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Abstract—The demands of increasingly large scien-
tific application workflows lead to the need for more
powerful supercomputers. As the scale of supercom-
puting systems have grown, the prediction of fault
tolerance has become an increasingly critical area of
study, since the prediction of system failures can im-
prove performance by saving checkpoints in advance.
We propose a real-time failure detection algorithm
that adopts an event-based prediction model. The pre-
diction model is a convolutional neural network that
utilizes both traditional event attributes and additional
spatio-temporal features. We present a case study using
our proposed method with six years of reliability, avail-
ability, and serviceability event logs recorded by Mira,
a Blue Gene/Q supercomputer at Argonne National
Laboratory. In the case study, we have shown that
our failure prediction model is not limited to predict
the occurrence of failures in general. It is capable of
accurately detecting specific types of critical failures
such as coolant and power problems within reasonable
lead time ranges. Our case study shows that the pro-
posed method can achieve a F1 score of 0.56 for general
failures, 0.97 for coolant failures, and 0.86 for power
failures.

Index Terms—Blue Gene/Q, system anomaly detec-
tion, RAS

I. Introduction
The increasing data size of scientific application work-

flows has created a strong demand for more powerful
supercomputers. As the scale of supercomputer systems
grows, system failures, which can negatively affect system
performance [1], become critical. If knowledge about fail-
ures can be predicted via heuristics, one can deploy an au-
tonomous system that can schedule resources and actions
in order to maximize the overall system performance, as
argued in [2]. For example, failure recovery measures such
as checkpoint saving can be used to reduce the cost from
system failures [3] [4].

In this paper, we focus on failure predictions of IBM
Blue Gene (BG) systems, but our method is not limited to
these systems. Failure prediction for BG systems faces two
significant challenges. First, the number of failure events
is rare [5]. A classification problem with a small number of
positive classes suffers from a high false-negative ratio. As
a result, a model can have high accuracy but low precision
and recall. Second, the prediction lead time, defined as the
time difference between prediction and the failure, should
be reasonably large; yet current lead times of only a few
seconds do not give the system enough time to deploy
failure prevention measures [6]. A more practical range of
lead time is from minutes to hours, as argued in [5] and [6].

For the third-generation BG/Q, these two challenges
have become more severe because of the growing reliability,
availability, and serviceability (RAS) event log size. Ac-
cording to a case study of Mira logs from 2013 to 2017, the
number of fatal events is much smaller than the number of
nonfatal events. BG/P systems, on the other hand, did not
have a similar ratio of nonfatal and fatal events, according
to the case study of the Intrepid logs from 2013 to 2014.
Moreover, Blue Gene/Q systems generate RAS events in
real-time with high-volume RAS event data. For example,
Mira generates 80 times more RAS event logs than did
Intrepid from 2013 to 2014. Researchers have focused
on failure predictions for the earlier Blue Gene systems
using machine learning techniques, but the new challenges
brought by the BG/Q system demand new methods that
give better prediction accuracy and modeling of lead time.

To meet this demand, we propose a new formulation
of features based on spatiotemporal locality assumptions
mentioned in [7] and algorithms for failure prediction. We
define the relation between system error and events. Then,
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we apply a temporal clustering algorithm for fatal event
records. A cluster represents a system error that should be
detected. Later, we propose a feature-matching method for
linking nonfatal event clusters and fatal event clusters that
are likely caused by the same system error. We construct
two types of features from every nonfatal event cluster.
A neural network is proposed to model the correlation
between the two types of features and the occurrence of
system error. We also propose a real-time failure detection
algorithm using the trained model.

We present a case study using our proposed method
with six years of reliability, availability, and serviceability
event logs recorded by Mira, a Blue Gene/Q supercom-
puter at Argonne National Laboratory. We use the 2013-
2017 Mira RAS event data as training data for prediction
models. Then, we emulate the real-time prediction of
failures for the period of data in 2018 using the trained
models. We use accuracy, precision, recall, and the F1 score
as metrics and present results based on a variety of model
parameters. In addition to predicting the occurrence of
failures in general, we present the use cases of our proposed
algorithm for critical types of failures: coolant and power
failures.

