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ABSTRACT
MPI inter-group collective communication patterns can be
viewed as bipartite graphs that divide processes into two
disjoint groups in which messages are transferred between
but not within the groups. Such communication patterns can
serve as basic operations for scientific application workflows.
In this paper, we present parallel algorithms for inter-group
all-to-all broadcast (Allgather) communication with optimal
bandwidth for any message size and process number under
single-port communication constraints. We implement the al-
gorithms using MPI point-to-point and intra-group collective
communication functions and evaluate their performance on
the Cori supercomputer at NERSC. Using message sizes rang-
ing from 256B to 64MB, the experiments show a significant
performance improvement achieved by our algorithm, which
is up to 9.27 times faster than production MPI libraries that
adopt the so called root-gathering algorithm.
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1 INTRODUCTION
The MPI [12] inter-group collective communication patterns
can be viewed as bipartite graphs that divide processes into
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two disjoint groups in which messages are transferred between
but not within the groups. Different from the half-duplex case,
where one group is the sender group and the other group is
the receiver group, full-duplex inter-group collective commu-
nication means that both groups send and receive messages
from each other. Since processes in one group only need to
receive messages from the other group, these communication
patterns can be flexibly used by many applications.

Scientific application workflows utilize inter-group collec-
tive communication. Such workflow systems divide compo-
nents into groups. Processes in two different components ex-
change computed results via all-to-all broadcast (Allgather)
and personalized all-to-all scatter (all-to-all). In [11], the au-
thors propose a framework for parallel data transfer among
workflow components on high-end supercomputers for a com-
putationally intensive weather prediction system, SCALE-
LETKF [7]. Hardware/Hybrid Accelerated Cosmology Code
(HACC) [6] is a system that involves real-time communica-
tion and processing of Peta-byte size of data among compo-
nents [14]. To improve system performance, researchers have
proposed strategies for reducing inter-group communication
cost among workflow components. For example, Zhang et
al. [20] propose a distributed framework that maximizes on-
chip data exchange that can reduce the communication cost
caused by communication among job components. Docan et
al. [4] design an Active Spacing approach that reduces data
exchange by moving programs to staging areas. Although
reducing data communication frequency and size can improve
overall performance, inter-group communication among com-
ponents is still unavoidable. Given such applications scenarios,
it makes sense to investigate and to improve the inter-group
collective communication operations provided by MPI.

In this paper, we focus on an important inter-group col-
lective communication pattern, namely all-to-all broadcast.
This function corresponds to MPI_Allgather with an inter-
group communicator in the MPI standard. MPI_Allgather
with an inter-group communicator is defined such that every
process in each of the two disjoint groups of processes receives
messages from all processes in the other group. MPICH [1]
and OpenMPI [5], the most widely-used MPI implementa-
tions in the parallel processing community, adopt the "root
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gathering" algorithm. The root gathering algorithm is dis-
cussed in [15] and [16]. The underlying principle of the root
gathering algorithm is single-process accumulation per group
followed by a pair-wise exchange of the gathered messages.
Then, one-to-all broadcasts within the two groups achieve
the objective of inter-group Allgather. Although the root
gathering algorithm is easy to implement, it clearly does
not achieve optimal bandwidth term lower bound under a
single-port communication constraint.

We propose an optimal inter-group all-to-all communica-
tion algorithm in terms of bandwidth for any number of
processes and any message size. We provide a detailed the-
oretical analysis to justify that the algorithm achieves the
optimal bandwidth lower bound. We show that the optimal
bandwidth can be achieved with a linear number of process
connections. Unlike the root gathering algorithm, the pro-
posed algorithm avoids the one-to-all broadcasts of large
message size.

We implement the proposed algorithms for inter-group all-
to-all broadcast using MPI point-to-point and intra-group col-
lective communication functions. Experiments are conducted
on Cori, a Cray XC40 supercomputer at the National Energy
Research Scientific Computing Center (NERSC). Direct com-
parisons with the MPI native library function MPI_Allgather
that exploits the root gathering algorithm are presented.
Although the communication network topology on Cori is
pseudo fully connected (dragon-fly), we prove the point by
evaluating and comparing our algorithms against the MPI
library installed on Cori. Using message sizes ranging from
64B to 128MB, the experiments show a significant perfor-
mance improvement achieved by our algorithm, which is up
to 9.27 times faster than the production MPI libraries.

2 BACKGROUND AND RELATED WORKS
The communication model used in this paper is based on the
assumptions presented in [10], which are summarized below.

(1) Parallel architecture: An undirected and connected
graph is used to represent a network, where processes
are vertices and links are edges. All pair-wise processes
are directly connected by a link.

(2) Basic communication operations: Message send and re-
ceive are the basic operations.

(3) Bidirectional single-port communication constraint: When
a send or receive function at a process is called, this
function is blocked until it returns. A process can re-
ceive and send a message at the same time.

(4) Communication cost: Let 𝛽 be the transition time per
word and 𝛼 be communication startup latency. If there
is a link between sender 𝑠 and a receiver 𝑟, sending a
message of size 𝑘 words from 𝑠 to 𝑟 has communication
transmission cost 𝛼 + 𝑘𝛽. We refer the 𝛼 term as the
latency term and 𝑘𝛽 as the bandwidth term.

2.1 Collective communication
Collective communications such as Allgather, all-to-all, and
one-to-all broadcast in MPI can be divided into intra-group

communication and inter-group communication. For example,
MPICH [1] and OpenMPI [5] wrap collective communication
functions by conditioning on whether the input communicator
is an inter-group or an intra-group communicator.

Existing literature has thoroughly studied intra-group col-
lective communication algorithms [3]. Johnson et al. [9] have
implemented algorithms for all-to-all broadcast and total
exchange under single-port communication constraint on hy-
percube topology. Bruck algorithm [2] gives similar results
for fully connected topology with any number of processes.
Thakur et al. [17] optimized intra-group Allgather using re-
cursive doubling and the Bruck algorithm [2] for non-power
number of processes. Träff [19] has proposed an algorithm
for intra-group Allgatherv that can handle irregular data
pattern on ring topology. There are numerous other results,
also taking the hierarchy of modern systems into account.

Inter-group collective communication algorithm, on the
other hand, needs further research. For inter-group all-to-all
broadcast (MPI_Allgather), MPICH [1] and OpenMPI [5],
the most widely-used MPI implementations in the HPC
community, adopt the root gathering algorithm. The root
gathering algorithm is discussed in [15] and [16]. We present
details of the root gathering algorithm later in this section.

