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the “root gathering algorithm”, which does not achieve optimal communication transfer time. In this pa-
per, we propose algorithms for the intergroup Allgather and Allgatherv communication operations under
single-port communication constraints. We implement the new algorithms using MPI point-to-point and
standard intra-communicator collective communication functions. We evaluate their performance on the
Cori supercomputer at NERSC. Using message sizes per compute node ranging from 64KBytes to 8MBytes,
our experiments show significant performance improvements of up to 23.67 times on 256 compute nodes
compared with the implementations of production MPI libraries.
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1. Introduction

MPI [2] intergroup collective communication defines message
transfer patterns between two disjoint groups of MPI processes,
with communication taking place between groups but not inside
groups. In contrast to the intragroup collective communication
counterparts, where all processes in an Allgather communication
receive the same messages from all other processes, intergroup
collectives can have expressive and performance advantages for
coupled scientific applications and workflows systems.

Intergroup collective communication patterns occur frequently
in modern parallel frameworks for scientific applications. As
discussed in [1], a scientific application workflow system consists
of different groups of processes, where the results computed by
one process is sent to another via intergroup All-to-All broadcast
(Allgather) and/or All-to-All personalized communication. In [3],
the authors proposed a parallel data transfer framework for com-
putationally intensive weather prediction system, SCALE-LETKF [4].
Communications among workflow components are achieved us-
ing MPI intergroup Allgather. An advantage of using intergroup

* Conflict of interest. None.
** The paper is a revised, extended version of the paper “Full-Duplex Inter-Group
All-to-All Broadcast Algorithms with Optimal Bandwidth” presented at the 25th Eu-
ropean MPI Users’ Group Meeting (EuroMPI), Barcelona, September 2018 [1].
* Corresponding author.
E-mail address: giao.kang@eecs.northwestern.edu (Q. Kang).

https://doi.org/10.1016/j.parco.2019.04.015
0167-8191/© 2019 Elsevier B.V. All rights reserved.

communication is achieving a higher degree of fault tolerance.
Examples discussed in [5] include applications such as DNA se-
quencing, graphics rendering and searching for extraterrestrial
intelligence that relies on a manager/worker model can benefit
from the encapsulation provided by inter-communicators. Re-
searchers have designed sophisticated approaches that reduce the
data size communicated among workflow components and in turn
improving the communication performance. For example, Zhang
et al. [6] have proposed a distributed framework for maximizing
on-chip data exchange in order to reduce the amount of com-
munication among workflow components. Docan et al. [7] have
designed an Active Spacing strategy that reduces the size of mes-
sage transfers among workflow components by moving programs
to staging areas. Existing literature that focuses on reducing the
communication message size and frequency have successfully im-
proved the communication performance between workflow com-
ponents. Nevertheless, intergroup communications with large data
size seem unavoidable, and applications can benefit from optimal
MPI implementations of the intergroup collective communication.

In this paper, we focus on intergroup All-to-All broadcast com-
munication, which in MPI corresponds to the MPI_Allgather
and MPI_Allgatherv functions when wusing MPI inter-
communicators. With an inter-communicator as an input ar-
gument, MPT_Allgather and MPI_Allgatherv exchange data
between the two disjoint process groups, such that every process
in one group receives messages from all processes in the other
group. MPICH [8], MVAPICH [9], and OpenMPI [10], the three
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most widely-used MPI implementations in the parallel processing
community, implement these intergroup collectives (as well as
most other intergroup collectives) based on the “root gathering”
algorithm paradigm. The underlying principle of the root gathering
algorithm 1is single-process accumulation per group followed by
a pair-wise exchange of the gathered messages followed by one-
to-all broadcasts within the two groups. However, this approach
does not achieve optimal communication time under the single-
port communication constraint, because the complete data to be
exchanged are sent multiple times.

In our previous work [1], we presented an algorithm for
MPI_Allgather that outperforms the root gathering algorithm
by a large factor and achieves optimal communication transfer
time under reasonable system (and message size) assumptions. The
algorithm divides messages into segments in order to fully uti-
lize the available communication links between the two groups (as
well as within each of the groups), achieving optimal transfer time.

In this paper, we further improve the formulation of the
algorithm proposed for MPI_Allgather in [1] by combining
the two-stage intragroup Allgather communication into a single
stage with the same communication time. In addition, the im-
plementation strategy for handling the case of indivisible process
numbers is described in detail. Moreover, we extend the mes-
sage segmentation concept to design an algorithm for intergroup
MPI_Allgatherv. The extension generalizes the solution for bal-
ancing the message size exchanged between two groups for inter-
group MPI_Allgather. We show that the proposed algorithm for
intergroup MPI_Allgatherv significantly improves the end-to-
end execution time compared with the root gathering algorithm
for larger message sizes.

We implement the proposed algorithms for intergroup
MPI_Allgather and MPI_Allgatherv using MPI point-
to-point and collective communication functions, namely inter-
group send/receive, intragroup MPI_Allgather, and intragroup
MPI_Allreduce. We conduct experiments on Cori, a Cray
XC40 supercomputer at the National Energy Research Scientific
Computing Center (NERSC). Direct comparisons with the MPI
native library function MPI_Allgather that implements the root
gathering algorithm are presented. Although the communication
network topology on Cori is pseudo-fully connected (dragon-fly),
we show that our ideas are applicable to hierarchically organized
processes by evaluating and comparing our algorithms against
the MPI library installed on Cori with different process settings.
With message sizes per compute node ranging from 64KBytes
to 8MBytes per node, the experiments show a significant perfor-
mance improvement achieved by our algorithms, which are up to
23.67 times on 256 compute nodes faster than the production MPI
libraries.