The rest of this paper is arranged as the following.
In section 2, we briefly introduce the BG/Q system and
discuss existing literature related to the Blue Gene sys-
tem anomaly detection. In section 3, we propose our
feature extraction techniques, training model, and real-
time anomaly detection algorithm. In section 4, we present
a case study of five years of Mira RAS event logs using our
proposed methods.

II. Background and Related Work
BG/Q is the third generation of the IBM Blue Gene

series of supercomputers that can be scaled up to 20
PFs [8]. Details about network and message units are
described in [9].

BG/Q systems have two major types of nodes: compute
nodes and I/O nodes. Compute nodes are used for running
applications, and I/O nodes are used for storing files
shipped from computing nodes. The compute nodes are
interconnected in a five-dimensional torus topology. Every
node has ten bidirectional ports with 2 GB/s bandwidth.
In addition to computing and I/O nodes, service nodes
are used to connect to every compute node, and every
I/O node via JTAG interfaces with 1 Gb Ethernet for
monitoring the system [10]. These service nodes report
runtime noninvasive RAS events, which are the objectives
of this study.

The Blue Gene/Q Reliability, availability, and service-
ability (BG/Q RAS) Events Book[11] describes the details
about RAS events of the BG/Q system. Every RAS
event has many attributes, such as component, category,
severity, and time stamp, location.

The followings attributes are of particular interest in
this paper.

1) Component: the software component detecting and
reporting the event, for example, CNK (compute
node kernel), MC (machine controller), and MUDM
(memory unit)

2) Category: the entity that encountered an error, for
example, software error, BQC (chip error), Coolant,
AC/DC power, and DDR (memory controller)

3) Severity: the various levels of severity: INFO – mes-
sage that highlights the progress of system software;
WARN – message that indicates potential harmful
situations, such as a software error threshold or
failure of a redundant component; and FATAL – the
message that indicates severe system errors, which
can lead to application fail or abort

4) Event_time: timestamp of the event in seconds
5) Location: the rack, midplane, node board, and node

that an event is reported from
Predicting BG system failures is a concern of the high-

performance computing (HPC) community for handling
resilience on exascale supercomputers. Failures of high-end
supercomputers can disrupt the running of applications. A
commonly used strategy is to save checkpoints regularly.
Later, if a node fails, the application can restart at another
node with the data status at the saved checkpoints [3]. If
future failures can be accurately predicted based on his-
torical data, checkpoints can be saved accordingly, instead
of regularly. Thus, the efficiency of handling resilience at
the exascale can be improved with the knowledge of future
failure predictions.
Liang et al. [12] introduced the concept of clustering

and compression for RAS event data. Their methods can
successfully remove more than 99% of raw RAS events
without losing the accuracy for portraying the failures.
Subsequently, Liang et al. [13] formulated the prediction
of failures in BG/L systems as a problem of nonfatal
and fatal RAS event correlation. They also showed the
temporal and spatial localities of the events in the sys-
tem. This assumption has also been validated in another
study [7]. More recently, Liang et al. [5] proposed a feature
extraction method for predicting failures in BG/L systems.
This method, known as the period-based method, is widely
used for fatal event prediction. A period-based model is
a prediction model that uses a fixed temporal window
size for feature extractions. The model used in [5] divides
time into fixed-size intervals; features extracted from the
intervals are used to predict failures in future intervals.
Following Liang and his colleagues’ works, researchers

proposed new techniques for predicting failures in BG sys-
tems. Gujrati et al. [14] proposed a meta-learning failure
predictor for BG/L systems. Zheng et al. [15] proposed
preprocessing methods for system RAS events.
The concept of lead time was introduced in [16]. Lead

time refers to the time difference of failure and the alarm
for that failure raised by a prediction model. Thompson
et al. [17] have tested their intention to maximize the lead
time for their model. Zheng [6] proposed an approach that
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can estimate the lead time using the arithmetic mean of
time differences between nonfatal and fatal events.

Event-driven approaches associate a fixed number of
adjacent events reported before the occurrence of failures.
Yu et al. [18] evaluated the impact of lead time and window
size for both period-based and event-driven prediction
models using a Bayesian network as a prediction model. Di
etal. studied the correlation among fatal events [19] [20].
Later, they presented a similarity-based event filtering
analysis for BG/Q system [21]. The event-driven approach
differs from the period-based approach in the way that the
time window for RAS events features are not fixed ranges.
Instead, the number of events is fixed.