2.2 Problem Definition
We first introduce the mathematical notation used in this
paper. Let 𝐴 = {𝑎0, ..., 𝑎𝑝−1} and 𝐵 = {𝑏0, .., 𝑏𝑞−1} be two
disjoint groups of processes. Group A has size 𝑝 and group B
has size 𝑞. Initially, every 𝑎𝑖 ∈ 𝐴 has a unique message 𝑚𝐴,𝑖
of size 𝑘𝐴 words and every 𝑏𝑖 ∈ 𝐵 has a unique message
𝑚𝐵,𝑖 of size 𝑘𝐵 words. We denote 𝑚𝐴 = {𝑚𝐴,𝑖|∀0 ≤ 𝑖 < 𝑝}
and 𝑚𝐵 = {𝑚𝐵,𝑖|∀0 ≤ 𝑖 < 𝑞}. The goal of the all-to-all
broadcast operation is to let every 𝑏𝑗 ∀0 ≤ 𝑗 < 𝑞 receive
𝑚𝐴 = 𝑚𝐴,𝑖 ∀0 ≤ 𝑖 ≤ 𝑝 − 1 and every 𝑎𝑗 ∀0 ≤ 𝑗 < 𝑝 receive
𝑚𝐵 = 𝑚𝐵,𝑖 ∀0 ≤ 𝑖 ≤ 𝑞 − 1.

2.3 Optimal Communication Cost
Under the single-port communication constraint, there is a
largest lower bound on bandwidth for inter-group full-duplex
Allgather algorithms. Given optimal bandwidth, there are
lower bounds for the startup latency as well.

Consider a single node 𝑎 ∈ 𝐴, which has to receive all
messages 𝑚𝐵,0, .., 𝑚𝐵,(𝑞−1) in the end. By the single-port
communication constraint, it receives messages with rate 𝛽.
Suppose there is no idle time for the receiving channel, 𝑎 has
to receive 𝑞𝑘𝐵 words. Hence the lower bound on message
bandwidth is 𝑞𝑘𝐵𝛽. The same argument can be applied to
𝑏 ∈ 𝐵. The lower bound on the message bandwidth is 𝑝𝑘𝐴𝛽.
Let OPT be the achievable minimum bandwidth for inter-
group Allgather. OPT ≥ max (𝑞𝑘𝐵 , 𝑝𝑘𝐴) 𝛽 is an overall lower
bound of bandwidth for any algorithm that performs inter-
group all-to-all broadcast. We prove that this lower bound is
the largest lower bound on the bandwidth by presenting a
feasible algorithm that can achieve it.

Given optimal bandwidth term, it is possible to derive
a lower bound for the latency term. For arbitrary 𝑎𝑖 ∈ 𝐴,



if 𝑎𝑖 receives 𝑐 messages of the form 𝑚𝐴,𝑗 for 0 ≤ 𝑗 < 𝑝,
the bandwidth is at least (𝑐𝑘𝐴 + 𝑞𝑘𝐵 )𝛽 > 𝑞𝑘𝐵𝛽. Hence
optimal bandwidth is not achieved if 𝑘𝐵𝑞 > 𝑘𝐴𝑝. By single-
port communication constraint, at most 𝑞 messages can be
sent across two groups in parallel. Therefore, 𝑝

𝑞 𝛼 is a lower
bound for the startup latency when 𝑘𝐵𝑞 > 𝑘𝐴𝑝, since 𝑝
separate messages are transferred from group 𝐴 to group 𝐵
without aggregation. In addition, another lower bound for
the startup latency for inter-group Allgather is the startup
latency log (𝑝 + 1) 𝛼 for one-to-all broadcast of 𝑝+1 processes,
which is a sub-problem of inter-group all-to-all broadcast.
Therefore, log (𝑝) 𝛼 is also a lower bound for startup latency.

Simply applying intra-group Allgather does not achieve
optimal communication cost. For example, an intra-group
Allgather for 𝑝 + 𝑞 processes with max (𝑘𝐴, 𝑘𝐵 ) message size
has bandwidth (𝑝 + 𝑞 − 1) max (𝑘𝐴, 𝑘𝐵 ) 𝛽, which is more than
the optimal bandwidth lower bound.

2.4 Root Gathering Algorithm
The root gathering algorithm, adopted by both MPICH and
OpenMPI, is discussed in [15] and [16]. The underlying prin-
ciple is single-process accumulation per group followed by
inter-group one-to-all broadcasts from the roots to the re-
mote groups, achieving the objective of inter-group Allgather.
The root gathering algorithm can be implemented using ex-
isting intra-collectives as building blocks conveniently, and
requires no new communicators to be created which could
be expensive. However, it does not achieve optimal commu-
nication cost lower bound under single-port communication
constraint.

The root gathering algorithm has three stages. In the
first stage, root processes 𝑎0 and 𝑏0 gather all messages
from other processes within their groups with communication
cost max (log (𝑝) 𝛼 + (𝑝 − 1) 𝑘𝐴𝛽, log (𝑞) 𝛼 + (𝑞 − 1) 𝑘𝐵𝛽). In
the second stage, the root 𝑎0 in group 𝐴 broadcasts aggre-
gated message 𝑚𝐴 of size 𝑝𝑘𝐴 to all 𝑞 processes in group 𝐵.
In the third stage, the root 𝑏0 in group 𝐵 broadcasts aggre-
gated message 𝑚𝐵 of size 𝑞𝑘𝐵 to all 𝑝 processes in group
𝐴. The implementations of one-to-all broadcast in MPICH
and OpenMPI have communication cost 2 log (𝑝) 𝛼 + 3𝑝𝑘𝛽
for message size 𝑘 and 𝑝 processes. In their implementations
of the inter-group one-to-all broadcast, the root process of
the local group sends messages to the root of the remote
group. Then, the remote group performs intra-group one-
to-all broadcast. In addition, stage 2 and stage 3 are exe-
cuted sequentially. The inter-group broadcast from group
𝐴 to group 𝐵 with message size 𝑝𝑘𝐴 has communication
cost (2 log (𝑝) + 1) 𝛼+3𝑝𝑘𝐴𝛽. The inter-group broadcast from
group 𝐵 to group 𝐴 with message size 𝑞𝑘𝐵 has communi-
cation cost (2 log (𝑞) + 1) 𝛼 + 3𝑞𝑘𝐵𝛽. As a result, the root
gathering algorithm implemented by MPICH and Open-
MPI has communication cost at least (2 log (𝑝) + 3 log (𝑞)) 𝛼+
(max (𝑝𝑘𝐴, 𝑞𝑘𝐵 ) + 3𝑞𝑘𝐵 + 3𝑝𝑘𝐴) 𝛽 for large 𝑝 and 𝑞. This
communication cost is used as a benchmark for evaluation.

