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Abstract—Half-duplex inter-group collective commu-
nications are bipartite message transfer patterns such
that the processes in a sender group pass messages
to the processes in a receiver group. These commu-
nication patterns serve as basic operations for scien-
tific application workflows. In this paper, we present
optimal parallel algorithms for half-duplex inter-group
all-to-all broadcast under bidirectional communication
constraint on fully connected and ring topologies. We
implement the algorithms using MPI communication
functions and perform experiments on Cori. For the
fully connected topology case, we compare our algo-
rithms with production MPI libraries. For the ring
topology case, we implement our proposed algorithms
using MPI_Sendrecv function to emulate a ring topol-
ogy environment. The proposed algorithms are com-
pared with the intra-group Allgather algorithm emu-
lated under the same environment. Message sizes rang-
ing from 32KB to 4MB are used for evaluations. The
proposed algorithms for fully connected topology are
up to 5 times faster than the root gathering algorithm
adopted by MPICH. The proposed algorithms for the
ring topology are up to 1.4 times faster than the intra-
group Allgather algorithm.

Index Terms—MPI, Inter-group communication, All-
gather

I. Introduction
Half-duplex inter-group collective communications in

Message Passing Interface (MPI)[1] are bipartite message
transfer patterns such that the processes in a sender
group transfer messages to the processes in a receiver
group. Compared with intra-group collective communica-
tion, where all processes are both senders and receivers,
half-duplex inter-group collective communication does not
enforce the senders to receive any messages and the re-
ceivers to send any messages. Implementation of inter-
group collective communication in theory should have
smaller communication cost compared with intra-group
collective communication given the same total number of
processes, since the number of compulsory senders and
receivers is less.

Argued in [2], inter-group collective communication is
a basic communication pattern in scientific application
workflows. For example, Liao et al.[3] propose a framework
that allows parallel data transfer among workflow com-
ponents in order to improve the performance of weather

prediction systems SCALE-LETKF [4]. Hardware/Hybrid
Accelerated Cosmology Code (HACC) [5], also has a de-
mand for processing and transferring peta-byte sized data
in real-time [6]. An advantage of using intergroup com-
munication is fault tolerance. Examples discussed in [7]
include applications such as DNA sequencing, graphics
rendering and searching for extraterrestrial intelligence
with a manager/worker model can benefit from the use
of inter-communicators. To improve the performance of
such systems, existing literatures have focused on reducing
the data size of communications. For instance, Zhang et
al. [8] propose a distributed framework that maximizes
on-chip data exchange, which in turn reduces the com-
munication frequency among components. Docan et al. [9]
adopt an ActiveSpacing approach that moves programs to
staging areas in order to reduce data exchange. Although
reducing communication size and frequency can improve
performance of workflow systems, scientific application
performance can also benefit from optimal inter-group
collective communication algorithms.
The most widely-used algorithm for inter-group com-

munication is the root gathering algorithm, summarized
in [10] and [11]. The root gathering algorithm has two
stages: Single-process accumulation followed by one-to-all
broadcast/scatter. MPICH [12] and OpenMPI [13], the
most widely used MPI implementations in parallel pro-
cessing community, adopt this strategy. However, the root
gathering algorithm is not optimal because the receiving
channels of the receivers are idle in at some stages.
In [2], we have proposed a full-duplex inter-group all-to-

all broadcast algorithm on fully connected topology. In this
paper, we present optimal algorithms for half-duplex inter-
group all-to-all broadcast (Allgather) under bidirectional
communication constraint for any number of senders and
receivers on both fully connected and ring topologies.
Unlike the root gathering algorithm, the proposed al-
gorithms reduce the idle time of the receiving channels
for the receivers. Moreover, the proposed algorithm for
fully connected topology has more concise formulation
and smaller startup latency compared with the full-duplex
algorithm proposed in [2]. We provide detailed descriptions
of algorithmic correctness and optimality.
For performance evaluation, we implement the proposed



algorithms for inter-group all-to-all broadcast using MPI
communication functions. Experiments are conducted on
Cori, a Cray XC40 supercomputer at the National Energy
Research Scientific Computing Center (NERSC). Inter-
group all-to-all broadcast can be achieved by the func-
tion MPI_Allgather using inter-group communicator. For
fully connected topology case, direct comparisons with
the function MPI_Allgather that adopts the root gath-
ering algorithm are made. The communication network
topology on Cori is pseudo fully connected (dragon-fly).
We prove the point by evaluating and comparing our
algorithms against the MPI library installed on Cori. For
ring topology case, we implement our proposed algorithms
using the MPI_Sendrecv function to emulate a ring topol-
ogy environment. The proposed algorithms are compared
with the intra-group Allgather algorithm emulated under
the same environment. Message size used for evaluations
ranges from 32KB to 4MB. The proposed algorithm for
the fully connected topology is up to 5 times faster than
the root gathering algorithm. The proposed algorithm for
the ring topology is up to 1.4 times faster than the intra-
group Allgather algorithm.

II. Background and Related work
The communication model used in this paper is based on

the assumptions presented in [14], which are summarized
below. Studies [15] have shown that these assumptions
are widely assumed by collective communication algorithm
designs.

1) Parallel architecture: An undirected and con-
nected graph represents a network, where processes
are vertices and links are edges. Processes can only
send/receive messages to/from other processes if
there are direct links between them.

2) Bidirectional communication constraint: When
send or receive function at a process is called, the
function is locked until the function returns. A pro-
cess can receive and send messages at the same time.

3) Communication cost: Let tw be communication
transfer time per word and ts be communication
startup time. Sending a message of size k words
from a sender to a receiver has communication cost
ts + ktw. The term ts is called startup latency and
the term ktw is called bandwidth.