Similar to most machine learning problems, the model-
ing of failure occurrences for the BG/Q system can be
divided into two phases: feature extraction and model
fitting. In the feature extraction process, the input is a se-
quence of nonfatal events, and the output is if fatal events
will occur in the future. The matching of the nonfatal
event features to failure prediction labels is a challenging
task [6]. If the nonfatal event features are not associated
with the right fatal events, the prediction accuracy can
be undesirable, since they do not necessarily correlate
with each other. Zheng [6] used a randomized algorithm
to correlate the pairs with a high Pearson correlation
coefficient. However, their approach is applicable to post
analysis of historical log instead of real-time prediction.
Furthermore, recent studies have shown that lead time is
critical. If the lead time is too small, the system does not
have response time for checkpoint saving. On the other
hand, if the lead time is too large, it is difficult to predict
with high accuracy the timestamp interval that a potential
failure can happen.

The most widely used real-time anomaly detection al-
gorithm for BG systems is the period-based approach
proposed by [5]. Although not discussed in their paper, the
period-based method has the clear advantage of bounding
the lead time. Moreover, their method can be readily
deployed to control the nodes of real-time systems. Yu et
al. [18] concluded that the event-driven feature extraction
method constructs better features because the matching
of nonfatal events and fatal events can be more accu-
rate. However, real-time event-driven methods have not
received sufficient attention because of the difficulty of
feature construction. In the post-analysis of historical logs,
we can associate fatal events with the last few nonfatal
events according to their timestamp, but this binding
method cannot be used in real-time systems since the goal
is to predict whether those fatal events will occur or not.
In this paper, we address the problem of event-driven real-
time anomaly detection by proposing a new algorithm.

III. Design
In a supercomputer system, let E = {ei : i ∈ N} be

independent temporal system errors. E is a hidden se-
quence that a system-monitoring program aims to predict

in advance. Every RAS event is associated with one of
these system errors so that we can infer the system errors
from the RAS events. Moreover, some system errors are
severe errors that can prevent a block from booting. For
those severe errors, they report at least one RAS event
with FATAL severity.
Programs at control nodes can use RAS events that have

been observed to predict whether any fatal RAS events will
occur in the future. To be more specific, let X = {xt+i :
i ∈ [0, k]} be a sequence of observed RAS events. Let Y
be labels that indicate the occurrence of a system error at
a certain time. An association function f can be used to
make predictions of future failure occurrences.
The design has three objectives. First, X and Y should

refer to the same ei ∈ E. We use a spatiotemporal
locality assumption to achieve this goal. Second, we want
to apply the lead time constraint, which means that the
time difference between the last timestamp of X and
the occurrence of Y should be reasonable. For example,
predicting some FATAL event that will happen in the
next 60 hours is not useful, since the time range is too
large. Similarly, predicting the occurrence of a fatal event
that will happen in the next second is also not helpful
since the system does not have enough response time. We
achieve our second objective by using a time window. All
predictions of failures should be within the specified time
window. Third, the association function f must support
real-time systems. To achieve this objective, we propose
an anomaly detection algorithm that can utilize trained
prediction models.

A. Identifying Independent Failures
The first question to be answered is the definition of

system anomaly sequence E. We apply a temporal cluster-
ing algorithm for this purpose. The underlying assumption
is that the fatal RAS event indicating the same system
error has spatiotemporal locality. This assumption has
been argued in [22], [23] and [7] .
For arbitrary RAS event records xa and xb, let Distt :

X ×X → N be the temporal distance function. The func-
tion is computed as the difference between the timestamps
of xa and xb. Let ht be the temporal distance threshold.
For INFO/WARN RAS events and FATAL RAS events
separately, we apply the clustering algorithm proposed
in [12] to the RAS events with the temporal distance
function Distt and threshold ht to obtain temporal clusters
TF . The algorithm can be summarized as follows. For all
events sorted in ascending order of their timestamps, if two
adjacent events have a temporal distance less than ht, they
are joined into the same cluster. By the spatiotemporal lo-
cality assumption, RAS events in the same spatiotemporal
cluster are associated with the same system errors.