2. Background

For design and analysis, we employ the single-port commu-
nication model as defined in [11]. A set of ranked processes
{0,1,..., p— 1} can communicate as specified by a communica-
tion graph representing the communication network. Processes are
nodes in the graph, and edges represent communication links, such
that pair-wise processes connected by an edge can communicate
directly. The basic communication operations are sends and re-
ceives initiated by the processes. When a send or receive operation
is called by a process, the function is blocked until the communica-
tion has been completed. Therefore, a process cannot send to mul-
tiple processes simultaneously. Likewise, a process cannot receive
from multiple processes at the same time.

Communication cost is determined by a startup time term ft;
and a per-byte transfer time term t,. If there is a link between a
sender x and a receiver y, sending a message of size k bytes from x

to y has a communication transmission time of t; + kt,, time units.
We refer to the t; term as the startup time and kt,, as the transfer
time. In this model, the objective in designing collective commu-
nication algorithms is to minimize communication transfer time.
Modern networks are typically bidirectional, and a process can be
involved in both a (non-blocking) receive and send operation at a
time. Qur algorithms exploit this when exchanging messages be-
tween processes in the two groups. Modern networks may be able
to sustain more communication operations at a time. Our algo-
rithms can also exploit such capabilities, but we leave this opti-
mization as an implementation detail and use MPI non-blocking
send and receive operations in our concrete implementations.

We assume that there are communication links between all
processes in the two groups. This assumption is strong, and may
not hold for all applications of the MPI intergroup collectives. For
instance, coupled applications running on different parts of a het-
erogeneous system. There may be only weakly connected with only
a few communication edges between the two process groups.

2.1. Problem definition

Let A={ap.....ap_1} and B={bgy,..bs_1} be two disjoint
groups of processes. Group A has size p and group B has size q. Ini-
tially, every a; €A has a unique message my; of size k, bytes and
every b;eB has a unique message mp; of size kg bytes. We term
my = {m, ;IV0 <i < p} and mp = {mp;|V¥0 < i < g} the full messages
of the two groups. The goal of the All-to-All broadcast (Allgather)
operation is to let every b;V0<j<q receive my=my; Y0 <i<
p—-1 and every q;V0<j<p receive mg=mp; VO <i<q-1, that
is, to exchange the full messages between all processes in the two
groups.

We refer to k4 and kg as the block sizes, and pk, + gkg as the
(total) problem size. In the following, we will assume without loss
of generality that g <p.

2.2. Optimal transfer time

Consider a single process aeA, which has to receive all mes-
sages from group B in the end. Thus, process a has to receive gkp
bytes. By the single-port constraint, it takes at least gkgt, time
units for a to receive all messages. Hence the lower bound on the
transfer time is gkgt,,. The same argument can be applied to each
process b e B, giving a lower bound on the message transfer time
of pkatw time units. By the argument, it follows that

M = max (gkg, pka)tw

is a lower bound on the transfer time for intergroup Allgather.
We prove that this lower bound is the largest asymptotic lower
bound by proposing an algorithm with transfer time converging to
it given large p and q.

3. Related work

In MPI, the collective communication operations come in two
flavors: Intragroup and intergroup operations [2, Chapter 5]. MPI
distinguishes between the two cases by the communicator argu-
ment, which can be either an intra-communicator or an inter-
communicator. The actual interfaces are the same in the two cases,
but the underlying communication patterns are different. Inter-
communicators in MPI can be viewed as objects that contain two
intra-communicators representing the two disjoint process groups.
In our implementations, we can reuse the efficient MPI intragroup
collectives for communication inside the two process groups.

Intragroup collective communication algorithms have
been thoroughly studied in existing literature [12]. Johnson
et al. [13] have implemented the Allgather function under single-
port communication constraint on hypercube topology. The
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algorithm of Bruck et al. [14] addresses the case of non-power
of two number of processes for Allgather and All-to-All. Thakur
et al. [15] optimized intragroup Allgather for MPI using recursive
doubling and the Bruck algorithm [14] for non-power number
of processes. Traff [16] has proposed an algorithm for intragroup
Allgatherv using a ring topology that is efficient for larger data
sets. Like the root gathering algorithm, our new algorithms benefit
from efficient implementations of these algorithms for intra-
group collectives, in particular, implementations that adapt to the
hierarchical structure of modern, parallel systems.

Intergroup collective communication, on the other hand, is still
in need of further research. For intergroup all-to-all broadcast
(MPI_Allgather), MPICH [8], MVAPICH [9] and OpenMPI [10],
the most widely-used MPI implementations in the HPC commu-
nity, adopt the “root gathering algorithm” which does, by a signif-
icant factor, not achieve optimal transfer time. Also closed source,
vendor libraries like Intel MPI seem to use some variant of the root
gathering paradigm.

3.1. The root gathering algorithm

The root gathering algorithm, adopted by popular MPI produc-
tion libraries such as MPICH, MVAPICH, and OpenMP], is discussed
in [17]. To the best of our knowledge, this algorithm is the state-
of-art implementation of MPI inter-group Allgather. For each of the
two groups, a root process gathers all messages from other pro-
cesses in the local group and broadcasts the gathered message to
all processes in the remote group. The root gathering algorithm
can be readily implemented using existing MPI functionality with-
out creating any intermediate communicators. However, it does not
meet the lower bound on communication transfer time under the
single-port communication constraint by a large factor.