Recent studies for one-to-all broadcast can improve the
performance of the root gathering algorithm. Sanders et

al. [13] and Träff [18] have proposed algorithms for one-to-all
broadcast with communication cost close to log (𝑝) 𝛼+ 𝑘𝛽 for
message size 𝑘 and 𝑝 processes. Thus, we assume broadcasting
𝑝𝑘𝐴 messages to 𝑞 processes has theoretical communication
cost log (𝑞 + 1) 𝛼 + 𝑝𝑘𝐴𝛽. Furthermore, if Stage 2 and Stage
3 can be performed partially in parallel, for example, an
exchange of messages at roots followed by intra-group one-
to-all broadcasts, the total communication cost is the sum
of the root gathers in the first stage, the exchange of mes-
sages accumulated at the roots, and the intra-group one-to-all
broadcasts. Thus, the total bandwidth of the root gathering
algorithm can be 3 max (𝑝𝑘𝐴, 𝑞𝑘𝐵 ) 𝛽 and the total startup
latency can be 2 log (𝑞) 𝛼 for large 𝑝 and 𝑞. To our best knowl-
edge, this idea has not yet been implemented. Nevertheless,
it still does not achieve optimal bandwidth.

3 DESIGN
We first present an algorithm that can achieve optimal band-
width term for the case when 𝑞 divides 𝑝 for a certain condi-
tion. Then, we generalize the algorithm to handle all cases.
The algorithm is shown as Algorithm 1. Figure 1 gives an
example to illustrate the algorithm when 𝑝 = 6 and 𝑞 = 2.
The six processes in group 𝐴 are labeled in 𝑎0, 𝑎1, · · · 𝑎5 in
circles. In group 𝐵, the two processes are labeled 𝑏0 and 𝑏1.
Messages ready to be transferred at any given time step are
labeled next to the process ranks. The arrows indicate the di-
rections of message transfer. The messages being transferred
are labeled next to the arrows.

Theorem 3.1. The bandwidth (b.w) term of Algorithm 1
is

(︁
max (𝑘𝐴, 𝑘𝐵 ) 𝑝

𝑞 +max
(︁

𝑝
𝑞 𝑘𝐴, 𝑘𝐵

)︁
(𝑞 − 1)

)︁
𝛽.

Proof. The algorithm consists of two steps. Lines 2-8
correspond to the first step, which is depicted by subfigures
(a), (b), and (c) of Figure 1. Processes in group 𝐴 are di-
vided into 𝑝

𝑞 subgroups based on their ranks. Process 𝑖 in
subgroup 0 exchanges its message with process 𝑖 mod 𝑞 in
group 𝐵, followed by subgroup 1 and so on. This step com-
pletes in 𝑝

𝑞 message exchanges. Communication cost of the
first step is 𝑝

𝑞 𝛼 + 𝑝
𝑞 max (𝑘𝐴, 𝑘𝐵 ) 𝛽. Lines 11-15 correspond

to the second step, two concurrent intra-group Allgather
operations running within group 𝐴 and group 𝐵 indepen-
dently. Lines 11-13 is the concurrent intra-group Allgather
of message size 𝑘𝐵 over 𝑞 processes in each subgroup. It
has communication cost of log (𝑞) 𝛼 + 𝑘𝐵 (𝑞 − 1) 𝛽. Line 15 is
an intra-group Allgather of message size 𝑘𝐴

𝑝
𝑞 within group

𝐵 and has communication cost of log (𝑞) 𝛼 + 𝑘𝐴

(︁
𝑝 − 𝑝

𝑞

)︁
𝛽.

The communication cost of the second step is log (𝑞) 𝛼 +



Figure 1: An execution of Algorithm 1 when 𝑝 = 6 and 𝑞 = 2. Messages are exchanged between two groups. Then, intra-group Allgather operations
with process size 𝑞 are run in parallel.

max
(︁

𝑘𝐵 (𝑞 − 1) , 𝑘𝐴

(︁
𝑝 − 𝑝

𝑞

)︁)︁
𝛽.

𝑏.𝑤 =

(︂
max (𝑘𝐴, 𝑘𝐵 )

𝑝

𝑞
+max

(︂(︂
𝑝 − 𝑝

𝑞

)︂
𝑘𝐴, (𝑞 − 1) 𝑘𝐵

)︂)︂
𝛽

=

(︂
max (𝑘𝐴, 𝑘𝐵 )

𝑝

𝑞
+max

(︂
𝑝

𝑞
(𝑞 − 1) 𝑘𝐴, (𝑞 − 1) 𝑘𝐵

)︂)︂
𝛽

=

(︂
max (𝑘𝐴, 𝑘𝐵 )

𝑝

𝑞
+max

(︂
𝑝

𝑞
𝑘𝐴, 𝑘𝐵

)︂
(𝑞 − 1)

)︂
𝛽

�

When 𝑝
𝑞 𝑘𝐴 > 𝑘𝐵 , the overall bandwidth is dominated by

the communication cost of group 𝐵 receiving all messages.
Hence the bandwidth is optimal. Otherwise the bandwidth
is

(︁
𝑘𝐵

𝑝
𝑞 + 𝑘𝐵 (𝑞 − 1)

)︁
𝛽, so the bandwidth term does not

converge to 𝑘𝐵𝑞 as 𝑝
𝑞 → ∞, which implies that the algorithm

is not optimal.
We can further analyze the worst case bandwidth of Algo-

rithm 1 compared with the optimal bandwidth. Suppose
we have 𝑘𝐴𝑝 < 𝑘𝐵𝑞. The bandwidth of Algorithm 1 is

(︁
𝑘𝐵

𝑝
𝑞 + 𝑘𝐵 (𝑞 − 1)

)︁
𝛽. The optimal bandwidth is 𝑘𝐵𝑞𝛽. If

𝑘𝐵 and 𝑝 are arbitrarily large values while 𝑞 and 𝑘𝐴 are rel-
atively small numbers with constraint 𝑘𝐴𝑝 < 𝑘𝐵𝑞, the term
𝑘𝐵

𝑝
𝑞 is much larger than 𝑞𝑘𝐵 . For example, let 𝑞 = 1 and

𝑘𝐴 = 1. Let 𝑝 and 𝑘𝐵 both be very large integers satisfying
𝑝 < 𝑘𝐵 . 𝑏0 would send its message 𝑚𝐵,0 of size 𝑘𝐵 to 𝑝 pro-
cesses sequentially. However, the receiving channels of 𝑝 − 1
processes in group 𝐴 are idle at every step. Therefore, the
worst case bandwidth term of Algorithm 1 is not bounded by
any constant multiple of OPT. We refer to scenarios where
𝑘𝐴𝑝 < 𝑘𝐵𝑞 as message hazards.