B. Feature Construction
We build input feature vectors from raw RAS events

for predicting occurence of failures. There are two types
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Figure 1: This figure illustrates an example for feature construction as mentioned in Algorithm 2. We set nevent = 4. The first
feature x1 consists of the first 4 RAS events. The second feature x2 consists of 5 RAS events. The condition at Line 7 is triggered
for building x2. After constructing x2, Line 12 is triggered to jump the starting index of next RAS event to the beginning of x3.

Algorithm 1: Feature Construction
Data: Ras event sequence r1, .., rn, minimum

number of events for prediction nevent,
temporal merge threshold tmax

Result: An array of feature vectors F .
1 F ← ∅
2 start← 1
3 s← 0
4 while i ≤ n do
5 if s = nevent then
6 end← i
7 while end ≤ n or

rend.time− ri.time < tmax do
8 end← end + 1
9 end

10 F add feature vector {rstart, ..., rend-1}
11 i← start
12 while i ≤ end and

rstart.time− ri.time < tmax do
13 i← i + 1
14 end
15 start← i
16 s← 0
17 else
18 i← i + 1
19 s← s + 1
20 end
21 end

of variable construction, as mentioned in the background
section. One approach is the period-based approach, and
the other method is the event-driven approach.

Suppose we have RAS events sequence x0, x1, x2, .. or-
dered by timestamps. For event-driven approach proposed
in [6], there is a parameter nevent that indicates a threshold
for number of adjacent events for forming a variable.
For instance, the jth variable selected is {xi : j ≤
i < nevent + j}. Therefore, the total number of variables

created is equal to the total number of events subtracted
by nevent − 1. This method works well for BG/L and
BG/P systems. However, for BG/Q systems, the number
of RAS events is significantly larger than BG/P systems.
For example, Mira dataset [24] has one RAS event per 3
seconds on average. Hence the control nodes have to make
predictions every 3 seconds. Since adjacent variables only
differ by 1 event, adjacent features have small differences
given large nevent. Moreover, a lot of RAS events in
BG/Q systems have precisely the same timestamp, so the
variables created depend on the order of RAS events with
the same timestamp, which is not well-defined for input
variable construction.
We propose an event-driven approach for selecting input

variables. Instead of selecting a fixed nevent number of
RAS events per variable, the new approach sets nevent
as a minimum threshold. Adjacent events with timestamp
differences less than a threshold tmax are merged into the
same feature. Therefore, a feature contains at least nevent
number of RAS events. Algorithm 1 formally describes the
proposed feature construction approach. The algorithm
iterates through all events with the "while" loop at Line 4.
If the number of accumulated events reaches nevent at Line
5, the algorithm constructs an input feature. In addition
to events with index from variable start to i, Lines 6 to
9 absorb events with timestamps difference from i less
than tmax. Lines 11 to 14 shift the starting index of the
next feature, jumping events with timestamps too close to
xstart. Figure 1 illustrates an example for how RAS events
are merged. tmax is equal to 4 in the example. Feature x1
and x2 show the case that more than tmax number of events
are absorbed into the same input feature by Lines 6 to 9
of Algorithm 1. x3 shows that the case that the starting
indices can have a gap for adjacent input features, which
is handled by Lines 11 to 14 of Algorithm 1.

C. Realtime Anomaly Detection

The proposed feature construction method in Sec-
tion III-B supports real-time anomaly detection.
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Fully connected

Softmax output

Feature type 2
Dimension: 2×(w-1)

Conv2D+pooling

(w-1)/15

Conv1D+pooling

(w-1)/60

Fully connected
Feature type 1

(w-1)/30

Conv1D+pooling

Figure 2: Illustration of convolutional neural network architecture used for training. The 2D convolutional layer has kernel size
2×15 and stride size 2×1. The pooling layer followed by the 2D convolutional layer has kernel size 1×15. The 1D convolutional
layers have kernel size 3. The pooling layers followed by the 1D convolutional layers have kernel size 2. Padding is applied to all
convolutional+pooling layers. Each of the fully connected layers has 2,048 hidden nodes.

Algorithm 2: Anomaly Detection Algorithm
Data: Maximum lead time threshold tlead, minimum

number of events triggering prediction nevent,
prediction model f̂

Result: Continously report if a failure will happen
within the lead time range.