The best version of the root gathering algorithm has three
stages. Let a; and by be chosen root processes in groups A and
B. In the first stage, root process ap gathers the full message my
from the other p— 1 processes in group A. Root process by gathers
the full message mg from the other q — 1 processes in group B. The
overall communication cost of this stage is

max (log (p)ts + (p — 1katw, log (@)ts + (g — 1)kptw)

using standard, optimal, binomial-tree algorithms, see, e.g. [12]. In
the second stage, the two roots exchange their aggregated mes-
sages, which takes

max (ts + pkA twa ts + qutw)

time units. In the third stage, root process ap broadcasts mp of
size gkp to the other p — 1 processes in its group. Root process bg
broadcasts my of size pks to the other g — 1 processes within its
group. This stage takes time

max (log (p)ts + gkgtw, log (@)ts + pkatw)

(plus lower order terms) using an optimal algorithm for the broad-
cast operations [18,19].
Let T be total the communication cost of the three stages.
A lower bound for the communication cost of the root gather-
ing algorithm can be bounded as expressed by Eq. (1), with o =
(1+2log(p)).
T < at; + (max ((p — 1)ka, (9 — Dks))tw +2M
= at; + max ((3p — Dka, 39 — Dkp)tw
<2log(p)ts +3M  as p,q— (1)
The time of this version of the root gathering algorithm is about
a factor three larger than the lower bound.

MPI libraries like MPICH, MVAPICH, and OpenMPI do not im-
plement optimal algorithms for broadcast, but algorithms that

are a factor of two off in the transfer time term [15]. Fur-
thermore, in their implementations, the intergroup exchange of
gathered messages at Stage 2 and the one-to-all broadcasts at
Stage 3 are all performed sequentially. Thus, the implementation
of the root gathering algorithm in MPI production libraries has
communication cost T roughly as shown in Eq. (2), where § =
(2+2log (p) +log (q)) This cost is a baseline for evaluating our
new algorithm.

T< ﬁtg + max ((p — ])kA, (q— 1),(3) + 3pka + 3qgkp)tw
< 3log (p)ts + M + 3(pks + qkp)ty as p,q — oo (2)

4. The Allgather Algorithm

We present our new algorithm for the intergroup Allgather op-
eration that achieves the transfer time lower bound asymptotically.
In [1], we have presented an algorithm for intergroup Allgather
with optimal transfer time for large numbers of processes. The al-
gorithm for intergroup Allgather proposed in this paper simplifies
the previous work by reducing the two-stage intragroup Allgather
operations to one stage. We show that the transfer time of the
proposed algorithm is also optimal for large numbers of processes.

Overall, the idea of the proposed algorithm is to exploit as
many communication links between the two groups concurrently
as possible in order to exchange the full messages m, and mp be-
tween the two groups. After that, concurrent intragroup Allgather
operations in each of the groups collect the received messages to
achieve the objective of intergroup Allgather. Our algorithm keeps
g pairs of processes active throughout the exchange (recall that we
assumed that g<p), and the exchange is done over [E2] commu-
nication rounds. We divide the messages from the smaﬁer group B
into segments such that the total number of segments in group B is
p. From that, the correctness of the algorithm is clear by construc-
tion: Each process in group A will receive a segment from a process
in group B, and each process in group B will receive one or more
blocks from processes in group A. All blocks from group A will
have been transferred to processes in group B, and all segments
from group B will likewise have been transferred to processes
group A. The concurrent Allgather operations in the two groups
collect the blocks and the segments together, such that each
process will have the full message from the processes of the other
group. The partner processes in the exchange are chosen such that
blocks and segments are received in rank order over the processes,
and an Allgather operation without any block or segment reorder-
ing therefore suffices. The same idea can also be applied to the
MPI_Allgatherv operation as described in Section 4.1.

Algorithm 1: Full-duplex Intergroup All-to-All Broadcast with
Message segmentation.

1forie|0,,2-1]do

2 # Concurrent loop j

3 | forje|0,.,q—1]do

4 agjﬂ. send mA_ng. to bj
5 b; send mp ;; to pjsi

6 end

7 end

8 # Group A Allgather received messages from group B.
9 Intra-Allgather a;, My Ll-J\o’{j :0<j<p}
hLg

10 # Group B Allgather received messages from group A
11 Intra-Allgather bj, m, 4, V(0 < j<q.0<i< g)

Algorithm 1 formally shows the proposed intergroup Allgather
operation. It consists of a message exchange step between the two
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{mB1,mA3}

o (@
{mA2}

mA4,mB1[1]

Intra-Allgather
mA

{(mA2,mBO[2]}
(mA3,mB1[0]}

Intra-Allgather

Fig. 1. Example execution of Algorithm 1 for p=6 and q = 2.

groups of processes, followed by concurrent intragroup Allgather
operations within each of the groups. We first assume that g
divides p. Each process i in group A sends its message my; to
process j = Li/gj, as shown in Line 4. The messages in group B

are segmented and sent across the groups in g communication
rounds, as shown in Line 5. For now, we also assume that kg

is divisible by %’. Each process j in group B sends a part of its
message myg; of size kg/% to process j% +i for i=0,..., g —1.
After this exchange in £ communication rounds, it is obvious that
all messages from group A have arrived at processes in group
B, and that all segments of the messages in group B are like-
wise present at processes in group A. To complete the All-to-All
broadcast operation, each of the two groups performs intragroup
Allgather operations over messages received from the remote
group. These two Allgather operations can take place concurrently.
The intragroup Allgather operations of group A for messages
received from group B is in Line 9. The intragroup Allgather
operations of group B for messages received from group A is in
Line 11. Fig. 1 shows an execution of the algorithm with p=6
and q = 2.

To handle the case where 2 is not an integer, we divide pro-
cesses in group A into q disjoint subgroups {so, ., S;_1} such that all
ranks in s; are smaller than ranks in s; if i <j. We assign the size of
the subgroups in the following way. Let r = p mod q. For i <r, s; has
size [27. Otherwise, s; has size L{]—’j. Since p = [g'lr+ LgJ(q— ),
the union of the subgroups is A.

