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Abstract 
One of the key components of a multi-user 

multimedia-on-demand system is the data server. Dig- 
italization of traditionally analog data such as video 
and audio, and the feasibility of obtaining network 
bandwidths above the gigabit-per-second range are two 
important advances that have made possible the real- 
ization, in the near future, of interactive distributed 
multimedia systems. Secondary-to-main memory I/O 
technology has not kept pace with advances in network- 
ing, main memory and CPU processing power. Con- 
sequently, the performance of the server has a direct 
bearing on the overall performance of such a system. 

In this paper, we develop a model for the architec- 
ture of a server for such a system. Parallelism of data 
retrieval is achieved by striping the data across mul- 
tiple disks. The performance of any server ultimately 
depends on the data access patterns. Two modifica- 
tions of the basic retrieval algorithm are presented to 
exploit data access patterns in order to improve system 
throughput and response time. A complementary in- 
formation caching optimization is discussed. Finally, 
we present performance results of these algorithms on 
the IBM SPl and Intel Paragon parallel computers, 

1 Introduction 
1.1 Motivation 

A Multimedia Information System requires the in- 
tegration of communication, storage and presentation 
mechanisms for diverse data types including text, im- 
ages, audio and video, to provide a single unified infor- 
mation system [l]. The reason why multimedia data 
processing is difficult is that such data differs markedly 
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from the unimedia data (text) that conventional com- 
puters are built to handle [2]. The chief differences 
are the need to provide real-time guarantees and the 
diverse data sizes. 

In this paper, we focus on the most popular mul- 
timedia application, video-on-demand in a distributed 
environment. This term refers to making it possible 
for multiple viewers to interactively view The impli- 
cations of such a system on the technology and the 
infrastructure needed are tremendous. The storage of 
even a modest hundred movies requires almost a ter- 
abyte of storage capacity in the server. Similarly, gi- 
gabyte/sec and terabyte/ set bandwidth networks are 
necessary to carry the movies to the consumers. 

In the absence of adequate hardware support, past 
and present interactive digital multimedia systems 
have been forced to make compromises such as pro- 
viding single-user instead of multi-user support, small- 
window displays instead of full-screen display of video 
and image data, the use of lossy compression tech- 
niques and low audio/video resolution. Recent ad- 
vances in underlying hardware technologies, such as 
the emergence of high-speed networks (eg: ATM) and 
powerful CPUs, however, obviate the need for such 
compromises. 

In spite of these technological advances, there is one 
bottleneck that plagues the realization of such a sys- 
tem : the speed of data transfer from the secondary 
data storage to main memory. The data transfer time 
in the most popular form of secondary storage, mag- 
netic disks, is still governed by the seek and rotational 
latencies of these devices. These latencies have not 
decreased commensurately with the advances in other 
areas of computer hardware. Multimedia information 
systems are inherently I/O intensive, and it is critical 
to reduce the ill-effects of this bottleneck. Techniques 
for doing so are the subject of this paper. 

1.2 Related Work 
[3] have proposed file system design techniques for 

providing hard performance guarantees. [5, 6] pro- 
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1.2 Related Work 
[3] have proposed file system design techniques for 

providing hard performance guarantees. [5, 61 pro- 
posed a disk arm scheduling approach for multime- 
dia data, and characterized the disk-level trade-offs in 
a multimedia server. [2, 71 have proposed a model 
based on constrained block allocation, which is basi- 
cally non-contiguous disk allocation in which the time 
taken to retrieve successive stream blocks does not ex- 
ceed the the playback duration of a stream block. Con- 
tiguous allocation of disk blocks for a media stream 
is desirable, for it amortizes the cost of a single seek 
and rotational delay over the retrieval of a number 
of media blocks, thus minimizing the deleterious ef- 
fects of disk arm movement on media data retrieval. 
However, contiguous allocation causes fragmentation 
of disk space if the entire stream is stored on a sin- 
gle disk. Moreover, if a stream is stored on a single 
disk, the maximum retrieval bandwidth is restricted 
by the data transfer rate of the disk. [S] get around 
these problems by striping media data across several 
disks in a round robin fashion. The effective retrieval 
bandwidth is then proportional to the number of disks 
used. Our model is similar to this model in using 
data striping, round robin distribution of successive 
stream fragments and contiguous allocation within a 
given fragment. [7] categorize real time clients into 2 
classes, those that require hard and soft performance 
guarantees, respectively. For the latter class, the worst 
case assumptions made in admitting new users are re- 
laxed based on the observed server load to increase the 
number of users that can be supported. Most previous 
work has concentrated on minimizing rotational and 
seek overheads in retrieving data. Our approach is to 
increase the granularity of data retrieved so that the 
random effects of disk overheads form a smaller frac- 
tion of request service time. Moreover, little attention 
has been paid to the issue of tuning server performance 
based on user access patterns. 
1.3 Our Research Contributions 