3.1 Full-duplex Communication with Message
Fragmentation

We propose a message fragmentation method for messages
transferred from group 𝐵 to group 𝐴. We divide messages
of size 𝑘𝐵 into min

(︁
𝑘𝐵 , 𝑝

𝑞

)︁
segment blocks, so they can be

transferred via different routes. The min function is used to
handle the case when 𝑘𝐵 < 𝑝

𝑞 , assuming the minimum mes-
sage size to be transferred is a word size. Once a process has



Figure 2: An execution of Algorithm 2 when 𝑝 = 6 and 𝑞 = 2.

Algorithm 1: Full-duplex Inter-group All-to-All Broad-
cast

1 # Exchange of messages between two groups in 𝑝
𝑞

steps
2 for 𝑖 ∈ (0, .., 𝑝

𝑞
− 1) do

3 # Concurrent loop 𝑗

4 for 𝑗 ∈ (0, .., 𝑞 − 1) do
5 𝑎𝑖+

𝑝
𝑞 𝑗 send 𝑚𝐴,𝑖+

𝑝
𝑞 𝑗 to 𝑏𝑗

6 𝑏𝑗 send 𝑚𝐵,𝑗 to 𝑎𝑖+
𝑝
𝑞 𝑗

7 end
8 end
9 # Subgroups of processes in group A perform an

intra-group Allgather for 𝑚𝐵

10 # Concurrent loop 𝑖

11 for 𝑖 ∈ (0, .., 𝑝
𝑞

− 1) do
12 Intra-Allgather 𝑎 𝑝

𝑞 𝑗+𝑖, 𝑚𝐵,𝑗∀(0 ≤ 𝑗 < 𝑞)

13 end
14 # Group B performs intra-group Allgather for 𝑚𝐴

15 Intra-Allgather 𝑏𝑗 , 𝑚𝐴,
𝑝
𝑞 𝑗+𝑖∀(0 ≤ 𝑗 < 𝑞, 0 ≤ 𝑖 < 𝑝

𝑞
)

received all segments, it can reconstruct them back into the
original message. We use 𝑚𝐵,𝑗,𝑖, where 0 ≤ 𝑖 < min

(︁
𝑘𝐵 , 𝑝

𝑞

)︁
,

to denote the (𝑖+ 1)𝑡ℎ piece of the fragmented message 𝑗. Al-
gorithm 2 is the data fragmentation version of the full-duplex
inter-group all-to-all broadcast.

The improvement of Algorithm 2 over Algorithm 1 is that
messages are transferred across groups much faster. In Lines

2-9 of Algorithm 2, the fragmented 𝑚𝐵 is received by group
𝐴 with bandwidth 𝑘𝐵𝛽, which does not depend on 𝑝 and 𝑞.
Lines 2-9 of Algorithm 1, on the other hand, have bandwidth
𝑝
𝑞 𝑘𝐵𝛽 for all 𝑚𝐵 to be received by group 𝐴.

In Algorithm 2, Lines 2-9 initiate 𝑝
𝑞 operations, so the

startup latency is 𝑝
𝑞 𝛼. Lines 12-20 and 22 run in parallel. For

Lines 12-20, the number of steps is at most log
(︁

𝑝
𝑞

)︁
+log (𝑞) =

log (𝑝). For Line 22, the number of steps is log (𝑞). Therefore,
the overall startup latency for Lines 12-22 is log (𝑝) 𝛼. We
have shown that 𝑝

𝑞 𝛼 and log (𝑝) 𝛼 are both lower bounds for
startup latency. Hence the proposed algorithm has startup
latency at most two times that of the optimal startup latency.

Theorem 3.2. The bandwidth term of Algorithm 2 is
bounded by (max (𝑝𝑘𝐴, 𝑞𝑘𝐵 ) + 𝑘𝐵 ) 𝛽 = OPT + 𝑘𝐵𝛽. (Opti-
mality)

Proof. The total bandwidth of Lines 2-9 is
max

(︂
𝑘𝐴

𝑝
𝑞 , 𝑘𝐵

min
(︀

𝑘𝐵 , 𝑝
𝑞

)︀ 𝑝
𝑞

)︂
𝛽 = max

(︁
𝑘𝐴

𝑝
𝑞 , 𝑘𝐵

)︁
𝛽. Lines 12-

16 have a bandwidth of
(︁

min
(︁

𝑝
𝑞 , 𝑘𝐵

)︁
− 1

)︁
⌈ 𝑘𝐵

𝑝
𝑞

⌉𝛽, since

they are intra-group Allgather operations of ⌈ 𝑘𝐵
𝑝
𝑞

⌉ message

size over min
(︁

𝑝
𝑞 , 𝑘𝐵

)︁
processes. When 𝑘𝐵 > 𝑝

𝑞 , Lines 12-16

have a bandwidth of
(︁

𝑝
𝑞 − 1

)︁
𝑘𝐵

𝑝
𝑞

𝛽. Otherwise Lines 12-16
have a bandwidth of (𝑘𝐵 − 1) 𝛽. In both cases, the bandwidth



Algorithm 2: Full-duplex Inter-group All-to-All Broad-
cast with Message Fragmentation

1 # Exchange messages between two groups in 𝑝
𝑞

steps.
2 for 𝑖 ∈ (0, .., 𝑝

𝑞
− 1) do

3 # Concurrent loop 𝑗

4 for 𝑗 ∈ (0, .., 𝑞 − 1) do
5 𝑎 𝑝

𝑞 𝑗+𝑖 send 𝑚𝐴,
𝑝
𝑞 𝑗+𝑖 to 𝑏𝑗

6 # Messages from group B is fragmented.
7 𝑏𝑗 send 𝑚𝐵,𝑗,𝑖 mod 𝑘𝐵

to 𝑎𝑞𝑖+𝑗

8 end
9 end

10 # Subgroups of processes in group A perform an
intra-group Allgather to reconstruct fragmented messages

