/O benchmark on 1 metadata server, 4 I/O
servers, and 512 MPI processes using the HDF5 interface. We configured a 8 × 8 × 8
block size in X–Y–Z dimensions. In this experiment, FLASH I/O produces a 3.8-GB
checkpoint file and two visualization files (329 and 466.8 MB, respectively). From
Fig. 11, we see that 32 collective I/O calls without fragmentation are evenly issued to
all servers from one process. The checkpoint file is generated by the first 24 I/O calls
and two visualization files are created by the following 4 I/O calls, respectively.

Figure 12 illustrates the inclusive latency of the FLASH I/O benchmark from
Process_0 to process 30 among all 512 processes. The total time in the figure presents
the global time spent in each layer to run the application program, using different
color legends. The context information gives the detailed latency statistics in the MPI
I/O library, PVFS client, PVFS server, and server disk layers for each process. We
observe that the latency in the MPI I/O library and the PVFS layer is unevenly dis-
tributed among the processes. For example, the most time spent in the MPI library for
the I/O requests is approximately 11.51 s, in process 16, and the least is about 8.97 s
in process 1. We observe that the overhead in the MPI library is relatively small. In
MPI-IO, the default collective buffering scheme is set to automatic, that is, MPI-IO
uses heuristics to determine whether it enables the optimization. Since FLASH I/O
accesses noncontiguous data, rarely exploiting data exchanges and optimization for
collective I/O, MPI-IO disables collective buffering and automatically converts col-
lective I/O requests to independent I/O requests. We find that the latency in the MPI
I/O library increases about 14 % because of the communication overhead when force-
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Fig. 12 Inclusive latency values for the FLASH I/O benchmark labelfig

fully enabling collective I/O. Since all the joined processes exploit independent I/O
for running the application, the completion time for each substantially differs.

Figure 13 compares the maximum and the minimum latency for all I/O requests
issued to all servers from Process_0 to Process_30. Unlike in Fig. 13a, we observe
a bigger latency gap between the client layer and the server (the green portion) in
Fig. 13b. We also notice the latency difference spent in the server and the disk between
Fig. 13a, b. If the data lie on the data block, but is smaller and not fit into it, it take
less time to write the smaller portion of the data. Figure 14 plots more detailed latency
statistics for mpi_call_id 18 through 23. The difference between the maximum and
minimum latency of process 16 (in Fig. 13) is caused by the latency in the server from
those I/O calls, as shown in Fig. 14. Note that the number on the server legend (the
green bar) in Fig. 14 is the server ID. The I/O request (18-0) from the process, for
example, spends the maximum amount of time in server 0 and has minimum latency
in server 3 even if it stripes 64 KB data over all servers.

Disk throughput from mpi_call_id 0 through 23 from process 16 is plotted in Fig. 15.
Here, we observe the I/O characteristics of FLASH I/O. Although FLASH I/O

issues collective I/O requests to write checkpoint files, MPI-IO disables them and
automatically converts them to independent I/O requests because the data are noncon-
tiguous. We also notice that collective buffering rather degrades the performance of
the FLASH I/O. Based on this observation, the optimized code can be implemented
in a way to exploit the potential benefits of collective I/O. As seen in Fig. 14, the
latencies of the I/O calls in the specific servers are higher than the others. Therefore,
the application and I/O stack can be tuned to reduce those variances.
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Fig. 13 Total maximum and
minimum latency from all
processes. In both figures, the
time spent in the PVFS client
layer is the same, but the time
spent in the PVFS server and
disk is different. a Maximum
latency of FLASH I/O, b
minimum latency of FLASH I/O
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Fig. 14 Maximum and minimum latency from the perspective of Process_16 for mpi_call_id ranging from
18 to 23. a Process 16’s maximum latency, b process 16’s minimum latency
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Fig. 15 Disk throughput for mpi_call_id 0 to 23 to write a checkpoint file from process 16 to 4 servers

6.2 S3D I/O

The S3D I/O benchmark is a parallel turbulent combustion application, named
S3D [47], developed at Sandia National Laboratories. Using a direct numerical sim-
ulation, S3D solves the fully compressible Navier-Stokes, total energy, species, and
mass continuity equations coupled with detailed chemistry. A checkpoint is performed
at regular intervals; its data consist primarily of the solved variables in 8-byte, three-
dimensional arrays. This checkpoint data can be used to obtain several physical quan-
tities of interest. Therefore, most of the checkpoint data is maintained for later use.
At each checkpoint, four global arrays—representing the variables of mass, velocity,
pressure, and temperature—are written to files.