In this paper, an integrated approach to the stor- 
age and retrieval of video data so as to maximize the 
number of users, while at the same time providing real- 
time service, is presented. Our model uses parallelism 
of retrieval to tackle the problem of the low speed of 
data transfer from secondary-storage to main mem- 
ory. An algorithm (the Remote Disk Stream Schedal- 
ing (RDSS) algorithm, ) for server operation when 
sourcing a constant number of media streams is pre- 
sented. Two modifications of the basic RDSS algo- 
rithm, the Local Disk Stream Scheduling (LDSS) and 
the Local Memory Stream Scheduling (LMSS) algo- 
rithms, are developed that exploit knowledge of data 
access patterns to improve system throughput. 

We propose a complementary approach, Gang 
scheduling, that increases the number of streams that 
a server can support when there are multiple requests 

for the same media object, at the cost of increased re- 
sponse time for some clients. We discuss the trade-offs 
that this approach involves. Finally, we present ex- 
perimental results on the IBM SPl and Intel Paragon 
parallel computers. 

The rest of this paper is organized as follows : Sec- 
tion 2 describes the architecture of the server. Sec- 
tion 3 describes the proposed scheduling policies. We 
present performance results in Section 4. Section 5 
summarizes this paper. 

2 The High Performance Server 
2.1 Architecture 

As explained above, multimedia applications strain 
the resources of a uniprocessor computer system for 
even a single-user mode of operation. When the server 
has to handle multiple requests from multiple users si- 
multaneously, it is clear that the server must be con- 
siderably more powerful than a PC or workstation- 
type system. At the very least, the server should 
have terabytes of secondary storage, gigabytes of main 
memory, and be connected to a high-speed wide-area 
network. The server may also be required to perform 
fast compression of multimedia data. Hence it should 
have good floating-point and scalar arithmetic perfor- 
mance. A parallel computer is a good candidate to 
satisfy these requirements. 

However, it must be noted that most parallel com- 
puters available till recently have concentrated on min- 
imizing the time required to handle workloads simi- 
lar to those found in the scientific computing domain. 
Hence, the emphasis was laid on performing fast arith- 
metic and efficient handling of vector operands. On 
the other hand, multimedia-type applications require 
fast data retrieval and real-time guarantees. Secondly, 
parallel computers have traditionally been expensive 
on account of their high-end nature and the compar- 
atively small user community as compared to that 
of PCs. The advent of multimedia applications has 
brought the esoteric parallel machines in direct com- 
petition with volume-produced PCs and workstations. 

We propose a logical model for a continuous me- 
dia server, which is independent of the architec- 
tural implementation. The same model can be im- 
plemented on a parallel machine or a collection of 
PCs/workstations interconnected by high-speed links. 
In this paper, we have used the parallel computer ap- 
proach to validate our work. 

Accordingly, the architecture of the server is that 
of a parallel computer with a high-capacity magnetic 
disk(s) per node, with the nodes being connected by 
a high-speed interconnection network. Each node is 
a computer in its own right, with a CPU, RAM and 
secondary storage. In addition, each node has an in- 
terface with the interconnection network. This model 
allows one to stripe multimedia data across the disks 
of the server. This allows its retrieval to proceed in 
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Figure 1: Logical Model of the Server. Example com- 
munication patterns are shown: dark lines indicate 
data, dotted lines indicate control information 

parallel, thus helping the server to satisfy real-time re- 
quirements. In addition, the shrinking size and cost of 
RAM makes it possible to have hundreds of megabytes 
of main memory per node; memory capacity of this 
range is an advantage for buffering multimedia data 
during storage and retrieval. 