A. Collective Communication
Collective communications defined by the MPI

standard[1] have two categories: intra-group
communication and inter-group communication. MPI
communicator has an attribute that distinguishes these
two categories.

Intra-group communication means that all processes
are both senders and receivers. All processes in intra-
group collective communication are symmetric. A process
receives messages aggregated from the rest of processes
in the end, though intermediate messages received by

individual process may differ depending on the algorithm
and topology.
Optimal intra-group communication algorithms have

been well-studied [15]. Bertsekas [16] has proposes an op-
timal algorithm for all-to-all broadcast and total exchange
on a hypercube topology. Thakur et al. [17] optimize
intra-group Allgather using recursive doubling and Bruck
algorithm [18] for non-power-of-2 number of processes.
Though intra-group communication are sufficient for

supporting classical parallel computations such as matrix
operations and prefix sums, demands for inter-group com-
munication exists. Inter-group communication address the
problem of bipartite message transfer. Instead of having
a symmetric group of processes, processes are separated
into two disjoint groups: one is the sender group and the
other is the receiver group. The goal of inter-group com-
munication is to deliver messages from the senders to the
receivers. Although intra-group communication functions
can achieve this goal by treating all processes as senders
and receivers with the help of dummy messages, inter-
group communication algorithms can have less communi-
cation cost compared with intra-group communication.
Existing works such as [10] and [11] present inter-

group all-to-all broadcast (Allgather) implementations
by extending MPI intra-group communication. All these
works are based on the root gathering strategy: Single-
process accumulation followed by one-to-all broadcast.
MPICH [12] and OpenMPI [13], the most widely used
MPI implementations in parallel processing community,
use this strategy. However, the root gathering algorithm is
not optimal because the receiving channels of the receivers
are idle in some stages. Thus, algorithms that allow inter-
group all-to-all broadcast without using a root process can
be very useful.
Optimal communication cost for inter-group communi-

cation depends on the topology of processes. We present
algorithms for two important topologies: Full connected
and ring. Fully connected topology is a reasonable as-
sumption for modern supercomputers. For example, the
supercomputer Cori at NERSC is pseudo fully connected
(dragon-fly), which means that the shortest distance be-
tween any two remote computing nodes is a constant
value. Moreover, algorithms that uses binary indexing
frequently assumes fully connected topology. For example,
the multiple message broadcasting algorithm[19] assumes
fully connected topology. Ring topology connects process
with a small number of edges. It has the advantage
of handling non-power of two number of processes. For
example, intra-group Allgather and intra-group one-to-all
broadcast functions implemented by MPICH adopt ring-
based algorithm for handling non-power of two number
of processes. Moreover, some systems are configured as
multi-dimensional rings (N-dimensional torus). The opti-
mal algorithm for ring topology can be readily extended
to multi-dimensional ring.



III. Algorithms for Fully Connected Topology

We first define the mathematical notations in this paper.
Let A = {a0, ..., ap−1} and B = {b0, .., bq−1} be two
disjoint arrays of processes. A denotes the set of sender
ranks of size p. B denotes the set of receiver ranks of size
q. Processes in A are labeled with ranks from 0 to p − 1.
Processes in B are labeled with ranks from p to p + q− 1.
Initially, every ai ∈ A has a unique message mi of size
k words. The goal is to let bj ∀0 ≤ j < q receive mi

∀0 ≤ i < p.
The theoretical lower bound for bandwidth can be

established using the minimum time required for a single
receiver to receive all messages. A receiver can receive p
number of messages in a single step or multiple steps. Nev-
ertheless, the total transfer time for bipartite communica-
tion takes at least pktw. The time taken for all processes
to receive required messages is longer than the time taken
for a specific process to receive required message, so pktw

is a theoretical lower bound for bandwidth.
The theoretical lower bound for startup latency can be

established using one-to-all broadcast from one sender to
all receivers and all-to-one gather from all senders to one
receiver, which are both sub-problems of inter-group all-to-
all broadcast. Algorithms for one-to-all broadcast require
at least log (q + 1) steps. Since log (q + 1) ≤ log (2q) =
1+log (q) < 1+log (q + 1), 1+log (q) is a tight lower bound
for startup latency. Alternatively, a receiver receives mes-
sages aggregated from p senders. Aggregating messages
from p processes, requires at least log (p + 1) steps, so
log (p)+1 is another tight lower bound for optimal startup
latency. Achieving either of the lower bound for startup
latency would justify the optimality of startup latency of
the proposed algorithms. Since p = q and the proposed
algorithm has log (p)+1 number of steps, the startup time
is optimal.

Suppose p = q, the proposed algorithm can be di-
vided into two phases. Message mj is transfered from
aj to bj ∀j ∈ [0, p− 1]. This phase has communication
cost (ts + ktw). Then, the receivers perform intra-group
Allgather over messages mj ∀j ∈ [0, p− 1]. This phase
has communication cost log (p) ts + (p− 1) ktw. The total
communication cost is (1 + log (p)) ts + pktw. It is obvious
that all receivers receive messages from all senders.