11 # Concurrent loop 𝑖, 𝑗

12 for 𝑖 ∈ (0, .., 𝑞 − 1) do
13 for 𝑗 ∈ (0, .., ⌊ 𝑝

𝑞𝑘𝐵
⌋) do

14 Intra-Allgather
𝑎(𝑥+𝑘𝐵𝑗)𝑞+𝑖, 𝑚𝐵,𝑖,𝑥∀(0 ≤ 𝑥 < 𝑚𝑖𝑛( 𝑝

𝑞
, 𝑘𝐵 ))

15 end
16 end
17 # Subgroups of processes in group A perform an

intra-group Allgather for 𝑚𝐵

18 for 𝑖 ∈ (0, .., 𝑝
𝑞

− 1) do
19 Intra-Allgather 𝑎𝑞𝑖+𝑗 , 𝑚𝐵,𝑗∀(0 ≤ 𝑗 < 𝑞)

20 end
21 # Group B performs intra-group Allgather for 𝑚𝐴

22 Intra-Allgather 𝑏𝑗 , 𝑚𝐴,
𝑝
𝑞 𝑗+𝑖∀(0 ≤ 𝑗 < 𝑞, 0 ≤ 𝑖 < 𝑝

𝑞
)

is less than 𝑘𝐵𝛽. Lines 18-20 have a total bandwidth of
(𝑞 − 1) 𝑘𝐵𝛽, since they are intra-group Allgather functions of
𝑘𝐵 message size over 𝑞 processes. Line 22 has communication
cost

(︁
𝑝 − 𝑝

𝑞

)︁
𝑘𝐴𝛽, equivalent to line 15 of Algorithm 1. The

intra-group Allgather at line 22 runs parallel to lines 12-20.
It follows that the overall bandwidth can be bounded using
Equation 1.

𝑏.𝑤 ≤
(︂

max
(︂

𝑘𝐴
𝑝

𝑞
, 𝑘𝐵

)︂
+max

(︂
𝑘𝐴

(︂
𝑝 − 𝑝

𝑞

)︂
, 𝑘𝐵𝑞

)︂)︂
𝛽

≤
(︂

max
(︂

𝑘𝐴
𝑝

𝑞
, 𝑘𝐵

)︂
+max

(︂
𝑘𝐴

𝑝

𝑞
, 𝑘𝐵

)︂
(𝑞 − 1) + 𝑘𝐵

)︂
𝛽

= (max (𝑝𝑘𝐴, 𝑞𝑘𝐵 ) + 𝑘𝐵 ) 𝛽

(1)
�

Message completeness means that all processes in group 𝐴
has messages 𝑚𝐵 and all processes in group 𝐵 has message
𝑚𝐴. We apply Lemma 3.3 to prove the message completeness
of Algorithm 2. This lemma has been proven in [8].

Lemma 3.3. If 𝑎𝑥 + 𝑦 = 𝑐 for 𝑎, 𝑐 ∈ Z+, then there is a
unique non-negative integer solution pair (𝑥, 𝑦) for 𝑦 < 𝑎.

Theorem 3.4. Algorithm 2 achieves the objective of inter-
group Allgather function (message completeness).

Proof. For processes in group 𝐵, let 𝑏𝑐 ∈ 𝐵 be an arbi-
trary process for 0 ≤ 𝑐 < 𝑞. In Lines 2-9, 𝑏𝑐 receives messages

of the form 𝑚𝐴, 𝑝
𝑞 𝑐+𝑥 ∀0 ≤ 𝑥 < 𝑝

𝑞 . In Line 22, 𝑏𝑐 partic-
ipates in the Allgather function with messages 𝑚𝐴, 𝑝

𝑞 𝑐+𝑥

∀0 ≤ 𝑥 < 𝑝
𝑞 . In the end, 𝑏𝑐 has all messages of the form

𝑚𝐴, 𝑝
𝑞 𝑦+𝑥 ∀0 ≤ 𝑥 < 𝑝

𝑞 , 0 ≤ 𝑦 < 𝑞, which is equivalent to
𝑚𝐴,𝑧 ∀0 ≤ 𝑧 < 𝑝. Hence 𝑏𝑐 is message complete for 𝑚𝐴.
Since 𝑏𝑐 is arbitrarily chosen, all processes in group 𝐵 even-
tually receive message 𝑚𝐴.

It remains to show that all processes in group 𝐴 receives all
messages from group 𝐵. Let 𝑎𝑐 ∈ 𝐴 be an arbitrary process
for some 0 ≤ 𝑐 < 𝑝. In Lines 2-9, since 𝑗 < 𝑞, there are
unique solutions 𝑖 = 𝑖𝑐 and 𝑗 = 𝑗𝑐 such that 𝑐 = 𝑞𝑖 + 𝑗 by
Lemma 3.3. As a result, 𝑎𝑐 receives only one message, which
is 𝑚𝐵,𝑗𝑐,𝑖𝑐 mod 𝑘𝐵

.
In Lines 12-16, if 𝑘𝐵 ≥ 𝑝

𝑞 , the 𝑗 loop has upper bound 0.
Since 𝑥 < 𝑝

𝑞 , 𝑖 = 𝑗𝑐 and 𝑥 = 𝑖𝑐 are the unique solutions for
𝑐 = 𝑞𝑥 + 𝑖 by Lemma 3.3. Hence 𝑎𝑐 only participates in an
intra-group Allgather function once, with its own message
𝑚𝐵,𝑗𝑐,𝑖𝑐

. Furthermore, 𝑎𝑐 has already obtained 𝑚𝐵,𝑗𝑐,𝑖𝑐
in

Lines 2-9. At the end of the Allgather operations, 𝑎𝑐 receives
all messages in form of 𝑚𝐵,𝑗𝑐,𝑦 ∀0 ≤ 𝑦 < 𝑝

𝑞 , which means
that 𝑚𝐵,𝑗𝑐

has been received by 𝑎𝑐. Otherwise we have
𝑘𝐵 < 𝑝

𝑞 . For simplicity of the proof, we assume that 𝑘𝐵

divides 𝑝
𝑞 . Since 𝑖 < 𝑞, 𝑖 = 𝑗𝑐 and 𝑘𝐵𝑗 +𝑥 = 𝑖𝑐 are the unique

solutions for 𝑐 = (𝑥+𝑘𝐵𝑗)𝑞+𝑖 by Lemma 3.3. Moreover, there
exist unique solutions 𝑗 = 𝑗′

𝑐 and 𝑥 = 𝑥𝑐 for 𝑥 + 𝑘𝐵𝑗 = 𝑖𝑐
by Lemma 3.3, because 𝑖𝑐 < 𝑝

𝑞 , 𝑗 < 𝑝
𝑞𝑘𝐵

, and 𝑥 < 𝑘𝐵 < 𝑝
𝑞 .