2.2 Logical Model of the Server 
Figure 1 shows a block diagram of the logical view 

of the proposed server. The physical server nodes 
are divided into three classes based on functionality 
: Object Manager (A), Interface (I), and Server 
(S) nodes. The three types of nodes are explained in 
greater detail below : 

1. The Object Manager node is at the top of 
the server’s control hierarchy. The Object Man- 
ager receives all incoming requests for media ob- 
jects. It has knowledge of which Server nodes an 
object resides on and the workload of the Inter- 
face nodes. Based on this knowledge, it delegates 
the responsibility of serving a request to one of 
the Interface nodes. The Object Manager node 
also logs data request patterns, and uses this in- 
formation to optimize server response time and 
throughput. This is explained in 3.2. 

2. Interface Nodes are responsible for scheduling 
and serving stream requests that have been ac- 
cepted. Their main function is to request the 
striped data ’ from the server nodes, order the 
packets received from the server nodes, and send 
the packets over the wide area network to the 
clients. Eficient buffer management algorithms 
are vital towards achieving these functions. An 
interface node can also use its local secondary 
storage to source frequently accessed data ob- 
jects. 

Symbol 1 Description 
&I ] Required playback rate 

Size of packets sent by an I node 
Duration of a packet sent by an I node 
Buffer size at an I node 
Size of packets sent by a S node 
Duration of data in Bz 
Period of issuing fetches to S 
Stripe factor 

Table 1: The parameters used in this paper 

3. Server Nodes actually store multimedia data 
on their secondary storage in a striped fashion, 
and retrieve and transmit the data to an interface 
node when requested to do so. It is to be noted 
that the disk-per-node assumption is not literal : 
a node can have a disk-array instead for greater 
I/O throughput. 

3 Scheduling Algorithms 
3.1 Parameters Used and Scheduling 

Constraints 
The data is stored at the server and transmit- 

ted in compressed digital form. For the purposes of 
this paper we assume the MPEG-1 compression stan- 
dard [4]. The decompression of the data is done at 
the remote client’s multimedia terminal.. We assume 
that the wide-area network have the necessary band- 
width to support multimedia data rates and multiple 
clients. As mentioned earlier, the data is compressed 
and striped across the server nodes in a round-robin 
fashion. The number of nodes across which an object 
is striped is called the stripe factor. Since the stripe 
fragments on any given server node’s disk are not con- 
secutive fragments, it is not necessary to store them 
contiguously. Disk scheduling algorithms to optimize 
retrieval from the disk surface have been proposed [5], 
and can be used in our model. We are concerned with 
harnessing the parallelism provided by striped storage 
and investigating the buffering policies for the data. 
Table 1 shows the parameters used by our model. 

61 is the time for which a packet sent by an I node 
to a client will last at the client. Hence, this is also 
the deadline by which the next packet from the I node 
must be received at the client. Its value is given by: 

Once the requested stripe fragments from the S 
nodes have arrived at the destination I node, the latter 
arranges them in the proper sequence and continues 
sending packets of size PI to the client no less than ev- 
ery 61 seconds. The buffer at the I node will last for 
6s time, before which the next set of stripe fragments 
must have arrived from the S nodes. 
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Figure 2: Time relationships of I-S node traffic 

The average time to retrieve Ps bytes from a S 
node is given by 

40 = &q + Lg,,,), + bvg,,, + &r, + &Awps (2) 

where S,, is the time delay for a request from an I node 
to reach a S node, 6avg,..r and 6a,,g,,t are the average 
seek and rotational latencies for the disks being used, 
6 trPS is the disk data transfer time for PS bytes, and 
6 nwPs is the network latency to transport P, bytes 
from a S node to an I node. 

Thus, if the playout of an I node buffer is started 
at time t, then the latest time by which the requests 
for the next set of stripe fragments must be issued to 
the S nodes is : 

t maz = t + 6s - 6i, 

Figure 2 shows these relationships. 
(3) 

Note that equation 2 uses average seek and rota- 
tional latencies for disk accesses. Since these latencies 
are variable, there will be boundary conditions when 
the time to retrieve Ps bytes is much more (less) than 
the average value. However, the effect of this devia- 
tion from the average value on the overall service time 
depends on the relative magnitudes of the other com- 
ponents of the service time. Our approach is based on 
the fact that when the granularity of data read from 
disk is increased, the effect of random disk seek and 
rotational overheads is reduced. While it is true that 
doing so increases buffering requirements, contempo- 
rary processors have large main memories, and using 
such processors is well worth the gain obtained in mak- 
ing disk service time more predictable. Another point 
in support of using average overhead values is that the 
worst case is rarely encountered in practice. Of course, 
if some clients require strict performance guarantees, 
then one can categorize users into those requiring hard 
and soft deadlines as in[9], and use the maximum val- 
ues of the disk overheads for admitting users of the 
latter kind. 
3.2 Exploiting Data Access Patterns 

It is natural that certain objects in a database are 
accessed more frequently than other objects. For ex- 
ample, in this particular application, it is highly likely 

that the demand for newly released movies will be 
higher than that for older movies. We now present 
three different algorithms that address this issue. The 
first algorithm does not take frequency of data access 
into account, while the next two exploit this feature 
to reduce the response time to new requests. 