In real-world applications, the number of senders and
receivers are not necessarily equal, so strategies for han-
dling p 6= q are proposed.
When p > q, q number of processes in group A concur-

rently send messages to group B. The communication cost
is ts +ktw. The remaining p−q number of processes in the
sender group joins the q processes in the receiver group,
forming a group of size p. The p processes spanned across
two groups perform intra-group Allgather. The communi-
cation cost of this process is log (p) ts + (p− 1) ktw. The
total communication cost is (1 + log (p)) ts + pktw, which
is the same as p = q case. As a result, the algorithm is

optimal. Figure 1a and 1b illustrate an example when
p = 6 and q = 2. Although processes in group A are
aggregating unnecessary messages to themselves during
intra-group Allgather, the aggregated messages save the
number of steps for the receivers to receive all messages. To
elaborate on the necessity of using the sender channels, we
consider an alternative algorithm that passes all messages
from the senders to the receivers with p

q number of steps.
Then the receivers perform intra-group Allgather by them-
selves. Although this algorithm does not send redundant
messages, it has at least p

q of startup latency, which is not
optimal for small message sizes.
When p < q, the algorithm consists of two stages. In

the first stage, the processes {ai, bi+pj : 0 ≤ j < q
p} ∀i ∈

[0, p− 1] form broadcast groups with root ai. In every
broadcast group, the root broadcasts its message to all
other processes. In the second stage, the processes {bip+j :
0 ≤ j < p} ∀i ∈

[
0, q

p − 1
]
form subgroups of the receiver

group, each with p number of processes. All subgroups
of the receiver group execute intra-group Allgather inde-
pendently. The one-to-all broadcasting has communication
cost 2 log

(
q
p + 1

)
ts + 2ktw using the multiple message

broadcasting algorithm[19]. This communication cost for
one-to-all broadcast is also claimed by the latest version
of MPICH. The subgroup all-to-all broadcast has commu-
nication cost log (p) ts + (p− 1) ktw. Total communication
cost is

(
log (p)) + 2 log

(
q
p + 1

))
ts + (p + 1) ktw. When p

and q are large enough, the total communication cost con-
verge to log (q) ts + pktw. Hence the total communication
cost is optimal. Figure 1c and 1d illustrate an example
when p = 2 and q = 6.

A. Comparison with Root Gathering Algorithm
The root gathering algorithm for inter-group all-to-

all broadcast, adopted by both MPICH and OpenMPI,
consists of three stages. In the first stage, processes in
the sender group use intra-group Gather function to ac-
cumulate all messages to a root sender. Without loss of
generality, we use a0 to denote this root sender. This stage
has communication cost log (p) ts +(p− 1) ktw. In the sec-
ond stage, a0 send p messages aggregated in the previous
stage to the root b0 ∈ B. This stage has communication
cost ts + pktw Finally, root b0 uses one-to-all broadcast
function to pass accumulated messages to all receivers.
Since the message size of broadcast is pk, this stage has
communication cost 2 log (q + 1) ts +2pktw. Therefore, the
total communication cost is (log (p) + 2 log (q)) ts + 4pktw

for large p and q.
Table I summarizes the communication cost of the pro-

posed algorithm and the root gathering algorithm. When
p ≥ q, the startup latency of the proposed algorithm
is 2 log (q) steps less than the root gathering algorithm.
When p < q, the startup latency of the proposed algorithm
is log (q) + log (p) steps less than the root gathering algo-
rithm. The bandwidth of the proposed methods is approxi-
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Figure 1: Illustration of proposed Allgather algorithms for p ≥ q and p < q. The labels on arrows indicate message transferred.
(a) First step for p ≥ q. (b) Second step for p ≥ q. (c) First step for p < q. (d) Second step for p < q.
Table I: Comparison of theoretical communication cost for the
proposed algorithm and the root gathering algorithm when the
number of senders is p and the number of receivers is q on fully
connected network.

Method Startup Latency/ts Bandwidth/ktw

Root Gathering log (p) + 2 log (q) 4p
Proposed p ≥ q log (p) p
Proposed p < q log (p) p

mately 4 times faster than the root gathering algorithm for
any p, q. Since q+1 and p

q +1 can be non-power of two, the
exact difference depends on the implementation strategies.
Nevertheless, the proposed algorithm is a constant time
faster than the root gathering algorithm.

IV. Algorithms for Ring Topology
Ring topology connects processes with a small number

of links. Rank i has two edges: One is connected to rank
(i− 1) mod (p + q) and the other is connected to rank
(i + 1) mod (p + q). We use ranks 0, .., p− 1 to denote the
senders and ranks p, .., p + q − 1 to denote the receivers.
One important assumption is that p and q are both even
number for convenience of formulation. If they are not, a
dummy process can be used to make up to the next even
number.

The proposed optimal inter-group all-to-all broadcast
algorithms on ring topology contain three stages. Every
stage consists of multiple steps. The steps are send/receive
functions executed in parallel. Algorithm 1 describes all
stages and steps of the algorithm when p = q. The i loops
represent the stages. The j loops are the parallel steps.
The concurrent labels in the algorithm refer to the ID of
message sequence defined as the following.

We briefly discuss the high-level ideas of Algorithm 1
for transferring messages from the senders to the receivers.
Like the intra-group Allgather algorithm for ring topology,
where messages are circulated in a "pipeline" movement for
p + q − 1 steps, the proposed algorithm creates multiple
"pipelines" of messages in different directions. However,
naive pipelining of messages from both sides (via pro-
cess 0 and p − 1) of the ring will break bidirectional
communication constraint mentioned in section 2, due
to the limited number of connections. The problem is
more complicated for p 6= q cases. The design of the

proposed algorithms solves this issue by introducing the
concept of message sequence in Definition IV.1, a formal
description of pipeline movements of messages. These mes-
sage sequences are controlled by the proposed algorithms
so that their movements do not violate the bidirectional
communication constraint using interleaved indexing. Nev-
ertheless, they can fulfill the objectives of half-duplex all-
to-all broadcast with optimal communication cost.

Definition IV.1. A message sequence over an array of
messages mi, .., mi+k in a parallel communication algo-
rithm is defined to be parallel steps such that the list of
receivers for every element of the message array has either
increasing or decreasing index order for all steps.