1 s← 0
2 F ← Empty Array
3 while True do
4 r ← NextEvent
5 s← s + 1
6 if r.time− F.last.time > tlead ∨ s ≤ nevent

then
7 Add r to F
8 else
9 Report f̂ (F )

10 Clear F
11 Add r to F
12 end
13 end

For every input feature vector, we match it with the
nearest independent failure with a larger starting times-
tamp. The difference between the starting timestamp of
X and the starting timestamp of its matched indepen-
dent failure is defined as the lead time. We can define
a lead time threshold tlead. If an input feature vector
has lead time greater than tlead, we label it with STA-
TUS_SAFE. Otherwise, we label the input feature with
STATUS_FATAL. This threshold is also denoted as max-
imum lead time.

Having constructed input features vectors for X and
labels Y , we propose a deep learning model for emulating
f . Figure 2 illustrates the proposed architecture of the
deep learning model. There are two kinds of feature vec-
tors. The first type summarizes the statistical distribution
for the event attributes. The second type captures the
spatiotemporal features for event occurrence. Therefore,
the proposed model consists of two parts. The first part
is a convolutional neural network that has type 2 features
as input. After two steps of convolution and pooling, the
dimension is reduced to 1 × 1

30 w. In the second part,
the output of the convolutional neural network is joined

with type 1 features. The joined vector is fed into a fully
connected neural network for softmax classification.
For the first type of feature vector, we reuse two features

proposed in [5], namely, the mean of time intervals between
adjacent events in X and the time elapsed since the
occurrence of last fatal event. In addition, we propose the
following features. Every event in X has component and
category attributes in terms of strings. We compute the
joint probability of the component and category pair in
X. The joint probability distribution models the type of
system error. Moreover, we count the number of distinct
spatial locations for events in X. There are four distinct
spatial levels: rack, midplane, node board, and node. This
feature indicates whether X contains events from a wide
range of locations or not.
For the second type of feature vector, we record the

spatiotemporal difference between adjacent pairs of events
in X. We record a vector of size 2 × |X|: one dimension
is for temporal differences, and the other dimension is for
spatial differences. The temporal difference is defined as
the difference in timestamps of two events. The spatial
difference is defined as the difference in spatial level. If
two RAS events are on different racks, they have spatial
difference 4. Otherwise, if they are on different midplanes,
they have spatial difference 3. Otherwise, if they are on
different node boards, they have spatial difference 2. If
they are on the same node board, but different node, they
have spatial difference 1. If the two events are on the same
node, they have spatial difference 0. This type of feature
vector explains spatiotemporal variations within X.
Algorithm 2 illustrates our proposed anomaly detection

algorithm. A while loop at Line 3 keeps receiving RAS
events reported from the control node. The algorithm
dynamically constructs features in realtime using the same
feature construction strategy described in Algorithm 1.
After a feature vector is constructed, the algorithm report
if there are any anomalies using regression function f̂ .

IV. Experimental Results

We use the Mira dataset [24] to evaluate the proposed
algorithms. This dataset contains RAS event logs from
2013 to 2018. Figure 3a summarizes the number of events
by severity. Most events have WARN-level severity. Events
with INFO severity in Figures 3b, 3c, and 3d indicate
the number of events across all years by severity. We can
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Figure 3: (a) Log scale (based 10) number of events for 2013–2018. (b) Number of RAS events with INFO severity across all
five years. (c) Number of RAS events with WARN severity across all five years. (d) Number of RAS events with FATAL severity
across all five years.
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Figure 4: The frequency of all fatal events in logarithm (10) scale.

observe that there are far more RAS WARN events than
events with INFO and FATAL severity. Almost every 3
seconds, a WARN event will be reported.

Our case study is the type of application that adopts
a prediction model for real-time anomaly detection along
with a single time series. Supercomputing systems are
constantly improved. Past errors may not occur in the
future anymore. Results for using future data to predict
past data do not necessarily reflect the model’s efficacy.
Thus, we should not split the training and testing data
in the way that some training data has larger timestamps
than testing data since models trained with such settings
are not useful for real-world applications. Consequently,
the training part of the data is composed of RAS events
from 2013 to 2017. RAS events with timestamps in 2018
are used for evaluation.

Table I summarizes the distribution of RAS events in
training and testing data according to severity. While the
number of events in 2018 for testing is approximately 20%
of the total number of events from 2013 to 2018, we can
observe that the distribution of fatal events is not uniform

Table I: Number of events used for training and testing. Events
for training part have timestamps from 2013 to 2018. Events
for testing part have timestamps in 2018.