3.2.1 Remote Disk Stream Scheduling Algo- 
rithm (RDSS) 

In this algorithm, each video stream is scheduled by 
explicitly retrieving stripe fragments from the S nodes. 
In this approach the I/O scheduler takes no advan- 
tage of the possibility that the same multimedia ob- 
ject is being used by multiple users simultaneously. 
Consequently, when many objects have this reference 
pattern, this policy will create excess interconnection- 
network and disk traffic. However, it is the simplest 
to implement. 

3.2.2 Local Disk Stream Scheduling Algo- 
rithm (LDSS) 

This algorithm and the next one depend on being 
able to detect that some objects are being accessed 
more frequently than others. This function can be 
performed by the object manager node (node A in fig- 
ure 1). Since all new requests for streams come to 
this node, it can log the object access patterns over a 
specified time window, A,. If any object is accessed 
at a rate above a threshold, Th,,, then that object 
is classified as a popular object. 

Having identified an object as being popular, when 
the next request for that object comes in, the stripe 
fragments are retrieved from the S nodes in the usual 
way. However, in addition to sending packets of size PI 
to the client, the stripe fragments retrieved from the S 
nodes are written to the local disk at the corresponding 
I node. Thus, when the next request for the object 
comes in, the object can be streamed from the local 
disk(s) of the I node. This has the benefit of reducing 
interconnection-network and (S node) disk traffic, and 
also improving the overall response time of the system. 
Note that the overhead of storing the stripe fragments 
on local disk is marginal, since disk writes are non- 
blocking and can proceed in the background. 

3.2.3 (Local) Memory Stream Scheduling Al- 
gorithm (LMSS) 

This algorithm goes a step further in reducing system 
response time for popular objects. In this case, a pop- 
ular object is stored on the I node backing store as in 
the LDSS scheme. In addition, the first few packets 
of the object are stored in the main memory of the 
I node, so that when a request comes in, it can be 
served immediately once it has been accepted. 
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280, , 

ps 1 128  KB 

Table 2: Parameter values used for experiments 

In both the LDSS and  LMSS schemes,  it is also 
necessary to keep track of when the f requency of access 
of a  object falls below the threshold separat ing popular 
object and  other objects. In that case, the disk space 
occupied by that object at the I node  can be  used to 
store another popular object. 

4  Results 
W e  have evaluated the performance of our  logical 

server model.  W e  present results for the IBM SPl and  
Intel Paragon below. 

Due to storage space and  availability of real-world 
data limitations, the disk access part was simulated. 
W e  have assumed gigabytes of disk space per node,  
and  a  disk data transfer rate of 10  Mbytes/set. The  
time for one  rotation of the disk was modeled as 11.1 
ms, while the average seek time was modeled as 9.4 
ms. Table 2  shows the values of the parameters de-  
f ined in table 1  that we used for our  experiments. The  
playback time for each stream varied between 4  and  
5  minutes, depending on  the time of arrival of the re- 
quest  for that stream. 

4.1 Performance of the RDSS, LDSS and 
LMSS algorithms - 

W e  noted the performance of the algorithms for a  
server configuration of 6  interface nodes  and  24  server 
nodes,  and  a  stripe factor of 4. The  composit ion of the 
requests was varied as follows : starting from requests 
for unique media objects, the percentage of requests 
for the same object was successively increased. Fig- 
ure 3  shows the maximum number  of streams that 
could be  simultaneously supported using each policy 
on  the SPl. 