In the rest of this section, we present complete details
of theoretical analysis for all cases. We suggest readers
seeking high-level insights to go through Figures 2 and 3
first. Algorithms 1 and 3 provide details about process
indexing that can be readily used for implementations.
Section 4.1-4.4 and the second half of 4.5 should be
the interest of people who favor comprehensive proofs of
algorithms algebraically.
We prove that Algorithm 1 is feasible with respect to

three constraints. The first constraint, referred as message
availability, is that any message sent is available at the
sender. The second constraint is the bidirectional com-
munication constraint mentioned in section 2. The third
constraint is message completeness, which means that
every receiver receives all sender messages in the end.

A. Message availability
Theorem IV.2. Algorithm 2 satisfies message availability
constraint if process p(a+cj+ki) mod (p+q) has message
m(j+b) mod (p+q) at the beginning ∀j ∈ {0, ..., x}. (Message
continuity).

Proof. The sender always becomes the receiver in the next
iteration of i loop for any j. Hence message availability
constraint is satisfied.

In algorithm 1, there are three message sequences (la-
beled with #). It is possible to show that they all obey
message availability constraint.



Algorithm 1: Optimal inter-group all-to-all broad-
cast on Ring Topology (p = q).

1 for i ∈ {0, ..., p
2 − 1} do

2 #Concurrent #1
3 for j ∈ { p

2 , ..., p− 1} do
4 j + i send mj to j + i + 1
5 end
6 #Concurrent #2
7 for j ∈ {0, ..., p

2 − 1} do
8 (j − i) mod (p + q) send mj to

(j − i− 1) mod (p + q)
9 end

10 #Concurrent #3
11 for j ∈ {0, ..., i− 1} do
12 p

2 − i + 2j send m p
2 −i+j

to p
2 − i + 2j + 1

13 end
14 end
15 for i ∈ {0, ..., p

2 − 1} do
16 #Concurrent #1
17 for j ∈ { p

2 , ..., p− 1} do
18 p

2 + j + i send mj to p
2 + j + i + 1

19 end
20 #Concurrent #3
21 for j ∈ {0, ..., p

2 − 1} do
22 2j + i send mj to 2j + i + 1
23 end
24 end
25 for i ∈ {0, ..., p

2 − 1} do
26 #Concurrent #1
27 for j ∈ { p

2 , ..., p− 1} do
28 if p + j + i + 1 < 2p then
29 p + j + i send mj to p + j + i + 1
30 end
31 end
32 #Concurrent #2
33 for j ∈ {1, ..., i} do
34 3p

2 − i + 2j − 1 send mj−1 to 3p
2 − i + 2j − 2

35 end
36 #Concurrent #3
37 for j ∈ {0, ..., p

2 − 1} do
38 p

2 + i + 2j send mj to p
2 + i + 2j + 1

39 end
40 end

Algorithm 2: Message Continuity
Data: k ∈ {1,−1},x, a, b, c ∈ Z+

1 for i ∈ {0, ..., p
2 − 1} do

2 for j ∈ {0, ..., x} do
3 p(a+cj+ki) mod (p+q) send m(j+b) mod (p+q) to

p(a+cj+k(i+1)) mod (p+q)
4 end
5 end

For sequence #1 and #2, Theorem IV.2 justifies the
message availability constraint by concatenating the i
loops.

For sequence #3, we can examine all i loops. For the first
i loop, let mc be any arbitrary constant rank of message
in message array of sequence #3. We have a linear system
c = p

2 − i + j with variables i and j. Let i0 be the very
first iteration of i loop when mc is transfered in message
sequence # 3. i0 = p

2−c is minimum when j = 0. Processor
p
2 − i0 has m p

2−i0 by definition. Thus, the base case for mc

is established. When mc is sent at the ik ≥ i0 iteration,he
receiver of mc is rank p

2 − ik + 2jk + 1 = c + jk + 1 for
j = jk in this iteration. In the ik + 1 iteration, j = jk +
1 is solved from the definition of c. The sender of mc is
exactly process p

2−(ik + 1)+2 (jk + 1) = c+jk +1. Hence
the induction of message availability of mc is completed.
Consider the receiver ranks in the last iteration of the first
stage, p

2 −
(

p
2 − 1

)
+ 1 + 2j = 2j + 2 and j takes values

from 0 to p
2 − 2, so the senders at the beginning of the

second stage are the receivers in the last iteration of first
stage loop except process 0. By definition, process 0 has
message m0. Hence all messages sent at the start of the
second stage are available. Message continuity theorem can
be used to show that the second i loop fulfills the message
availability constraint. For the third i loop, it continues the
second loop for the range of i from p

2 to p− 1. According
to Theorem IV.2, sequence #3 is message complete.

B. Bidirectional communication constraint
Single-port communication constraint is not violated

if the following two conditions are true. Every sender is
unique within an i loop. Moreover, every receiver is unique
within an i loop. The uniqueness across multiple j loops
within an i loop can be verified by computing the ranges
of sender/receiver ranks. If the ranges of sequence ranks
do not overlap, the senders and receivers must be different
for any i. The ranges of sequence #1 and sequence #2 in
the first i loop do not overlap. The ranges of sequence #3
and sequence #2 in the first i loop do not overlap.
When the ranges of senders and receivers in two se-

quences under an i loop overlap, proof by contradiction
can be used to show uniqueness of ranks given the same
arbitrary value of i. Suppose a sender sends a message
to different processes within an i loop. There exist two
integers j1 and j2 within the ranges of j loops such that
the ranks of senders are equal given the same i. The same
reasoning can be applied to receivers. We can enumerate
the rest pairs of sequences.
Consider sequence #1 and sequence #3 in the first i

loop. For senders, we have j1 + i = p
2 − i + 2j2. It follows

that j1 = p
2 − 2i + 2j2. However, j2 < i by definition.