Severity Training Testing
INFO 16, 725, 291 4, 800, 661
WARN 46, 127, 365 13, 762, 599
FATAL 2, 580, 811 239, 719
Total 65, 433, 467 18, 802, 979

in training and testing data. In 2018, the number of fatal
events was only 1.3% of the number of all events in this
time range. On the other hand, from 2013 to 2017, the
number of fatal events is 3.9% of all events in this time
range. Furthermore, if we apply the method proposed in
Section III-A for clustering all fatal events with a temporal
threshold 1 minute. The total numbers of fatal clusters are
3076 from 2013 to 2017 and 119 in 2018. Therefore, the
testing set has much less sum of the positive class than
the training set. Since the dataset is highly imbalanced,
a random guesser on the testing set cannot achieve an
expectation of F1 score more than 0.05. Thus, the failure
detection task is challenging.
These distributions of fatal events create a challenge for
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Table II: Case study for the Mira dataset using proposed
methods. A prediction model f̂ is trained with data from 2013
to 2018 by using features extracted by Algorithm 1. We apply
Algorithm 2 with the trained model to predict failures in 2018.

nevent Max
lead
time

Accu-
racy

Prec-
ision

Recall F1

300 1800 99.4% 37.3% 65.9% 47.6%
300 3600 99.3% 43.8% 67.5% 53.8%
300 7200 99.0% 39.4% 67.5% 51.4%
600 1800 99.6% 41.3% 47.1% 44.0%
600 3600 99.5% 40.8% 64.7% 50.0%
600 7200 99.6% 46.4% 63.9% 53.8%
900 1800 99.6% 67.4% 39.5% 49.8%
900 3600 99.4% 50.5% 47.6% 49.0%
900 7200 98.7% 28.7% 51.6% 36.9%
1200 1800 99.6% 56.5% 43.1% 48.9%
1200 3600 99.4% 46.7% 45.7% 46.2%
1200 7200 99.2% 71.1% 45.7% 55.6%

Table III: Case study for the Mira dataset using period-based
approach proposed in [5] with training data from 2013-2017. We
apply Algorithm 2 with the trained model to predict failures
in 2018.

Period Obser-
vation
Win-
dow

Accu-
racy

Prec-
ision

Recall F1

1800 5 95.9% 21.3% 35.8% 26.7%
1800 10 95.5% 13.4% 24.6% 17.4%
3600 5 91.8% 28.0% 36.5% 31.7%
3600 10 91.9% 35.7% 39.2% 37.4%
7200 5 87.9% 37.3% 54.5% 45.4%
7200 10 85.5% 42.1% 43.7% 42.9%

prediction models since models can overfit the training
dataset based on the fatal event number. We address the
imbalanced data problem by multiplying larger weights
to the positive class in the cost function during gradient
descent. Thus, false-negative prediction has a higher cost
in the training process. Therefore, this method prevents
the model from overfitting accuracy by reducing the false-
negative predictions. We also applied the receiver op-
erating characteristic (ROC) curve for determining the
threshold of classification.

A. General Failure Detection
We present a case study for detecting general occurrence

of system errors for the Mira dataset. Failure prediction
models are built offline. Offline models do not require
frequent updates given abundant historical data. However,
a frequent update of the prediction models can incorporate
failure types that are unobserved in the past. Nonetheless,
in our case study, we assume the model is updated once
a year. Algorithm 2 utilizes the prediction model for real-
time prediction of unseen data from the future. We present
simulation results.

Figure 4 illustrates the frequency of all types of fatal
events. We can observe that "MC-BQC" and "MMCS-
AC_TO_DC_PWR" have more than one million events.
Most failures are related to these two. MC refers to the ma-
chine controller running on the service node, and MMCS
refers to the control system running on the service node.
BQC refers to compute chip error. This failure causes

the termination of computing jobs. AC_TO_DC_PWR
refers to circuit power issues. It implies that the entire
node board is in error. All jobs must be terminated on the
node board. Thus it is a more severe type of error.
Firstly, we build models for predicting any types of

failures in order to make a direct comparison with the pre-
vious study. Later, we build prediction models for "MMCS-
AC_TO_DC_PWR" and "MMCS-Coolant," which are
detrimental failures that can be the interests of system
administrators.
On the testing dataset, let the true positive tp be