We modify Algorithm 1 in the following way. Every b;eB
exchanges messages with all processes in the subgroup s;. Then,
both group A and group B perform intragroup Allgather operations
for messages received from their remote groups. Since every
subgroup of group A has almost the same size, the segmented
message received by the processes in group A also has almost the
same size. Likewise, every process in group B also has similar size
of messages received from group A. With the balanced send sizes,
the final intragroup Allgather operations can be performed using
the largest send size of any process without having significant
completion time overhead, or by an Allgatherv operation. Fig. 2
gives an example with p=8 and g =3. We have sy = {0, 1,2},
s; =1{3,4,5}, and s, ={6,7}. The final intragroup Allgather for
group B has a send size of 3k,. The final intragroup Allgather for
group B has a send size of ‘%*
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Fig. 2. Example execution Algorithm 1 for p=8 and g = 3.

If the message size kg of group B is not divisible by g, some
processes from B will send a smaller, potentially empty message
to some processes in group A. The algorithm is still correct in the
sense that all segmented messages from group B are present in
group A after the exchange. Again, the Allgather step is done either
by using the larger send size, or by an Allgatherv operation.

The segmentation for messages transferred from group B to
group A is necessary, especially when g is large. In [1], we ana-
lyzed the transfer time of an algorithm similar to Algorithm 1, but
without message segmentation. We showed that the transfer time
of this algorithm is not bounded by any multiple of the optimal
transfer time lower bound when pka < qkg as {]3 — 00,
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The message segmentation algorithm proposed in [1] differs
from Algorithm 1 in the way that processes in group A gather
all messages from group B via two steps of intragroup Allgather
operations. With the homogeneous communication model cost
assumed in this paper, the two-step intergroup Allgather op-
eration is unnecessary, since the one-step version shown in
Algorithm 1 achieves the task with the same transfer time. How-
ever, the two-step implementation of [1] could have advantages
on hierarchical systems with non-homogeneous costs in case the
MPI_Allgather operation is not properly aware of the processor
hierarchy. For instance, one of the Allgather operations can operate
entirely inside processor nodes. We prefer the formulation of
Algorithm 1 and assume that the MPI_Allgather operation is
properly implemented to be efficient over any assignment of MPI
processes to processors in the compute nodes.

In Algorithm 1, Lines 1-7 initiate g operations, so the startup

time is Zt;. For Line 9, the Allgather can be finished in log(p) com-
munication rounds using the Bruck algorithm [14]. For Line 11, the
number of communication rounds is log(q). Therefore, the overall
startup time for Lines 9-11 is log(p)ts since g <p by assumption.

Theorem 1. The transfer time term of Algorithm 1 is bounded by
(max (pka, gkp) + kp)tw = M + kptw.

Proof. The total transfer time of Lines 1-7 is

p kep ( p )
max | ka=, —= |tw = max | k,=, kg )tw.
(Aq gq)w Aq B Jlw

Line 9 has a total transfer time of (q )kstw, since it is an in-

_ 9

P
tragroup Allgather operation of % message size over p processes.
Line 11 has transfer time (p - g)k,ltw. The intragroup Allgather at
Line 11 runs parallel to Line 9. It follows that the overall transfer
time can be bounded using Eq. (3).

(e .1) - (5200~ )
< (max (kAg, ka) + max (kA (p - g) kgq)))tw
< (max (kﬁg, kg) + max (kAap, ka)(q -+ kg)tw

= (max (pka, gkg) + kp)tw
=M+ kBtw a

Theorem 1 gives a lower bound for the transfer time of
Algorithm 1. This lower bound justifies the optimality of transfer
time for Algorithm 1 asymptotically with respect to p and q.

We summarize the correctness, namely that the full messages
my and mp are gathered at all processes in groups B and A as re-
quired in Theorem 2,

Theorem 2. Algorithm 1 correctly implements the intergroup All-
gather operation.

Theorem 2 follows from the description of Algorithm 1. In
Fig. 1, it is clear that messages transferred from group A to group
B do not overlap and have a total size of pk,. Likewise, mes-
sages transferred from group B to group A are also disjoint and
have a total size of gkp. Since all messages received from the
other group are contributed in each of the Allgather operations,
Algorithm 1 correctly implements the intergroup Allgather.

Algorithm 1 does not utilize all links possible between the p+gq
processes. We note that optimal transfer time requires much fewer
links than the (p+q)(p+ q — 1) links of a fully connected system.
The intragroup Allgather only requires a ring topology to reach op-
timal completion time [12,16]. For Algorithm 1, Lines 1-7 require
p links, since every process in group B sends messages to g pro-
cesses in group A and every process in group A sends messages to

only one process in group B. Line 9 requires p processes connected
in a ring to perform the Allgather. Likewise, Line 11 requires g pro-
cesses connected in a ring to perform the Allgather. Therefore, the
minimum number of links to maintain optimal transfer time is less
than p+q+ g and linear in the number of processes.

4.1. The Aligatherv Algorithm

The MPI_Allgatherv operation generalizes the
MPI_Allgather collective. Instead of every process in each
group having the same block size, MPI_Allgatherv allows
every process to contribute a block of different size. Therefore, a
process receives messages of different size from every process in
its remote group.