Hence j1 < p
2 , which is outside its range

[
p
2 , p− 1

]
. The

same argument works for receivers because receiver ranks
are sender ranks plus 1.
Consider sequence #1 and sequence #3 in the second i

loop. For senders, we have p
2 + j1 + i = 2j2 + i. It follows

that j1 = 2j2 − p
2 . j2 takes values from 0 to p

2 − 1. Hence
j1 < p

2 , which is outside the range
[

p
2 , p− 1

]
. The same

argument works for receivers because receiver ranks are
sender ranks plus 1.
Consider sequence #1 and sequence #2 in the third i

loop. For senders, we have p + j1 + i = 3p
2 − i + 2j2 − 1.

It follows that j1 = p
2 + 2j2 − 2i − 1. j2 ≤ i implies that

j1 ≤ p
2 − 1. However, j1 ≥ p

2 by definition. Therefore, no
solution exists for j1. For receivers, we have p+j1 +i+1 =
3p
2 − i+2j2−2, it follows that j1 = p

2 +2j2−2i−3. j2 ≤ i
implies that j1 ≤ p

2 − 3. However, j1 ≥ p
2 by definition.

Therefore, solution for j1 does not exist.
Consider sequence #1 and sequence #3 in the third i

loop. For senders, we have p+j1 +i = p
2 +i+2j2. It follows

that j1 = 2j2 − p
2 . j2 takes values from range 0 to p

2 − 1,
so j1 ≤ p

2 − 1. However, j1 takes values in
[

p
2 , p− 1

]
. The

same argument works for receivers because receiver ranks
are sender ranks plus 1.



Consider sequence #2 and sequence #3 in the third i
loop. For senders, we have 3p

2 − i+2j1−1 = p
2 + i+2j2. It

follows that 2 (j2 − j1 + i) = p−1. By assumption, p is an
even number and i is an integer, so integer solutions for j1
and j2 do not exist. For receivers, we have 3p

2 −i+2j1−2 =
p
2 +i+2j2+1. It follows that 2 (j2 − j1 + i) = p−3. Integer
solutions for j1 and j2 do not exist.

C. Completeness
Completeness means that all messages from senders are

received by all receivers when the algorithm finishes.

Theorem IV.3. Let M1 be message sequence over mes-
sage array mi, .., mi+c and M2 be message sequence over
message array mi+c, .., mi such that the receivers of M1
and M2 have reverse index order. If ∀j ∈ [i, i + c], mj

in both sequences is received by some pair of adjacent
receivers (mj intersects in both sequences), process set P ′

that contains processes between the front senders of M1 and
M2 is message complete.

Proof. Suppose that ∀j ∈ [i, i + c], mj is received by
adjacent receivers v− 1 and v in both sequences. Without
loss of generality, suppose M1 has receivers in increasing
index order at all steps and M2 has receivers in decreasing
index order at all steps. By definition of message sequence,
when v − 1 receives mj in M1, all processes in P ′ with
ranks less than v − 1 have received message mj . When v
receives mj in M2, all processes in P ′ with ranks greater
than v have received message mj . Therefore, P ′ is message
complete over the message array.

For sequence #1, it is clear that it travels through all the
receivers by combining all the three stages. Hence receivers
are message complete for messages {mj : j ∈

[
p
2 , p− 1

]
}.

For messages {mj : j ∈
[
0, p

2 − 1
]
}, we can show

that the message mj in sequence #2 and sequence #3
intersects at some receiver. Because all receivers are be-
tween the front senders of the two sequences, the theorem
justifies message completeness. There is no stop condition
in both sequences, so all messages in the sequence are
transferred without delay. Therefore, mj moves exactly
p
2 + p

2 −1−j = p−1−j hops in sequence #2 to decreasing
index direction. The final receiver of mj in sequence #2
is (j − (p− 1− j)) mod 2p = 2j + p + 1. For message
sequence #3, message mj at the start of stage 2 travels
p hops in increasing direction. The final receiver of mj

in sequence #3 is 2j + p. Hence the final receiver differs
by 1 index, which means that the sequences intersect. It
follows from Theorem IV.3 that all receivers have received
messages {mj : j ∈

[
0, p

2 − 1
]
}.

D. Optimality
The optimal algorithm for inter-group all-to-all broad-

cast on ring topology that contains p senders with lower
ranks and q receivers with higher ranks has at least
k
(
p + q

2 − 1
)

tw bandwidth. This statement can be proved
by considering the receiver at rank p+ q

2−1 and p+ q
2 . Both

Table II: Comparison of communication cost for the proposed
algorithm and intra-group Allgather algorithm when the num-
ber of senders is p and the number of receivers is q on ring
network.

Method Startup latency/ts Bandwidth/ktw

Intra-Allgather p + q − 1 p + q − 1
Proposed p + q

2 p + q
2

of them need to receive p messages. Moreover, it takes at
least q

2 − 1 steps for the first message to arrive at either
of them. As a result, the communication cost is at least(
p + q

2 − 1
)

(ktw + ts).
The total communication cost of Algorithm 1 is the

number of i iterations multiplied by ts + tw. Hence the
communication cost is

(
p + q

2
)

(ts + tw) k, which converges
to optimal bandwidth bound

(
p + q

2 − 1
)

ktw for large p, q.

Table II summarizes the complexities of communication
cost compared with intra-group Allgather algorithm. The
improvement of communication cost is p+q−1

p+ q
2
. Based on

this ratio, we expect that the improvement increases as
the number of receivers increases.

E. Imbalanced Graph
In this section, we discuss methods for handling imbal-

anced numbers of senders and receivers. The three main
stages of the Algorithm 1 remain unchanged.
When p > q, the principle is the same as p = q case.