As a result, 𝑎𝑐 only participates in an intra-group Allgather
operation once, with its own message 𝑚𝐵,𝑗𝑐,𝑥𝑐

. Furthermore,
𝑎𝑐 has already obtained message 𝑚𝐵,𝑗𝑐,𝑖𝑐 mod 𝑘𝐵

= 𝑚𝐵,𝑗𝑐,𝑥𝑐

in Lines 2-9. At the end of the intra-group Allgather function,
it has all messages in the form of 𝑚𝐵,𝑗𝑐,𝑦 ∀0 ≤ 𝑦 < 𝑘𝐵 ,
which means that 𝑚𝐵,𝑗𝑐

has been received by 𝑎𝑐.
In Lines 18-20, 𝑎𝑐 = 𝑎𝑞𝑖+𝑗 participates in an intra-group

Allgather operation only if 𝑗 = 𝑗𝑐 and 𝑖 = 𝑖𝑐 by Lemma 3.3,
with message 𝑚𝐵,𝑗𝑐

. Moreover, it has obtained message
𝑚𝐵,𝑗𝑐

. At the end of the intra-group Allgather operation, it
has all messages of form 𝑚𝐵,𝑦 ∀0 ≤ 𝑦 < 𝑞. Consequently,
𝑎𝑐 is message complete. Since 𝑐 is chosen arbitrarily, all pro-
cesses in group 𝐴 receive all messages from group 𝐵 in the
end. �

Algorithm 1 is a special case of Algorithm 2 when we force
messages from group 𝐵 to be indivisible. In other words,
𝑘𝐵 = 1. As a result, the proof of message completeness for
Algorithm 2 implies correctness of Algorithm 1.

Although the underlying topology assumption is fully
connected, the algorithms do not utilize all links. Opti-
mal bandwidth requires far less number of links than the
(𝑝 + 𝑞) (𝑝 + 𝑞 − 1) links in the fully connected case. The intra-
group Allgather only requires a ring topology to reach optimal
bandwidth. For Algorithm 2, Lines 2-9 require at most 2𝑝
number of links, since every process in group 𝐵 sends mes-
sages to 𝑝

𝑞 processes in group 𝐴 and every process in group 𝐴

sends messages to only one process in group 𝐵. Lines 12-16
require each of the 𝑞 groups of 𝑝

𝑞 processes connected in a ring,



so the minimum number of connections is
(︁

𝑝
𝑞 − 1

)︁
𝑞 = 𝑝 − 𝑞.

Lines 18-22 require each of the 𝑝
𝑞 + 1 groups of 𝑞 processes

connected in a ring, the minimum number of connections is
(𝑞 − 1)

(︁
𝑝
𝑞 + 1

)︁
= 𝑝 + 𝑞 − 𝑝

𝑞 − 1. There are repeated links in
these estimates. Nevertheless, the minimum number of links
to maintain optimal bandwidth is less than 4𝑝, which is a
linear number of connections in terms of process number.

3.2 Implementation for Remainders
In the previous sections, we assume that integer divisions do
not have remainders. However, 𝑝, 𝑞, 𝑘𝐵 can have any values
in real applications, so the implementation has to be able
to handle the cases when 𝑝

𝑞 and 𝑝
𝑞𝑘𝐵

are not integers. We
present one possible implementation.

If 𝑞 does not divide 𝑝, let 𝑝′ = (𝑝 + 𝑞 − (𝑝 mod 𝑞)) and
𝑞′ = 𝑞 + ⌈ 𝑝 mod 𝑞

𝑝′
𝑞 −1

⌉. Hence 𝑞 divides 𝑝′. 𝑝′ and 𝑞′ converge to

𝑝 and 𝑞 as 𝑝
𝑞 becomes large. Moreover, 𝑝′ < 2𝑝 and 𝑞′ < 2𝑞.

We call 𝑝′ and 𝑞′ the ceiling upper bounds. We propose an
implementation method for Algorithm 2 with bandwidth
bounded by the communication cost for 𝑝′ and 𝑞′ number of
processes.

We replace 𝑝 with 𝑝′ in Algorithm 2. Any operations on
the dummy ranks are ignored. For example, the send/receive
operation is ignored and intra-group Allgather operations do
not take those ranks into account. Clearly, processes in group
𝐵 receive all messages.

The data fragmentation at Lines 12-16 of Algorithm 2
can be implemented as the following. If 𝑘𝐵 ≥ 𝑝′

𝑞 , messages

𝑚𝐵,𝑖 ∀(𝑝 mod 𝑞) ≤ 𝑖 < 𝑞 are divided into 𝑝′

𝑞 − 1 pieces of
message size ⌈ 𝑘𝐵

𝑝′
𝑞 −1

⌉ by replacing the upper limit of 𝑥 with

min
(︁

𝑝′

𝑞 − 1, 𝑘𝐵

)︁
. Line 7 is changed accordingly by ignoring

the 𝑖 = 𝑝′

𝑞 − 1 case, since the 𝑝′

𝑞

𝑡ℎ
segment does not exist.

The bandwidth is less than 𝑘𝐵𝛽 for Lines 12-16. If 𝑘𝐵 < 𝑝′

𝑞

and 𝑘𝐵 does not divide 𝑝′

𝑞 , 𝑚𝐵,𝑖 is divided into 𝑘𝐵 pieces
of message size 1 ∀0 ≤ 𝑖 < 𝑞. Loop 𝑗 at Line 13 is from 0 to
⌊ 𝑝′

𝑞𝑘𝐵
⌋−1. The bandwidth at Line 14 is equivalent to an intra-

group Allgather operation of 𝑘𝐵 processes and message size 1,
which is less than 𝑘𝐵𝛽. In either case, processes

(︁
𝑝′

𝑞 − 1
)︁

𝑞+𝑖

∀0 ≤ 𝑖 < (𝑝 mod 𝑞), referred them as the remainder processes,
are not referenced by the 𝑖, 𝑗 double loops.