the number of STATUS_FATAL results that f̂ predicts
correctly. Let the false-negative fn be the number of STA-
TUS_FATAL results that f̂ fails to predict. Let the false-
positive fp be the number of false-alarm STATUS_FATAL
results that f̂ reports incorrectly. Let the true nega-
tive tn be the number of STATUS_SAFE results that
f̂ predicts correctly. We use accuracy, precision, recall,
and the F1 score as the evaluation metrics. Accuracy is
the percentage of predictions that f̂ is correct on the
testing dataset, defined as tp+tn

tp+tn+fp+fn . Precision is the
percentage of STATUS_FATAL results that f̂ can retrieve
from the testing dataset, defined as tp

tp+fp . Recall that the
percentage of predictions with output STATUS_FATAL
that f̂ made are correct, tp

tp+fn . The F1 score is defined as
2× Precision×Recall

Precision+Recall .
We present the results detection of all system failures in

Table II with different choices of parameters. In general,
the accuracy of prediction on the testing dataset is high:
more than 98%. High accuracy alone is not sufficient since
the dataset is highly imbalanced. Positive class is approx-
imately 5% in the constructed features. Thus, a classifier
that always predicts negative class can also achieve 95%
accuracy. Therefore, we must present precision and recall
results.
One observation is that as we increase nevent, the recalls

have a decreasing trend, regardless of the maximum lead
time for a fatal prediction. Precision, on the other hand,
is less stable due to the imbalanced nature of testing
data. The fatal clusters that define the binary labels of
the classification contain too many different types of fatal
events. More than 2,500,000 of fatal events are divided into
approximately 3,000 clusters. Thus, it is possible that one
cluster contains many independent system errors over an
extensive time range. Different types of system error can
have very different prediction lead time, which is justified
in the next section. However, the occurrence of a fatal
cluster is determined by the first independent system error.
Therefore, if nevent is not large enough, the prediction
model may not be able to cover the features for the first
system error. Thus, increasing nevent improves recalls of
the model. However, setting nevent to be too large could
cause the curse of dimensionality problem. Lots of noise
are introduced into the input feature.
We implemented the period-based fatal prediction ap-
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proach proposed in [5]. This approach is the most widely
used real-time anomaly detection algorithm for BG sys-
tem, so we make a direct comparison of our method to it.
Using the same training and testing dataset, we summarize
the results in Table III with different parameters suggested
in the paper. The Period column refers to the observation
window size in seconds. It defines the maximum lead
time of the prediction model. The Observation Windows
column refers to the number of observation windows used
for building the input features. 5 and 10 are reasonable
parameters suggested in the original paper.

With the same maximum lead time, our proposed
anomaly detection algorithm achieves higher accuracy,
precision, and recall. The proposed algorithm adopts a
new event-based feature extraction algorithm. It avoids
the association of unrelated input features and prediction
according to the spatiotemporal locality assumption. Fur-
thermore, with the help of two different types of features,
the model can achieve better results.

B. Critical Failure Detection
As mentioned earlier, "MMCS-AC_TO_DC_PWR"

and "MMCS-Coolant" (control system circuit and coolant
failures) are the fatal events that report the failure of a
large partition of supercomputing systems.

We filter out the fatal events with attributes "MMCS-
AC_TO_DC_PWR" and "MMCS-Coolant." Similar to
the previous experiments, we use 2013-2017 RAS event
data as training data and 2018 RAS event data as testing
data. Depending on the different maximum lead time,
the distributions of positive and negative classes vary.
In our case study, the maximum lead time is from 900
to 7200 seconds. For coolant failures, the number of the
positive class in training data is from 2067 to 2148 in
training data and from 939 to 947 in testing data. The
number of negative class in training data is from 107349
to 107430 in training data and from 18235 to 18243 in
testing data. For AC/DC power failures, the number of
the positive class in training data is from 1466 to 2388 in
training data and from 575 to 650 in testing data. The
number of negative class in training data is from 79266 to
80188 in training data and from 20994 to 21069 in testing
data. Features for both failures are highly imbalanced.
The AC/DC power failure has a smaller proportion of
the positive class, so failure detection for it can be more
challenging than coolant failure.