The directions for all three sequences remain the same.
The length of sequence #1 is p − q

2 over message array
{m q

2
, .., mp−1}. The length of sequence #2 and #3 is q

2
over message array {m0, .., m q

2−1}. The first and third
stage have q

2 steps. The second stage has p− q
2 steps. The

previous proofs based on the three sequences are valid. The
total communication cost is

(
p + q

2
)

(ts + tw) k. Hence the
algorithm is optimal. Figure 3 illustrates an example when
p = 4 and q = 6.
When p < q, as long as the process p + q − 1 receives

any messages delivered by sequence #1, there is at least a
q (ts + tw) k component in the total communication cost.
If q is significantly larger than p, the communication
cost is not optimal. Optimal communication cost can be
reached by adding a sequence #4 that is symmetric to
sequence #3 over messages {m p

2−1, .., m0} in the opposite
direction at every stage. Algorithm 3 is a modified version
for handling p < q case. For message availability, the
proof for sequence #1, #2, and #3 in previous section
can be reused. Sequence #4 is symmetric to sequence #3
in opposite direction, so message availability is ensured.
Figure 2 illustrates an example when p = 6 and q = 4.
For bidirectional constraint, we show that the new se-

quence does not conflict with existing sequences. Sequence
#4 is divided into two parts in the second i loops. The
computing of i

2 takes ceiling of the result. The range of
sequence #4-1 does not overlap the ranges of sequence
#1 and #2 in the second stage. Moreover, the range of
sequence #3 does not overlap the ranges sequence #2 and
sequence #4-2 in the second stage.
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Figure 2: An example (left to right and top to bottom) of the proposed algorithm for the ring topology all-to-all broadcast when
p = 4 and q = 6. Message available at every step is labeled above/below a process. Arrows illustrate messages transferred. The
total number of steps is 7.a b c d
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Figure 3: An example (left to right and top to bottom) of the proposed algorithm for the ring topology all-to-all broadcast when
p = 6 and q = 4. Message available at every step is labeled above/below a process. Arrows illustrate messages transferred. The
total number of steps is 8.

Consider sequence #1 and sequence #4 in the first i
loop. For senders, we have j1 + i = 2j2 − i − p

2 + 1. It
follows that j1 = 2j2 − 2i − p

2 + 1. Since j2 ≤ p
2 + i − 1,

j1 ≤ p
2 − 1, which is out of the range of j in sequence #1.

For receivers, we have j1 + i + 1 = 2j2 − i − p
2 , it follows

that j1 = 2j2−2i− p
2 −1. Since j2 ≤ p

2 + i−1, j1 ≤ p
2 −3,

which is out of the range of j in sequence #1. The same
argument works for receivers because receiver ranks are
sender ranks plus 1.

Consider sequence #2 and sequence #4 in the first i
loop. For senders, we have j1 − i = 2j2 − i − p

2 + 1. It
follows that j1 = 2j2 − p

2 + 1. Since j2 ≥ p
2 , j1 ≥ p

2 + 1,
which is out of the range of j in sequence #2. The same
argument works for receivers because receiver ranks are
sender ranks minus 1.

Consider sequence #3 and sequence #4 in the first i
loop. For senders, we have p

2 − i + 2j1 = 2j2− i− p
2 + 1. It

follows that 2j1 = 2j2 − p + 1. By assumption, p is even.
Hence 2j2 − p + 1 is odd. Integer solutions for j1 do not

exist. For receivers, we have p
2 − i + 2j1 + 1 = 2j2 − i− p

2 .
It follows that 2j1 = 2j2−p−1. By assumption, p is even.
Hence 2j2 − p − 1 is odd. Integer solutions for j1 and j2
do not exist.
Consider sequence #3 and sequence #4-1 in the second

i loop. For senders, we have 2j1 + i = 2j2 − i − p + 1. It
follows that 2 (j2 − j1) = 2i + p − 1. By assumption, p is
even. Hence 2i+p−1 is odd. Integer solutions for j1 and j2
do not exist. For receivers, we have 2j2−i−p = 2j1 +i+1.
It follows that 2 (j2 − j1) = 2i + p + 1. By assumption, p
is even. Hence 2i + p + 1 is odd. Integer solutions for j1
and j2 do not exist.
Consider sequence #1 and sequence #4-2 in the second

i loop. For senders, we have p
2 + j1 + i = 2j2− i + q + 1. It

follows that j1 = 2j2−2i+q− p
2 +1. The condition enforces

2j2 > 2i+q− p
2 > 2i+ p

2 , so j1 > p+1, which is out of the
range of j in sequence #1. For receivers, we have p

2 + j1 +
i + 1 = 2j2− i + q. It follows that j1 = 2j2−2i + q− p

2 −1.
The condition branch enforces 2j2 > 2i + q − p

2 > 2i + p
2 ,



Algorithm 3: Optimal inter-group all-to-all broad-
cast on Ring Topology (p<q)

1 for i ∈ {0, ..., p
2 − 1} do

2 #Concurrent #1
3 for j ∈ { p

2 , ..., p− 1} do
4 j + i send mj to j + i + 1
5 end
6 #Concurrent #2
7 for j ∈ {0, ..., p

2 − 1} do
8 (j − i) mod (p + q) send mj to

(j − i− 1) mod (p + q)
9 end

10 #Concurrent #3
11 for j ∈ {0, ..., i− 1} do
12 p

2 − i + 2j send m p
2 −i+j

to p
2 − i + 2j + 1

13 end
14 #Concurrent #4
15 for j ∈ { p

2 , ..., p
2 + i− 1} do

16 2j − i− p
2 + 1 send mj to 2j − i− p

2
17 end
18 end
19 for i ∈ {0, ..., q

2 − 1} do
20 #Concurrent #1
21 for j ∈ { p

2 , ..., p− 1} do
22 p

2 + j + i send mj to p
2 + j + i + 1

23 end
24 #Concurrent #2
25 for j ∈ {0, ..., p

2 − 1} do
26 if i < q

2 −
p
2 then

27 p
2 + q − i + j send mj to p

2 + q − i + j − 1
28 end
29 end
30 #Concurrent #3
31 for j ∈ {0, ..., p

2 − 1} do
32 2j + i send mj to 2j + i + 1
33 end
34 #Concurrent #4-1
35 for j ∈ { p