Lines 18-20 are the intra-group Allgather operation for
𝑚𝐵 in group A. The range of iterations for the 𝑖 loop
range is replaced with 0, .., 𝑝′

𝑞 − 2. Processes with ranks

𝑟𝑗 =

(︁
𝑝′

𝑞 − 1
)︁

𝑞 + 𝑗 ∀0 ≤ 𝑗 < (𝑝 mod 𝑞), the remainder pro-
cesses defined previously, are not referenced by the loop. We
assign process with rank 𝑟𝑗 to the intra-group Allgather op-
eration with loop index 𝑖 = ⌊𝑗/⌈ 𝑝 mod 𝑞

𝑝′
𝑞 −1

⌉⌋ using dummy mes-

sages. Hence every intra-group Allgather function in Line 19

of Algorithm 2 has at most 𝑞+⌈ 𝑝 mod 𝑞
𝑝′
𝑞 −1

⌉ processes. The band-

width of an intra-group Allgather function with 𝑞+⌈ 𝑝 mod 𝑞
𝑝′
𝑞 −1

⌉

processes and message size 𝑘𝐵 is
(︂

𝑞 + ⌈ 𝑝 mod 𝑞
𝑝′
𝑞 −1

⌉ − 1
)︂

𝑘𝐵𝛽 =(︀
𝑞′ − 1

)︀
𝑘𝐵𝛽.

Consequently, the total bandwidth of the algorithm imple-
mentation is less than

(︀
max

(︀
𝑝′𝑘𝐴, 𝑞′𝑘𝐵

)︀
+ 𝑘𝐵

)︀
𝛽 by replac-

ing 𝑝 with 𝑝′ and 𝑞 with 𝑞′ in Equation 1 of Theorem 3.2.
Process 𝑎𝑐 receives message 𝑚𝐵,𝑐 mod 𝑞 before Line 18 for

any 0 ≤ 𝑐 < 𝑝− (𝑝 mod 𝑞) by the message completeness proof
in the previous section. It remains to show that the remainder
processes are message complete. In Lines 18-20, every remain-
der process is assigned to one of 𝑝

𝑞 groups to participate in
the intra-group Allgather operations with an empty message.
In addition, these intra-group Allgather operations without
adding the remainder processes have 𝑞 processes, each with
distinct 𝑚𝐵,𝑐 ∀0 ≤ 𝑐 < 𝑞. Hence all processes receive 𝑚𝐵 in
the end.

Figure 3 shows an example when 𝑝 = 8 and 𝑞 = 3 for
𝑘𝐵 = 2. The ceiling upper bounds are 𝑝′ = 9 and 𝑞′ = 4.
𝑘𝐵 < 𝑝′

𝑞 . Hence 𝑚𝐵,𝑖 is divided into 𝑚𝐵,𝑖,0 and 𝑚𝐵,𝑖,1
∀0 ≤ 𝑖 < 𝑞. Processes 𝑎6 and 𝑎7 are the remainder processes.

4 EXPERIMENTAL RESULTS
A number of experiments have been performed on Cori, a
Cray XC40 supercomputer at the National Energy Research
Scientific Computing Center (NERSC). We use the Cray
MPI compiler(cray-mpich/7.6.0), which is based on MPICH.
Message buffers are filled with random numbers. We measure
the MPI_Allgather 8 times and take the average. For timing
of each measurement, we pick the maximum time among all
processes. We implement Algorithm 2 for the full-duplex inter-
group Allgather using MPI. Direct comparisons with the root
gathering algorithm are made by calling the MPI_Allgather
with an inter-group communicator.

We use four parameter settings on 64 nodes and 256 nodes
to present a comprehensive evaluation of Algorithm 2. The
first setting is when 𝑝 = 𝑞 and 𝑘𝐴 = 𝑘𝐵 . With this setting,
two groups of processes are symmetric. The second setting is
when 𝑝 = 3𝑞 and 𝑘𝐴 = 𝑘𝐵 . This setting evaluates imbalanced
number of processes with the same message size. The third
setting is when 𝑝 = 3𝑞 and 𝑘𝐴 = 4𝑘𝐵 . This setting evaluates
imbalanced number of processes with larger group sending
larger messages. The final setting is when 𝑝 = 15𝑞 and 𝑘𝐵 =

256𝑘𝐴. This setting evaluates the imbalanced number of
processes with the smaller group sending large messages,
which corresponds to the message hazard scenario.

The four settings for parameters are experimented with
three process configurations. For the first two configurations,
one process is assigned to a single node on 64 nodes and
256 nodes. Hence the total number of processes is 64 and
256 respectively. These two setups emulate a homogeneous
communication model such that data transfer between any
two processes have the same communication cost. For hybrid



Figure 3: An execution of Algorithm 2 when 𝑝 = 8 and 𝑞 = 3 using the implementation strategy provided. The ceiling upper bounds are 𝑝′ = 9
and 𝑞′ = 4. 𝑘𝐵 = 2 < 3 = 𝑝′

𝑞
.

MPI and OpenMP applications that use shared memory at
the same node and process communications among nodes,
this setup is reasonable. For the last setup, we assign 32
processes to every node of the 64 nodes. Thus, the total
number of processes is 2048. This setup emulates real-world
applications that fully utilize cores with MPI.

Figure 4a gives the timing results of the root gathering
and Algorithm 2 when 𝑝 = 32 and 𝑞 = 32 with 𝑘𝐴 and 𝑘𝐵
from 64KB to 8MB on 64 nodes. Figure 4e gives the timing
results when 𝑝 = 128 and 𝑞 = 128 with 𝑘𝐴 and 𝑘𝐵 from 64KB
to 8MB on 256 nodes. Figure 4i shows the timing results
when 𝑝 = 1024 and 𝑞 = 1024 with 𝑘𝐴 and 𝑘𝐵 from 8KB
to 1MB on 64 nodes. We observe that the root gathering
algorithm is slower since the root gathering algorithm has
worse bandwidth than Algorithm 2.

Figure 4b gives the timing results of the root gathering
and Algorithm 2 when 𝑝 = 48 and 𝑞 = 16 with 𝑘𝐴 and
𝑘𝐵 from 64KB to 8MB. Figure 4f shows the timing results
when 𝑝 = 192 and 𝑞 = 64 with 𝑘𝐴 and 𝑘𝐵 from 64KB to

8MB. Figure 4j gives the timing results when 𝑝 = 1536 and
𝑞 = 512 with 𝑘𝐴 and 𝑘𝐵 from 8KB to 1MB. Similar to the
𝑝 = 𝑞 pattern, the improvement of Algorithm 2 over the root
gathering algorithm increases as the number of processes
increase.