Let ky; be the message size of m,; sent by process g; and kg; be
the message size of mp; sent by process b;. The goal of intergroup
MPI_Allgatherv is to let every b; ¥0 <j < q receive my =my; Y0 <
i<p-1and every ¢;V0 <j<p receive mg =mg; V0 <i<q—1.By
the same argument as for Allgather in Section 2.2, it follows that a
lower bound for the optimal transfer time is

p-1 g-1
M = max (Z kA‘f, Z kE‘i) Ly
i=0 i=0

The algorithm for the MPI_Allgatherv follows the same
principle as for MPI_Allgather. The processes in each group
compute the total message sizes K; = Zf’:’(}l ks ; and Kz = Zf;ol kg,
respectively, which can be done by an Allreduce operation con-
currently within the two groups. The messages to be sent from

roup A to group B are then segmented into blocks of size roughly
TA‘ and the blocks from group B to group A into blocks of size
roughly %. Thus, processes having large blocks will send these
over a number of send operations, while small blocks will be sent
in a single operation. The overall time for the exchange step will
thus be determined by the largest blocks, that is max(ka;, kg;)-
This exchange step ensures that all segments from group B will be
present at processes in group A in segments of roughly the same
size, and that all segments from processes in group A will like-
wise be present in group B, such that final Allgather operations
can collect the full messages at all processes in the two groups, as
required. For process g; in group A, to compute which processes
in group B it has to send its segments, it only has to compute the
size of blocks at the processes ag,ay,...,a;_1; with a lower rank
than g;. Call this prefix sum which can be computed by an Exscan
operation for Ry ;. The first process in group B to receive a segment

from a; is then RAJ/K—A. The same applies to process b; in B. This
ensures that all segments will be present in rank order in each of
the groups, such that an Allgather operation can indeed complete
the algorithm without any need for reordering. The cases where
block size is not exactly divisible can be handled as described for
Algorithm 1. It is important to notice that the total sizes of seg-
ments received by a process is almost the same for all processes in
the group, such that an Allgather operation with same block sizes
can be used.

Algorithm 2 describes our algorithm for intergroup Allgath-
erv more formally. To make the segmentation easier to describe,
we assign a unique, global index for every byte of the mes-
sages in each of the groups, ordered based on the rank of pro-
cesses. Formally, the global index of byte y in a message my,
is denoted by ms,, and defined as mA!x,y.index:Zf;& kai+y.
We define the set of indices associated with message myy, as
My yindex = {1} ks +yV0 <y < ks ). For example, if myq has
a size of x bytes and my; has a size of y bytes, m, ¢ ;.index =i and
my 1, jindex =x+ j for 0<i<xand 0<j<y. myq.index = [0, x) and
My q.index = [x, x+y). The same definition applies to mp.
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Algorithm 2: Full-duplex Intergroup Allgatherv.

1 kj « Intra-group Allreduce (Sum) a;¥(0 < j < p) over ky ;
2 kg « Intra-group Allreduce (Sum) b;¥(0 < j < q) over kg ;
3 14 < kymod q

4 g < kgmod p

5foric[0,q— 1] do

6 | ifi <r, then

7| | saieGriella+nren

8 else

9 S < {i:je , , ’
[l + G -ra) 21 ral 21+ G+ 1-r) [ 21))
10 end

11 end

12 forie[0,p-1] do

13 | g; send my;; to byVj such that my; ;.index € 54, V0 < k <
q Ay ;indexNs, , # @

14 end

15 forie[0,p— 1] do

16 | if i < rp then

v || spielielilf G+ nrin)
18 else
19 sgi<1{i:je
[ral %1+ G- ra) |2 ), [ 27 + GG+ 1 - 1) "2 )}
20 end
21 end

22 forie[0,g—1] do

23 b; send mg; ; to b,V such that mp; ;.index € s5; V0 < k <
pAmg;.indexNsgy # @

24 end

25 Intra-Allgather a;V¥(0 < j < p) over mg

26 Intra-Allgather b;V(0 < j < q) over my

Initially, each of the groups sums up the total message size of
their local groups in Lines 1-2. In Lines 5-24, both groups ex-
change their messages. Lines 5-14 and Lines 15-24 are similar. The
first one is from group A to group B and the other is from group
B to group A. The definition of s4; at Lines 7 and 9 ensure that
the message received by every process in group A at Line 13 is

unique and has size either L!?J or [ A'l Similarly, the definition
of s4; at Lines 17 and 19 ensure that every process in group B

receives unique messages of size either |_ J or [ BT at Line 23.
Fig. 3 gives an example of this stage. The balancmg of the mes-
sage sizes received by receivers at this stage is necessary for the
MPI_Allgather operations in the next stage. Lines 25 and 26
perform intragroup Allgather for messages received from the re-
mote group of each group.

At Lines 13 and 23 of Algorithm 2, the send operations are
run in parallel. However, by the single-port communication con-
straint, a sender can send to one receiver and a receiver can re-
ceive from one sender at a time. Therefore, there may be delays of
send/receive operations that can compromise the transfer time of
the algorithm at Line 13 and 23. For example, in Fig. 33, a3 sends
messages to b; and by. by receives messages from a; and a4. To
achieve the best possible transfer time with the algorithm, it is
crucial that sending and receiving is done in such a way that send-
ing processes can be busy throughout.

We order the send/receive operations in the following way. If
a sender sends messages to multiple receivers, the sender always
sends its messages in the order of its receivers’ ranks. We call the
senders that send to multiple receivers multi-target senders. A re-

ceiver decides the order of senders it receives messages from and
senders should wait for the receiving channel of the receiver to
be idle in order to initiate the send operation. It is obvious that
one receiver has at most two multi-target senders by the design of
Algorithm 2. The receivers receive messages from the multi-target
sender with higher rank, followed by senders with ranks between
the two multi-target senders, followed by the multi-target sender
with a lower rank. For example, in Fig. 3, both a; and a3 try to
send messages to b;. In such case, the receiver receives messages
from a3 with higher priority, since a3 is a multi-sender with the
highest rank among all its senders. Another example is b,, both a3
and a4 send messages to b,. Moreover, both a3 and a4 are multi-
target senders. Since a4 has a higher rank, b, receives messages
from a4 with higher priority. Theorem 3 presents an upper bound
for the transfer time of Algorithm 2.

Definition 1. A receiver receives messages from a set of senders
compactly if the total transfer time is equal to the senders’ total
messages size times t,.