2 + i
2 , ..., p− 1} do

36 2j − i− p + 1 send mj to 2j − i− p
37 end
38 #Concurrent #4-2
39 for j ∈ { p

2 , ..., p
2 + i

2 − 1} do
40 if 2j > 2i + p

2 then
41 2j − i + q + 1 send mj to 2j − i + q
42 end
43 end
44 end
45 for i ∈ {0, ..., p

2 − 1} do
46 #Concurrent #1
47 for j ∈ { p

2 , ..., p− 1} do
48 if j + i + 1 < p

2 + q
2 then

49 p
2 + q

2 + j + i send mj to p
2 + q

2 + j + i + 1
50 end
51 end
52 #Concurrent #2
53 for j ∈ {1, ..., i} do
54 q

2 + p− i + 2j − 1 send mj−1 to q
2 + p− i + 2j − 2

55 end
56 #Concurrent #3
57 for j ∈ {0, ..., p

2 − 1} do
58 q

2 + i + 2j send mj to q
2 + i + 2j + 1

59 end
60 end

so j1 > p − 1, which is out of the range of j in sequence
#1.

Consider sequence #2 and sequence #4-2 in the second
i loop. For senders, we have p

2 +q− i+ j1 = 2j2− i+q +1.
It follows that j1 = 2j2 − p

2 + 1. Since j2 ≥ p
2 , j1 ≥ p

2 + 1,
which is outside the range of j in sequence #2. The same
argument works for receivers because receiver ranks are
sender ranks minus 1.

Consider sequence #2 and sequence #1 in the second
i loop. For senders, we have p

2 + q − i + j1 = p
2 + i + j2.

It follows that j2 = q − 2i + j1. Since i < q
2 −

p
2 by the

conditional branch and i is an integer, 2i < q − p − 1. It
follows that j2 > p+j1 +1. However, j1 ≥ 0, so j2 > p+1,
which is out of range of j in sequence #1. For receivers,
we have p

2 + q− i + j1 − 1 = p
2 + i + j2 + 1. It follows that

j2 = q − 2i + j1 − 2. Since i < q
2 −

p
2 by the conditional

branch and i is an integer, 2i < q − p− 1. It follows that
j2 > p + j1 − 1. However, j1 ≥ 0, so j2 > p − 1, which is
out of range of j in sequence #1.
Proof for message completeness can be divided into two

parts: {mj : j ∈
[
0, p

2 − 1
]
} and {mj : j ∈

[
p
2 , p
]
}.

For messages {mj : j ∈
[
0, p

2 − 1
]
}, we can show

that the message mj in sequence #2 and sequence #3
intersects at some receiver. mj moves exactly p

2 +
(

q
2 −

p
2
)
+(

p
2 − 1− j

)
= p

2 + q
2 − 1 − j hops in sequence #2 to

decreasing index direction. mj moves exactly j+ q
2 + p

2 hops
in sequence #3 to increasing index direction. The final re-
ceiver of mj in sequence #2 is

(
j −

(
p
2 + q

2 − 1− j
))

mod
(p + q) = 2j+ p

2 + q
2 +1. The final receiver of mj in sequence

#3 is 2j+ q
2 + p

2 . Hence the final receiver differs by 1 index,
which means that all messages intersect. It follows from
Theorem IV.3 that all receivers have received messages
{mj : j ∈

[
0, p

2 − 1
]
}.

For {mj : j ∈
[

p
2 , p− 1

]
}, we can show the message

mj in sequence #1 and sequence #4 intersects at some
receiver for any j ∈

[
0, p

2 − 1
]
or mj in sequence #1

reaches p + q − 1 at the end of the algorithm. If mj

is forced to stop at some receiver by the condition in
sequence #4-2, it would intersect message mp−1 in the
second i loop. Because there are p

2 steps that sequence
#1 will move forward in stage 3, mj in sequence #1
must intersect mj in sequence #4. On the other hand,
if the condition in sequence #4-2 is not triggered for mj ,
mj travels as far as q

2 + p
2 −

(
j − p

2 + 1
)
hops, so the fi-

nal receiver is
(
j −

(
q
2 + p

2 −
(
j − p

2 + 1
)))

mod (p + q) =
2j + q

2 + 1. The final receiver of mj in sequence #1 is
min

(
p + q − 1, j + p + q

2
)
. If the final receiver of mj in

sequence #1 is p + q − 1, the case is finished. Otherwise
the final receiver is j + p + q

2 . Since j ∈
[

p
2 , p− 1

]
,

j + p + q
2 ≥ 2j + 1 + q

2 . Hence mj in both sequences must
have intersected. It follows from Theorem IV.3 that all
receivers have received messages {mj : j ∈

[
p
2 , p− 1

]
}.