Figure 4c shows the timing results of the root gathering
and Algorithm 2 when 𝑝 = 48 and 𝑞 = 16 with 𝑘𝐴 from 8KB
to 1MB and 𝑘𝐵 from 32KB to 4MB. Figure 4g illustrates
the timing results when 𝑝 = 192 and 𝑞 = 64 with 𝑘𝐴 from
8KB to 1MB and 𝑘𝐵 from 32KB to 4MB. Figure 4k gives
the timing results when 𝑝 = 1536 and 𝑞 = 512 with 𝑘𝐴 from
1KB to 128KB and 𝑘𝐵 from 4KB to 512KB. This message
setting differs from the previous one in the way that group
𝐴 has 4 times larger message size 𝑘𝐴 than message size 𝑘𝐵
of group 𝐵. As the message size increases, observations on
communication cost are the same as 𝑘𝐴 = 𝑘𝐵 .

Figure 4d shows the timing results of the root gathering
and Algorithm 2 when 𝑝 = 60 and 𝑞 = 4 with 𝑘𝐴 from 2KB
to 256KB and 𝑘𝐵 from 512KB to 64MB. Figure 4h gives the
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Figure 4: These figures illustrate the comparisons of Algorithm 2 and the root gathering algorithm. The title format is "p/q, 𝑘𝐴 : 𝑘𝐵". 𝑝 and
𝑞 are the number of processes in group 𝐴 and group 𝐵. The x-axis is message size 𝑚 in terms of byte. The data type used is MPI_INT. The
actual message size are 𝑚 times their corresponding multipliers (𝑘𝐴 and 𝑘𝐵) in the title.

timing results when 𝑝 = 240 and 𝑞 = 4 with 𝑘𝐴 from 2KB to
256KB and 𝑘𝐵 from 512KB to 64MB. Figure 4l illustrates
the timing results when 𝑝 = 1920 and 𝑞 = 128 with 𝑘𝐴 from
256B to 32KB and 𝑘𝐵 from 64KB to 8MB. This message
pattern satisfies the message hazard condition 𝑘𝐴𝑝 < 𝑘𝐵𝑞.
Group 𝐵 has smaller number of processes than group 𝐴, but
it sends much larger message size 𝑘𝐵 .

The bandwidth of the root gathering algorithm imple-
mented by MPICH is (max (𝑝𝑘𝐴, 𝑞𝑘𝐵 ) + 3𝑝𝑘𝐴 + 3𝑞𝑘𝐵 ) 𝛽. The
bandwidth of Algorithm 2 is max (𝑝𝑘𝐴, 𝑞𝑘𝐵 ) 𝛽. Hence the
expected communication cost improvement for large message
sizes is Equation 2.

max (𝑝𝑘𝐴, 𝑞𝑘𝐵 ) + 3𝑝𝑘𝐴 + 3𝑞𝑘𝐵

max (𝑝𝑘𝐴, 𝑞𝑘𝐵 )
(2)

Table 1 shows the communication cost improvement of
Algorithm 2 compared with the root gathering algorithm.

In general, the 64 processes running on 64 nodes have re-
sults closely matching the expected improvement. The 256
processes running on 256 nodes have results showing larger
improvements than the expected improvements. The 2048
processes running on 64 nodes have results showing smaller
improvements than the expected improvements. The reason
is that the communication cost between two any processes
is not always the same in these two process settings. Hence
the improvements do not follow the expected ratio when
assuming the same communication cost between any two
processes. Since Cori is pseudo-fully connected, two nodes
selected arbitrarily can have different communication cost
if the number of nodes used is large enough. Moreover, the
communication cost between two processes on the same node
is less than the communication cost between two processes
on different nodes. In real applications, these two scenarios
can happen. Nevertheless, Algorithm 2 is at least 3 times



Table 1: The following tables show the expected improvements com-
puted by Equation 2 and actual improvements for different parameter
settings and number of processes. Setting 1 refers 𝑝 = 𝑞 and 𝑘𝐴 = 𝑘𝐵 .
Setting 2 refers 𝑝 = 3𝑞 and 𝑘𝐴 = 𝑘𝐵 . Setting 3 refers to 𝑝 = 3𝑞 and
𝑘𝐴 = 4𝑘𝐵 . Setting 4 refers to 𝑝 = 15𝑞 and 𝑘𝐵 = 256𝑘𝐴. The column
names of the last three columns indicate number of nodes × number
of processes per node.

Setting Expected 64 × 1 256 × 1 64 × 32
1 7.00 7.25 9.27 5.95
2 5.00 4.70 6.13 3.55
3 4.25 3.89 5.52 3.45
4 4.18 3.58 5.64 3.95

faster than the root gathering algorithm. Hence the design is
robust to heterogeneous communication costs.

For 𝑝𝑘𝐴 > 𝑞𝑘𝐵 , the communication cost of Algorithm 2
is independent of the message size 𝑘𝐵 . For example, when
𝑝 = 3𝑞 and fixing 𝑘𝐴, the communication cost of 𝑘𝐵 = 𝑘𝐴 and
𝑘𝐵 =

1
4 𝑘𝐴 are the same. However, the communication cost of

the root gathering algorithm increases as 𝑘𝐵 increases. Hence
the improvement of communication cost becomes larger as 𝑘𝐵
increases. Setting 2 and 3 in Table 1 support this conclusion.
This result can also be observed in Figures 4b, 4f, 4j and
Figures 4c, 4g, 4k.

5 CONCLUSION AND FUTURE WORK
We have proposed a full-duplex inter-group all-to-all broad-
cast algorithm with optimal bandwidth. The algorithm can be
used to implement the MPI_Allgather function for MPI pro-
duction libraries. MPI_Allgather is used by workflow systems
that exchange messages among components.

We have formulated the algorithm and analysis with re-
spect to communication cost and correctness. We have shown
that the minimum number of connections used by the pro-
posed algorithm for reaching the optimal bandwidth is linear
with respect to the number of processes. Experimental re-
sults have shown that the algorithm is faster than the root
gathering algorithm and in line with our expectations.

The current strategy for handling the remainder processes
proposed in section 3.2 is designed for optimizing bandwidth
when we assign one process per node. We will propose algo-
rithms that can handle the remainder processes when multiple
processes are allowed to run on the same node. Moreover,the
algorithm can be extended for MPI_Allgatherv and probably
new inter-group collective communications with group size
larger than two.
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