Table IV illustrates the precision, recall, and F1 score
of "MMCS-AC_TO_DC_PWR" and "MMCS-Coolant"
failures detected with different parameters. We do not
present the accuracy results since all of them are extremely
high, ranging from 99.8% to 99.9%.

For Coolant failure results presented in Table IV, we can
observe the following trends. Setting the maximum lead
time 1800 seconds gives the best results for any nevent.
Given the same lead time 1800 seconds, nevent = 60 yields
best precision and recall, which is up to 97% F1 score.

Table IV: Case study for the Mira dataset using proposed
methods for coolant and power related events. A prediction
model f̂ is trained with data from 2013 to 2018 by using
features extracted by Algorithm 1. We apply Algorithm 2 with
the trained model to predict failures in 2018.

Type nevent Max
lead
time

Prec-
ision

Recall F1

Coolant 15 900 69.7% 88.5% 78.0%
Coolant 15 1800 69.7% 88.5% 78.0%
Coolant 15 3600 69.7% 85.2% 76.7%
Coolant 15 7200 69.4% 80.6% 74.6%
Coolant 60 900 82.4% 100% 90.3%
Coolant 60 1800 94.1% 100% 97.0%
Coolant 60 3600 94.1% 91.4% 92.8%
Coolant 60 7200 94.1% 78.0% 85.3%
Coolant 240 900 59.1% 100% 74.3%
Coolant 240 1800 68.2% 88.2% 76.9%
Coolant 240 3600 68.2% 75.0% 71.4%
Coolant 240 7200 68.2% 65.2% 66.7%
AC/DC 15 900 35.2% 62.7% 45.1%
AC/DC 15 1800 42.3% 55.6% 48.1%
AC/DC 15 3600 54.6% 51.7% 53.1%
AC/DC 15 7200 43.5% 46.3% 44.9%
AC/DC 60 900 49.2% 48.9% 49.1%
AC/DC 60 1800 52.6% 50.0% 51.2%
AC/DC 60 3600 71.5% 61.8% 66.3%
AC/DC 60 7200 51.5% 58.2% 54.7%
AC/DC 240 900 65.2% 51.0% 57.3%
AC/DC 240 1800 28.1% 53.3% 36.8%
AC/DC 240 3600 97.5% 77.4% 86.3%
AC/DC 240 7200 97.5% 71.83% 82.7%

For the AC to DC power failure results, nevent = 240
and maximum lead time of 3600 seconds yield the best
precision and recall.
The best parameter settings for coolant and AC to DC

power suggested that the number of events and lead time
we should choose for different types of failures can be
different. If the number of events we use for making a
prediction is too large for coolant failure (240 events), we
could introduce too much noise to the input feature, which
could cause overfitting problems during the training, given
the fact that the number of coolant events is very small.
AC to DC power failure, on the other hand, has 100 times
more events than the coolant failure. Thus, it is preferable
to use a larger size of input feature. The best choice of
lead time depends on the system characteristics. Broad
lead time can increase the false-positive rate because the
number of the positive class is forced to be reduced.
Choosing a narrow lead time range can increase the false-
negative rate since the scope of the negative class is
enlarged.
In this section, we have shown that it is possible to build

models for specific types of failures. Compared with results
in Table II, the best results in Table IV are much better.
Mentioned earlier, the traditional assumption for spatio-
temporal locality of a system error may not be applicable
to BG/Q data. Multiple independent system errors can
occur in a single time range since the total number of
components in the whole system is enormous. Thus, the
detection occurrence of specific types of failure can be a
good future direction.
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V. Summary
In this paper, we have proposed an algorithm for detect-

ing system anomalies in the BG/Q system. The problem
is challenging because system failures are rare. The algo-
rithm can construct features based on a spatiotemporal
locality assumption and make a prediction using our cus-
tomized convolutional neural network in real-time. Experi-
mental results have shown that the proposed approach has
better prediction accuracy compared with the traditional
period-based method in a previous study with controllable
lead time. We have found that our proposed approach is
applicable for detecting specific critical types of failures.

There are opportunities to improve the failure predic-
tion model better. The current prediction model is a
binary classifier. It can be generalized to a multi-class clas-
sifier. In other words, instead of the predicting occurrence
of a failure within a fixed lead time, the model can output
probabilities of failures within a different length of lead
time ranges in real-time.
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