Among those four arrays, pressure and temperature are three-dimensional arrays
while mass and velocity are four dimensional. All four arrays share the same size
for the lowest three spatial dimensions X, Y, and Z and are partitioned among the
MPI processes along with X–Y–Z dimensions. For the three-dimensional arrays, the
subarray of each process is mapped to the global array in block partitioning of X–
Y–Z dimensions. For the four-dimensional arrays, the lowest X–Y–Z dimensions are
partitioned as same as the three-dimensional arrays, but the fourth dimension is not
partitioned. For the arrays of mass and velocity, the length of fourth dimension is 11
and 3, respectively.

S3D I/O supports MPI-IO, PnetCDF, and HDF5 interfaces. In our evaluation, we
configured 1 metadata server and 8 I/O servers and ran S3D I/O on 512 MPI processes
with the PnetCDF interface. We maintain the block size of the partitioned X–Y–
Z dimensions as 400 × 200 × 200 in each process. With this configuration, S3D
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Fig. 16 Inclusive latency of the S3D I/O benchmark

I/O produces three checkpoint files, 1.9 GB each. The average execution time on the
instrument I/O stack with 8 I/O servers is presented in Fig. 10b.

Figure 16 shows the inclusive latency generated by the query analyzer. For a collec-
tive write in S3D I/O, a subset of MPI tasks (called aggregator) in each compute node
communicates with other processes to exchange data and writes a large chunk of data
into a temporary buffer. After that, the aggregator in each node ships the I/O request
to the destination I/O servers. In our configuration, we have 8 aggregator processes to
perform the actual I/O operation (Fig. 16). We observe that each process spends about
33.4 s (on average) in the MPI I/O library and that most of the time spent in the server
layer is for disk operations. We also notice a latency gap between the MPI I/O library
and the PVFS client layer (the yellow portion in Fig. 16). In S3D I/O, all the joined
processes heavily exchange the data for optimization, such as two-phase I/O [6] and
data sieving [5]. This optimization and synchronization result in the overhead in the
MPI library.

Figure 17a, b plots inclusive latencies from the perspective of Process_320 and
Process_192 that have a maximum and minimum latency in the disk, respectively. In
both plots, the time spent in the MPI library for mpi_call_id 0, 4, and 8 is relatively
longer than that for the other I/O calls. In general, S3D I/O produces three checkpoint
files using 12 collective I/O calls, and these files are generated by call ids 0–3 (first
file), 4–7 (second file), and 8–11 (third file). The first I/O call (0, 4, and 8) in each
checkpoint file initially opens the checkpoint file and writes the mass variable to it.
Recall that, among the four arrays of mass, velocity, pressure, and temperature, mass
and velocity are four-dimensional arrays whose length of the fourth dimension is 11 and
3, respectively. Since the mass array is the largest, it takes longer to be written into each
checkpoint file. In the same reason, the last I/O call (3, 7, and 11) to write velocity takes
relatively longer time than to write pressure and temperature. In Fig. 16, the total time
difference of disk operation between Process_320 (12.68 s) and Process_192 (10.51 s)
is mainly caused by mpi_call_id 4 (3.31 vs. 1.99) and mpi_call_id 8 (4.14 vs. 3.03)
in Fig. 17a, b.