V. Experimental Results
We implement the proposed algorithms for inter-group

all-to-all broadcast on fully connected topology using
MPI_Send, MPI_Recv, and MPI_Allgather with intra-
group communicators as building blocks. To make a fair
comparison, we emulate the root gathering algorithm
using the MPI_Bcast and MPI_Allgather with intra-
group communicators as building blocks. The timing per-
formance of this implementation for the root gathering
differs from the performance of calling MPI_Allgather
with an inter-group communicator by less than 3%. Thus,
comparing the proposed algorithms with the emulation of
the root gathering algorithm is also a direct comparison.
The root gathering algorithm is designed for topologies
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Figure 4: These figures illustrate the comparison between the proposed algorithm and the benchmark algorithm in terms of
communication cost. The title format is "no. senders/no. receivers, topology". The unit of horizontal axis is number of bytes per
message. The unit of vertical axis is the communication cost in seconds.

that supports binary indexing, so it is highly inefficient on
a ring topology. Thus, we use the intra-group Allgather
as the benchmark for the ring topology. We implement
the proposed algorithms using MPI_Sendrecv function
under ring topological constraints. This implementation is
compared with the intra-group Allgather algorithm under
ring topological constraints implemented using the same
MPI_Sendrecv function. Improvement of communication
cost is computed as the benchmark communication cost
divided by the proposed algorithm communication cost.

The experiments are performed on Cori, a Cray XC40
supercomputer at the National Energy Research Scientific
Computing Center (NERSC). We use the Cray MPI com-
piler (cray-mpich/7.6.0) for MPI functions, which is based
on MPICH. We adopt two process configurations. The first
configuration has 256 nodes. Every node is assigned with a
single process. For hybrid MPI and OpenMP applications
that use shared memory at the same node and process
communications among nodes, this setup is reasonable.
The second configuration has 128 nodes. Every node is
assigned with 8 processes. MPI programs that utilize
cores spanning across nodes. The messages are randomly
generated data with size from 32KB to 4MB. If message
size smaller than 32KB is used, the bandwidth is trivial,
so the proposed algorithm does not improve performance
significantly. All timing results are averaged over eight
trials of experiments.

A. Fully Connected Topology

Figure 4a illustrates the comparisons of communication
cost with 512 senders and 512 receivers running on two
groups of 64 compute nodes, respectively. The communica-
tion cost improvement is 1.8 with 4MB message size. Fig-
ure 4d illustrates the comparisons of communication cost
with 128 senders and 128 receivers running on two groups
of 128 compute nodes, respectively. The communication
cost improvement is 5.3 with 4MB message size. As the

message size increases, the difference of total communica-
tion cost becomes significant because the bandwidth starts
to dominate the total communication cost. Moreover, the
improvement increases as the number of processes becomes
larger, since the total message size received by a process
increases.
Figure 4b illustrates the comparisons of communication

cost with 256 senders and 768 receivers running on two
groups of 32 and 96 compute nodes, respectively. The
communication cost improvement is 2.0 with 4MB message
size. Figure 4e illustrates the comparisons of communica-
tion cost with 64 senders and 192 receivers running on
two groups of 64 and 192 compute nodes, respectively.
The communication cost improvement is 5.1 with 4MB
message size.
Figure 4c illustrates the comparisons of communication

cost with 768 senders and 256 receivers running on two
groups of 96 and 32 compute nodes, respectively. The
communication cost improvement is 1.2 with 4MB message
size. Figure 4f illustrates the comparisons of communica-
tion cost with 192 senders and 64 receivers running on
two groups of 192 and 64 compute nodes, respectively.
The communication cost improvement is 4.4 with 4MB
message size.
The communication cost improvements are much better

for the configuration that assign one process per node.
When multiple processes are assigned to the same node,
the communication cost between process are not uniform,
since a processes within the same node communicate with
each other faster than processes located in remote nodes.
This configuration violates the assumption we made in
section 2. Nevertheless, we demonstrate that the proposed
algorithm still run faster than the root gathering algo-
rithm.
B. Ring Topology
Figure 4g illustrates the comparisons of communica-

tion cost with 512 senders and 512 receivers running on



two groups of 64 compute nodes, respectively. Figure 4j
illustrates the comparisons of communication cost with
128 senders and 128 receivers running on two groups of
128 compute nodes, respectively. The communication cost
improvements are 1.7 and 1.9 with 4MB message size.

Figure 4h illustrates the comparisons of communication
cost with 256 senders and 768 receivers running on two
groups of 8 and 24 compute nodes, respectively. Figure 4k
illustrates the comparisons of communication cost with
64 senders and 192 receivers running on two groups of
2 and 6 compute nodes, respectively. The communication
cost improvements are both 1.9 with 4MB message size.
Compared with p = q, the improvements with large
message size is larger. This improvement matches the
complexity comparison in Table II because the difference
of communication cost between the intra-group Allgather
and the proposed algorithm is proportional to the number
of receivers.

Figure 4i illustrates the comparisons of communication
cost with 768 senders and 256 receivers running on two
groups of 24 and 8 compute nodes, respectively. Figure 4l
illustrates the comparisons of communication cost with
192 senders and 64 receivers running on two groups of
6 and 2 compute nodes, respectively. The communication
cost improvements are 1.8 and 1.4 with 4MB message size.
The communication cost improvement is less compared
with the previous two cases, because the difference of
communication cost between the intra-group Allgather
and the proposed algorithm is positively related to the
number of receivers in Table II.

The theoretical communication cost improvements for
the proposed ring algorithms are 1.5, 1.14, and 1.6 for
p = q, p = 2q, and 2p = q when there are p senders and
q receivers according to Table II. We expect to observe
communication cost improvement close to the theoretical
values when the total number of processes is large enough.
This observation can be made as we increase the total
number of processes from 256 to 1024.

VI. Conclusions
Inter-group communication is a fundamental commu-

nication pattern for scientific workflow systems. In this
paper, we propose optimal algorithms of inter-group half-
duplex all-to-all broadcast designed for both ring topol-
ogy and fully connected topologies. Both theoretical and
experimental results have shown that the proposed al-
gorithms outperform the benchmarks. In the future, it
is possible to extend our proposed algorithms from ring
topology to torus topology.
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