Theorem 3. The transfer time term of Algorithm 1 is bounded by
p—1 g-1
max | ¥ kg +max(ks), > Kg; +max(ks) |ty
i=0 i=0
+log (pq)tw
< M+ (max(max(ka), max(ks)) + log (pq) )tw (4)

Proof. The Allreduce operations at Lines 1-2 have a transfer time
log (p)tw + log(q)tw.

Consider a multi-target sender g;, let by, ., b, for y>1 be its
receivers. Process b; receives the message from a; at the begin-
ning, since g; is the multi-target sender of b;,, with highest rank
by the design of S4 ;... The processes b;,,¥0 < z < y receive mes-
sages exclusively from g@;, so the send operations are also not de-
layed. Now we consider process b;,,. Let a;, .., aj, be its senders.
If a;,. is a multi-target sender, b;,, receives messages in order
of {aj.¢, @jy1, ., @jyc_1,a;}. The processes {a;.q, .., aj,c} are senders
that only send to by, and b;,, is the lowest rank among all
receivers of process aj,.. If process aj, is not a multi-target
sender, b;,, receives messages in order of {a; .., aj.,a;}. Pro-
cesses {aj.1..,0j;c} are senders that send messages to b;, ex-
clusively. Therefore, b;., has been compactly receiving messages
when it starts to receive messages from g; in either of the cases.
If the send operation from process g; to process b;,, is not de-
layed, the total transfer time of the send operations for g; is
ka, jtw < max (ks )tw. If the send operation from g; to b;.,, is delayed,
the total transfer time of the send operations for g; is less than

Pl . . .
f@'ltw. since g; is the last sender of the receiver b;., and

b,y can receive at most [07"‘] < max (k4) messages by design
of Sa,i4y-

If a sender g; is not a multi-target sender, it is obvious (from
previous argument for b;,,) that its only receiver b; receives mes-

sages compactly until receiving messages from a;. Since b; can re-

p-1p, .

ceive at most r‘zf%k’“'l < max (ks) messages by design of S ;, the

transfer time of the send operation for g; is less than max (ks )tw.
Line 25 is an Allgather operation of messages received

from Lines 12-14 for processes in group B. The send size is

= I'Z‘<J 417, Therefore, the transfer t1me is p(sizeg — Nty <

km)tw is the total

snzeA

Z kA itw. Consequently, (max(ks) + Z
transfer time of Lines 12-14 and 25.

We can apply the same argument to derive that (max (kg) +
> 1 kg )tw is the total transfer time of 22-24 and 26. Lines 12-14
and 25 run in parallel with Lines 22-24 and 26. Thus, the optimal
transfer time bound in the theorem is proven. O
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Fig. 3. An illustration for the intergroup message exchange in Algorithm 2 for p = 6 and q = 2. (a) The send operations in Lines 12-14. (b) The send operations in line 22-24.
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Fig. 4. Allgather results for settings 1-4. Legend “Algorithm1” refers to Algorithm 1 of this paper, legend “EuroMPI" to Algorithm 2 in [1], and legend “Root Gathering” to
the MPI library native root gathering algorithm. The plots are labeled with titles of the form “Number of processes (setting number)”. Settings for p, g, k4, and kz have been
defined in the text. The x-axis gives the maximum message size per node in Bytes, and the y-axis gives the completion time in milliseconds. The data type used is MPI_INT.
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Fig. 5. Algorithm 1 versus the MPI library native root gathering algorithm for settings 5-8. The plots are labeled with titles of the form “Number of processes (setting
number)”. Settings for p, g, ks, and kp have been defined in the text. The x-axis gives the maximum message size per node in Bytes, and the y-axis gives the completion

time in milliseconds. The data type used is MPI_INT.

Theorem 3 shows that the message transfer ordering achieves
optimal transfer time asymptotically. The term log(pq)ty is neg-
ligible compared with M for large message sizes and the term
max (max (ks), max(kg))tw is negligible for large p and gq. There-
fore, Algorithm 2, along with the ordering proposed for the send
operations, converges to the lower bound of the optimal transfer
time M.

Theorem 4. Algorithm 2 correctly implements the intergroup Allgath-
erv operation.

Theorem 4 recapitulates the correctness of Algorithm 2, and fol-
lows from the explanation given above.

5. Experimental results

To study the actual improvements achieved over the inter-
group collective implementations in standard MPI libraries, a
number of experiments have been performed on Cori, a Cray
XC40 supercomputer at the National Energy Research Scien-
tific Computing Center (NERSC). We have used the Cray MPI
compiler(Cray-mpich/7.6.0), which is based on MPICH [8]. We
have implemented our algorithms as described in the previ-
ous sections, using intra-communicator MPI_Allgather and
MPI_Allgatherv as building blocks. Creation of new communi-
cators is not necessary since an inter-communicator gives access

to the intra-communicator that a given process belongs to. The
MPI_Allgather and MPI_Allgatherv interfaces give the in-
formation on block sizes as required by the algorithms to perform
the message segmentation.

For our experiments, we fill all message buffers with random
numbers. We measure the MPI_Allgather 8 times and report
the average completion time. As completion time for each individ-
ual measurement, we pick the maximum time among all processes.
We implement Algorithms 1 and 2 using MPI functions and make
direct comparisons with the root gathering algorithm by calling the
MPI library native MPI_Allgather and MPI_Allgatherv oper-
ations on the proper inter-communicators.

Algorithm 1 is equivalent to Algorithm 2 presented in [1] in
terms of transfer time. Therefore, we expect the same perfor-
mance. In this section, we present additional experimental results
for cases where p and g are pairwise indivisible. We present four
parameter settings, numbered from 1 to 4. Setting 1 is when
p=gq and all processes are sending exactly the same data size.
Setting 2 is when % = ? and all processes are sending exactly the
same data size. This setting evaluates an imbalanced number of
processes in the two groups. Moreover, the sizes of the two groups

are pairwise indivisible. Setting 3 is when gz ? and group A

sends larger messages than group B. Setting 4 is when g = ?

and group B sends larger messages than group A. Settings 3 and 4
evaluate imbalanced message sizes for the two groups.
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Fig. 6. Improvement of the proposed algorithms (Algorithm 1 for Allgather and Algorithm 2 for Allgatherv) (Tyew) compared with the root gathering algorithm adopted by

Tog
Toew *

the MPI library (T,4). Improvements are computed as
refers to the total number of processes.