Generated using the max query format, Fig. 18 presents detailed I/O informa-
tion ranging from from MPI_call_id 0 to 3 that create the first checkpoint file. Here,
mpi_call_id 0 spends considerable time in the MPI I/O library to open the checkpoint
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Fig. 17 Inclusive latency from the perspective of Process_320 and Process_192. The total time difference
for disk operation between them is mainly caused by mpi_call_id 4 (3.31 vs. 1.99 s) and 8 (4.14 vs. 3.03 s)
in a, b. a Process 320’s inclusive latency, b process 192’s inclusive latency
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Fig. 18 Detailed latency from mpi_call_id 0 to 3 when creating the first checkpoint file in Process_320.
The x axis is a pair of (mpi_call_id - pvfs_call_id) and the y axis is the execution time in log scale. Here,
mpi_call_id 0 and mpi_call_id 3 are fragmented into 11 subcalls (pvfs_call_id) and 3 in the MPI library,
respectively. The number on the PVFS server (green bar) in the figure indicates the server ID where the
I/O call has the maximum value

file and write data into it. Since the size of the requested I/O to write the mass array
is bigger than the buffer in the MPI library, this I/O call is split into multiple subcalls.
In a typical collective I/O, all processes communicate with one another and exchange
access information among all processes and reorganize I/O requests for better perfor-
mance. After this step, all participating processes issue the I/O requests but cannot send
the next I/O requests until all finish their I/O requests. In Fig. 18, mpi_call_id 0 is frag-
mented into eleven subcalls from (0–0) to (0–10) when writing the mass array whose
length of the fourth dimension is 11, and mpi_call_id 3 three subcalls (3–0), (3–1) and
(3–2) to write velocity whose length of the fourth dimension is 3, respectively. The
latency difference between the MPI library layer and the PVFS layer, in mpi_call_id
0, is caused by communications and data exchanges as well as by synchronizations
among the split I/O requests.

Note that the inclusive latency is computed by summing all maximum values of
the corresponding split calls from the I/O call in the given process(es). Further, the
maximum latency shows more detailed information for the split calls, if any, such as
individual maximum values and the server ID having a maximum among the server’s
given ranges. Therefore, the inclusive latency for mpi_call_id 0 is calculated by adding
the maximum values of the split calls for this I/O call in Fig. 18. Figure 19 plots the
disk throughput from the perspective of the server 0. Among 8 aggregator processes,
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Fig. 19 Disk throughput to server 0 from all 8 aggregator processes for mpi_call_id 0 to 3 to create the
first checkpoint file. The x axis is a pair of (mpi_call_id - pvfs_call_id). Here, call id pairs of (2–0), (3–0),
(3–1), and (3–2) from the Process_192 have maximum disk throughput in the server 0

Process_192 has a maximum throughput (23.44 MB/s, 24.39, 26.83, and 27.67, respec-
tively) for (2–0), (3–0), (3–1), and (3–2).

Unlike FLASH I/O, all the joined processes heavily exchange data to do opti-
mization before sending I/O requests to the PVFS server in S3D I/O. In addition
to optimization, communication and synchronization among the processes cause the
overhead in the MPI library. Based on this understanding, scientists and application
programmers can customize the existing code to reduce the overhead, specifically in
mpi_call_id 0, 4, and 8 at the application level. Also, performance engineers may
improve the performance in the MPI I/O library and disk operation at the system level.

6.3 Case study: pinpointing I/O interference in the concurrent execution of multiple
applications

In HPC systems that share I/O system resources across processes, interference occurs
when multiple applications access a storage resource, which in turn, causes substantial
I/O performance degradation. To simulate this real case scenario and to profile detailed
metrics in such a situation, first, we separately run two benchmarks, S3D I/O and a
synthetic benchmark and measure the execution of each benchmark, as a baseline
experiment. We run S3D I/O with the same configuration as in Sect. 6.2, using 512
MPI processes with 1 metadata server and 8 I/O servers. Here, the synthetic benchmark
accesses data in row, column, and block fashion, and generates a 2-GB checkpoint file.
At this time, we run the synthetic benchmark on 64 MPI processes, but it only stripes
data over 1 I/O server, by setting MPI hints. After that, we run both benchmarks at the
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Fig. 20 Comparison of the execution time and the maximum I/O time in servers. In Fig. 20a, the execution
time of S3D I/O and the synthetic benchmark is 39.63 s and 36.43, and, in Fig. 20b, 56.18 and 61.11,
respectively. In both the experiments, the corresponding detailed I/O server time and striped data size are
described in Tables 4 and 5. a Running individually, b running concurrently