W e  observe that for a  low percentage of requests for 
the same object, the RDSS algorithm outperforms the 
other two algorithms. This is so because in the latter 
two cases we allocate a  dedicated I node  for the pop-  
ular object. For a  low percentage of requests for the 
popular object, the dedicated node  is underuti l ized : 
it sources less streams than its full capacity, while a  
normal I node  in its place could have sourced the max- 
imum number  of streams that such a  node  can source. 
W ith increasing amounts of requests for the same ob- 
ject, however,  the LDSS and  LMSS algorithms out- 
perform the RDSS algorithm as they reduce the load 
on  the server nodes  caused by frequently accessing the 
same object. Between the LDSS and  LMSS algo- 
rithms, the latter clearly outperforms the former for 

240 
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Figure 3: Maximum number  of supported streams for 
varying number  of requests for the same object (6 I 
nodes,  24  S nodes,  IBM SPl). 
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Figure 4: Maximum number  of supported streams for 
varying number  of requests for the same object (6 I 
nodes,  24  S nodes,  Intel Paragon).  

different values of the percentage of requests for a  pop-  
ular object. Lastly, the performance of the RDSS 
algorithm deteriorates rapidly as  the percentage of re- 
quests for the popular object is increased, due  to the 
corresponding increase in the load of the S nodes  on  
which the popular object is stored. 

W e  ported our code to the Intel Paragon and  re- 
peated the same experiment as  above.  Figure 4  shows 
the results. The  effect of varying the number  of re- 
quests for the same object on  the maximum number  
of streams that can be  supported is similar as  above.  

4.2 Gang Scheduling 
The LDSS and  LMSS algorithms exploit the fact 

that some objects are more popular than others, and  
thus are requested more frequently. This fact is used 
to maximize the number  of supportable streams of 
such objects by dedicating nodes  to service requests 
for them. 

In the first set of experiments, the servicing of a  
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Figure 5: Number  of supported streams for RDSS al- 
gorithm for varying number  of requests for the same 
object per  gang  window (stripe factor 5, 2  I nodes,  6  
S nodes,  Paragon).  

request is started it9 soon as the request has  been  ad- 
mitted. The  performance of all three algorithms can 
be  improved by accumulat ing requests over an  interval 
of time, and  avoiding multiple fetches for requests re- 
ceived for the same object during that interval of time. 
W e  call this method gang  scheduling. For instance, if 
dur ing a  gang  window of 5  minutes, 10  requests are 
received for a  certain object, then the server can start 
retrieving only one  stream at the end  of the gang  win- 
dow and  source 10  client streams from the one  stream. 

For evaluating gang  scheduling, we used a  configu- 
ration of 2  I nodes  and  6  S nodes,  and  a  stripe factor 
of 5. W e  used a  gang  window of 1.5 seconds and  30  
requests per  gang  window. Of course, in practice a  
longer window would be  used.  W ithout loss of gener-  
ality, we use the window ment ioned for the run time 
of 5  minutes. The  values of the other parameters are 
the same as in table 2. Figure 5  shows the effect of 
varying the percentage of requests for the same object 
per  gang  window on  the maximum number  of streams 
that can be  supported on  the Paragon for the RDSS 
algorithm. 

Gang  schedul ing involves an  extra overhead of accu- 
mulating requests over the gang  window and  searching 
through the accumulated requests to identify repeated 
requests. Hence we observe from the figure that RDSS 
with gang  schedul ing is inferior to pure RDSS for low 
number  of repeated requests per  gang  window. How- 
ever, as  the percentage of requests for the same object 
per  gang  window increases,, RDSS with gang  schedul-  
ing identifies the request pattern and  outperforms pure 
RDSS. In effect, this method delays the servicing of 
some admitted requests in order to minimize the load 
on  the server. Hence there is a  tradeoff between the 
response time for clients and  reduction in server work- 
load. Consequent ly,  the size of the gang  window is a  
crucial parameter in making use of gang  scheduling. 

5  Conclusions 
In this paper  we have presented an  I/O model  for a  

server in a  distributed mult imediasystem. Three algo- 
rithms that exploit knowledge of data access patterns 
were developed to maximize the number  of streams 
that the server can source simultaneously. Our  exper-  
iments showed that the LMSS algorithm outperforms 
the LDSS algorithm, which in turn outperforms the 
RDSS algorithm when an  appreciable percentage of 
stream requests are for the same media object. W e  
showed the utility of gang  schedul ing in further im- 
proving the performance of all three algorithms. In 
gang  scheduling, a  single stream between interface and  
server nodes  is used to serve multiple clients. In con- 
clusion, we reiterate that it is crucial to exploit user 
access patterns to maximize the throughput of a  mul- 
t imedia server. 
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