We use four parameter settings, numbered from 5 to 8,
on 64 nodes and 256 nodes to evaluate Algorithm 2 for
MPI_Allgatherv. Setting 5 is when p=q and all processes are
sending exactly the same data size. This setting has the same end
result as the first setting used to evaluate Algorithm 1. Setting 6 is
when p = g and processes in each of the groups are sending mes-
sages with block sizes forming an arithmetic sequence, e.g., rank i
sends a message of size ki for some a chosen, fixed k. This setting
evaluates extreme cases of imbalanced send sizes. Setting 7 is
when 2 = 2—75 and all processes are sending equal-sized messages.
This setting has the same end result as the fourth setting used for
evaluating Algorithm 1. Finally, setting 8 is when g = 2—7? and the
send sizes form an arithmetic sequence. This setting evaluates the
case of imbalanced process numbers and irregular message sizes.

We experiment with the different parameter settings described
on three MPI process configurations. For the first two configura-
tions, one process is assigned to every node of 64 nodes and 256
nodes. Hence the total number of processes is 64 and 256 respec-
tively. These two setups emulate a homogeneous communication
cost model where a data transfer between any two processes has
the same communication cost. For hybrid MPI and OpenMP ap-
plications that use shared memory at the same node and process
communication across nodes, this setup is reasonable. For the last
setup, we assign 32 processes to every node of the 64 nodes. Thus,
the total number of processes is 2048. This setup emulates appli-
cations that fully utilize cores with MPI. We perform experiments
with maximum message sizes from 64KBytes to 8MBytes per node.
Fig. 4 shows the run time comparison between Algorithm 1 and
the MPI library native root gathering algorithm. Fig. 5 shows the
run time comparison between Algorithm 2 and the MPI library na-
tive root gathering algorithm.

Each curve represents the improvement of one of the settings with different message sizes. The number in titles

As explained in Section 3.1, the version of the root gath-
ering algorithm implemented by MPICH has transfer time
(M +3pk, +3qkg)ty, by Eq. (2) for M = max(pks,qgkg). The
transfer time of Algorithm 1 is max(pks, gqkp)tw. The expected
improvement is therefore

M + 3pk4 + 3gks
— M )

Fig. 4 illustrates the end to end execution time of the root
gathering algorithm, Algorithm 2 in [1], and Algorithm 1 from
message size 64KBytes to 8MBytes per process with settings 1-4
and three process configurations mentioned previously. Since the
theoretical transfer time of Algorithm 1 is equivalent to that of
Algorithm 2 presented in [1], we expect a similar performance of
these two algorithms for all settings when message size is large.
The results in Fig. 4 matches this expectation. Setting 2, 3, and 4
provide additional results for settings that are not presented in [1],
where p and ¢ are indivisible of each other.

Fig. 5 illustrates the end to end execution time of the root gath-
ering algorithm and Algorithm 2 from message size 64KBytes to
8MBytes per node with settings 5-6 and three process configura-
tions mentioned previously. The proposed algorithm shows much
better performance than expected with 256 processes running on
256 nodes. This observation can be explained by the MPICH im-
plementation that implements the intergroup MPI_Allgatherv
slightly different from intergroup MPI_Allgather. The gathering
operations of messages to roots are implemented using a ring
algorithm. If the communication cost between nodes is the same,
the transfer time of the ring-based intragroup Gather algorithm
achieves the lower bound of intragroup Gather. However, as
mentioned before, Cori is pseudo-fully connected, so every step
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of the ring algorithm is dominated by the largest communication
cost between nodes with adjacent ranks, which can lead to poor
performance as the number of nodes increases. As a result, the
overall performance of the root gathering algorithm is worse than
its theoretical performance on 256 nodes.

Fig. 6 illustrates the improvements in Algorithms 1 and 2 over
the root gathering algorithm for all eight settings and three process
configurations. When message sizes are small, the performance
of the proposed algorithms is not necessarily better than the per-
formance of the root gathering algorithm, because the t,, term is
relatively small compared with t; which represents the communi-
cation cost independent of the message size. Discussion for small
message sizes is beyond the scope of this paper since our objec-
tive is to optimize the t, term. For large message sizes, we can
observe that the performance of the proposed algorithms is many
times faster than the performance of the root gathering algorithm.
According to Eq. (5), improvement curves for setting 1, 2, 3, 4, 5,
6, 7, and 8 should converge to 7.0, 4.84, 4.21, 6.68, 7.0, 7.0, 4.84,
and 4.84 respectively as the message size increases. Since Cori
is not strictly fully connected, the homogeneous communication
cost assumption is not necessarily valid. Thus, the improvements
may not converge to the exact ratios, since different pairs of arbi-
trarily selected processes can have different communication cost.
Nonetheless, the significant improvements with large message
size experiments demonstrate the robustness of the proposed
algorithms under a weak assumption for communication cost for
different process configurations and communication patterns.