Table 4 Baseline: S3D I/O detailed server I/O time and striped size of data

Server 0 Server 1 Server 2 Server 3 Server 4 Server 5 Server 6 Server 7

33.29 s 33.28 33.27 33.28 33.28 33.27 33.29 33.28

732 MB 732 MB 732 MB 732 MB 732 MB 732 MB 732 MB 732 MB

Table 5 Running S3D I/O with the synthetic benchmark in interference

Server 0 Server 1 Server 2 Server 3 Server 4 Server 5 Server 6 Server 7

46.31 s 46.22 46.26 46.27 46.24 46.21 46.15 46.20

2.73 GB 732 MB 732 MB 732 MB 732 MB 732 MB 732 MB 732 MB

same time so that I/O operations are interfered in each other. S3D I/O accesses 8 I/O
servers to write data and the synthetic benchmark only stripes 1 I/O servers among 8
I/O servers. The compute node was not overlapped when running concurrently in this
experiment.

Figure 20 compares the execution time and the I/O time in the server when each
benchmark runs separately. In Fig. 20a, considered as the baseline, the execution time
and the maximum server I/O time are 39.63 s and 33.29 in S3D I/O and 36.43 and
35.64 in the synthetic benchmark, respectively. Table 4 presents detailed metrics in
S3D I/O. When I/O operations are interfered, as shown in Fig. 20b, the execution time
increases upto 56.2 s in S3D I/O and 61.1 in the synthetic benchmark (see Table 5).
Therefore, the overhead of the execution time caused by I/O interference are 42 and
68 %, respectively. In this scenario, the data from S3D I/O are evenly striped to 8 I/O
servers, about 732 MB each. At the same time, the synthetic benchmark accesses one
of the 8 I/O servers to write a 2-GB checkpoint file. This I/O server is a bottleneck
and causes the degradation of the overall I/O performance in both applications.
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Table 6 Running S3D I/O with the synthetic benchmark without interference

Server 0 Server 1 Server 2 Server 3 Server 4 Server 5 Server 6 Server 7

35.64 s 32.74 32.72 32.72 32.72 32.74 32.73 32.73

2 GB 837 MB 837 MB 837 MB 837 MB 837 MB 837 MB 837 MB

Based on this observation, a new I/O strategy can be adopted to prevent the interfer-
ence. By setting up the MPI hints not to stripe the bottleneck I/O server, thus striping
data only to 7 I/O servers, the execution time S3D I/O is 42.35 s, and the I/O time and
striped data size in server are presented in Table 6. Note that the execution time of
S3D I/O with 7 I/O servers increases about 7 % compared to the baseline. By ensuring
that the two applications do not interfere with each other however, one can eliminate
performance degradation.

7 Conclusions

Performance analysis and visualization is an important step in understanding I/O
behavior, which is a result of complex interactions in the I/O stack. Performing manual
code instrumentation is often difficult and extremely error prone. Even building the
I/O stack and configuring the running environment for application benchmarks are
not trivial because of the scale of the current HPC systems. Moreover, collecting and
analyzing trace data from them is challenging and daunting task. To alleviate these
difficulties, we have developed a parallel I/O profiling and visualizing framework,
IOPro. Our tracing utility uses existing MPI I/O function calls and therefore adds
minimum overhead to the execution time of applications. Our framework provides
multiple metrics to analyze and investigate detailed I/O behavior, including latency,
throughput, energy consumption, and call information. The results from these metrics
contribute to evaluating and explaining the parallel I/O behavior.

We used two application benchmarks, S3D I/O and FLASH I/O, to evaluate our
implementation of IOPro. Our experiments demonstrate different I/O behaviors in
each application: S3D I/O exchanges data among the joined processes to do optimiza-
tion and synchronization in the MPI library whereas FLASH I/O rarely does such
optimization. Although both applications issue collective I/O requests to write the
checkpoint files, the characteristics of I/O are different in each benchmark. Using the
performance information depending on the I/O behavior, the application programs can
be optimized to improve the performance. Also, customized instrumentation can be
performed to get more detailed performance statistics in the I/O stack.

Lastly, we show that, when multiple applications interfere each other due to sharing
I/O system resources, our framework can be used to profile detailed performance
metrics, aid in understanding complex I/O behavior, and detect the issue that degrades
the performance. Based on the gleaned information, the user can then employ an
appropriate solution.
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