6. Conclusion

In this paper, we proposed scalable algorithms for the full-
duplex intergroup All-to-All broadcast collective operations that
can readily be used to implement the MPI_Allgather and
MPI_Allgatherv collectives of MPL Under single-port commu-
nication assumptions, the proposed algorithms achieve the lower
bound for optimal transfer time asymptotically. Theoretical anal-
ysis shows that the proposed algorithms can achieve much lower
transfer times than the root gathering algorithm that is adopted
by many modern MPI production libraries. We have implemented
the proposed algorithms. Experimental results are in line with
our theoretical analysis under a broad selection of configurations
(numbers of processes, relative block sizes, process placement),
and the practical gains correspond to the model predictions. In
addition, these results show that the relative improvements are
robust also for hierarchical systems where our homogeneous
cost model does not apply. Consequently, we suggest using these
implementations in MPI libraries instead of the now commonly
used root gathering algorithm.

Intergroup collective operations embody communication pat-
terns that cannot easily be expressed with the ordinary, intragroup
collectives, namely bipartite patterns between processes in two
disjoint groups where all communication is between groups and
never within groups.

Although it is easily possible to improve over the root gather-
ing algorithm also for the intergroup MPI_Bcast, MPI_Gather,
MPI_Gatherv, MPI_Scatter and MPI_Scatterv operations,
partly by the ideas presented in this paper, partly by reusing ideas
from algorithms for the corresponding intragroup collectives, the
full-duplex All-to-All operations still pose interesting challenges.
While MPI can only express bipartite patterns over two disjoint
process groups, it might be worthwhile to study multi-partite

patterns both for use in concrete application and to gain insights
into more general collective communication operations.

Acknowledgment

This work is supported in part by the DOE office of Ad-
vanced Scientific Computing Research, awards DE-SC0014330 and
DE-SC0019358. This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S Department
of Energy under Contract NO. DE-AC02-05CH11231.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.parco.2019.04.015.
Source code for experiments is on http://github.com/QiaoK/
Intergroup_Allgather_Evaluation.

References

[1] Q. Kang, ].L. Traff, R. Al-Bahrani, A. Agrawal, A. Choudhary, W.-k. Liao, Full-du-
plex inter-group all-to-all broadcast algorithms with optimal bandwidth, in:
Proceedings of the 25th European MPI Users’ Group Meeting, ACM, 2018, p. 1.

[2] MPI Forum, MPI: amessage-passing interface standard. Version 3.1, 2015. http:
[ l[www.mpi-forum.org.

[3] J. Liao, B. Gerofi, G.-Y. Lien, T. Miyoshi, S. Nishizawa, H. Tomita, W.-K. Liao,
A. Choudhary, Y. Ishikawa, A flexible /O arbitration framework for netCD-
F-based big data processing workflows on high-end supercomputers, Concur-
rency Comput. 29 (15) (2017) e4161.

[4] J. Hacker, W. Angevine, Ensemble data assimilation to characterize sur-
face-layer errors in numerical weather prediction models, Mon. Weather Rev.
141 (6) (2013) 1804-1821.

[S] W. Gropp, E. Lusk, Fault tolerance in message passing interface programs, Int.
J. High Perform. Comput. Appl. 18 (3) (2004) 363-372.

[6] E Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, H. Abbasi, Enabling
in-situ execution of coupled scientific workflow on multi-core platform, in:
26th International Parallel & Distributed Processing Symposium (IPDPS), IEEE,
2012, pp. 1352-1363.

[7] C. Docan, E. Zhang, T. Jin, H. Bui, Q, Sun, . Cummings, N. Podhorszki, S. Klasky,
M. Parashar, Activespaces: exploring dynamic code deployment for extreme
scale data processing, Concurrency Comput. 27 (14) (2015) 3724-3745.

[8] Mpich3, 2017, (http://www.mpich.org/downloads/).

[9] D.PA. Mamidala, A. Vishnu, Efficient shared memory and rdma based design
for mpi_allgather over infiniband, 2006.

[10] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, ].J. Dongarra, J.M. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, RH. Castain, D.J. Daniel, R.L. Graham,
T.S. Woodall, Open MPI: goals, concept, and design of a next generation MPI
implementation, in: Recent Advances in Parallel Virtual Machine and Message
Passing Interface. 11th European PVM/MPI Users’ Group Meeting, in: Lecture
Notes in Computer Science, 3241, Springer, 2004, pp. 97-104.

[11] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to parallel computing:
design and analysis of algorithms, 400, Benjamin/Cummings, 1994.

[12] E. Chan, M. Heimlich, A. Purkayastha, R. Van De Geijn, Collective communi-
cation: theory, practice, and experience, Concurrency Comput. 19 (13) (2007)
1749-1783.

[13] S.L. Johnsson, C.-T. Ho, Optimum broadcasting and personalized communica-
tion in hypercubes, IEEE Trans. Comput. 38 (9) (1989) 1249-1268.

[14] ]J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, D. Weathersby, Efficient algorithms for
all-to-all communications in multiport message-passing systems, IEEE Trans.
Parallel Distrib. Syst. 8 (11) (1997) 1143-1156.

[15] R. Thakur, R. Rabenseifner, W. Gropp, Optimization of collective communica-
tion operations in MPICH, Int. ]. High Perform. Comput. Appl. 19 (1) (2005)
49-66.

[16] J.L. Trdff, A. Ripke, C. Siebert, P. Balaji, R. Thakur, W. Gropp, A pipelined al-
gorithm for large, irregular all-gather problems, Int. J. High Perform. Comput.
Appl. 24 (1) (2010) 58-68.

[17] P. Silva, ].G. Silva, Implementing MPI-2 extended collective operations, in: Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface. 6th
European PVM/MPI Users' Group Meeting, Vol. 1697 of Lecture Notes in Com-
puter Science, Springer, 1999, pp. 125-132.

[18] P. Sanders, J. Speck, ].L. Triff, Two-tree algorithms for full bandwidth broadcast,
reduction and scan, Parallel Comput. 35 (12) (2009) 581-594.

[19] ]J.L. Triff, A. Ripke, Optimal broadcast for fully connected processor-node net-
works, ]. Parallel Distrib. Comput. 68 (7) (2008) 887-901.



