
Design and Evaluation of Data Access Strategies in a High
Performance Multimedia-on-Demand Server *

Divyesh Jadav Chutimet Srinilta Alok Choudhary P. Bruce Berra
Department of Electrical and Computer Engineering

and CASE Center
Syracuse University Syracuse, NY 13244

divyesh, choudhar, csrinilt, berra @cat.syr.edu

Abstract
One of the key components of a multi-user

multimedia-on-demand system is the data server. Dig-
italization of traditionally analog data such as video
and audio, and the feasibility of obtaining network
bandwidths above the gigabit-per-second range are two
important advances that have made possible the real-
ization, in the near future, of interactive distributed
multimedia systems. Secondary-to-main memory I/O
technology has not kept pace with advances in network-
ing, main memory and CPU processing power. Con-
sequently, the performance of the server has a direct
bearing on the overall performance of such a system.

In this paper, we develop a model for the architec-
ture of a server for such a system. Parallelism of data
retrieval is achieved by striping the data across mul-
tiple disks. The performance of any server ultimately
depends on the data access patterns. Two modifica-
tions of the basic retrieval algorithm are presented to
exploit data access patterns in order to improve system
throughput and response time. A complementary in-
formation caching optimization is discussed. Finally,
we present performance results of these algorithms on
the IBM SPl and Intel Paragon parallel computers,

1 Introduction
1.1 Motivation

A Multimedia Information System requires the in-
tegration of communication, storage and presentation
mechanisms for diverse data types including text, im-
ages, audio and video, to provide a single unified infor-
mation system [l]. The reason why multimedia data
processing is difficult is that such data differs markedly

*This work is supported by Intel Corporation, NSF Young
Investigator Award CCR-9357840, and by the New York State
Center for Advanced Technology in Computer Applications and
Software Engineering (CASE) at Syracuse University. The au-
thors thank the Argonne National Laboratory for providing ac-
cess to the IBM SPl, and the Caltech CCSF facilities for pro-
viding access to the Intel Paragon

from the unimedia data (text) that conventional com-
puters are built to handle [2]. The chief differences
are the need to provide real-time guarantees and the
diverse data sizes.

In this paper, we focus on the most popular mul-
timedia application, video-on-demand in a distributed
environment. This term refers to making it possible
for multiple viewers to interactively view The impli-
cations of such a system on the technology and the
infrastructure needed are tremendous. The storage of
even a modest hundred movies requires almost a ter-
abyte of storage capacity in the server. Similarly, gi-
gabyte/sec and terabyte/ set bandwidth networks are
necessary to carry the movies to the consumers.

In the absence of adequate hardware support, past
and present interactive digital multimedia systems
have been forced to make compromises such as pro-
viding single-user instead of multi-user support, small-
window displays instead of full-screen display of video
and image data, the use of lossy compression tech-
niques and low audio/video resolution. Recent ad-
vances in underlying hardware technologies, such as
the emergence of high-speed networks (eg: ATM) and
powerful CPUs, however, obviate the need for such
compromises.

In spite of these technological advances, there is one
bottleneck that plagues the realization of such a sys-
tem : the speed of data transfer from the secondary
data storage to main memory. The data transfer time
in the most popular form of secondary storage, mag-
netic disks, is still governed by the seek and rotational
latencies of these devices. These latencies have not
decreased commensurately with the advances in other
areas of computer hardware. Multimedia information
systems are inherently I/O intensive, and it is critical
to reduce the ill-effects of this bottleneck. Techniques
for doing so are the subject of this paper.

1.2 Related Work
[3] have proposed file system design techniques for

providing hard performance guarantees. [5, 6] pro-

286
0-8186-7105-X/95 $4.00 0 1995 IEEE

Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS '95)
0-8186-7105-X/95 $10.00 © 1995 IEEE

1.2 Related Work
[3] have proposed file system design techniques for

providing hard performance guarantees. [5, 61 pro-
posed a disk arm scheduling approach for multime-
dia data, and characterized the disk-level trade-offs in
a multimedia server. [2, 71 have proposed a model
based on constrained block allocation, which is basi-
cally non-contiguous disk allocation in which the time
taken to retrieve successive stream blocks does not ex-
ceed the the playback duration of a stream block. Con-
tiguous allocation of disk blocks for a media stream
is desirable, for it amortizes the cost of a single seek
and rotational delay over the retrieval of a number
of media blocks, thus minimizing the deleterious ef-
fects of disk arm movement on media data retrieval.
However, contiguous allocation causes fragmentation
of disk space if the entire stream is stored on a sin-
gle disk. Moreover, if a stream is stored on a single
disk, the maximum retrieval bandwidth is restricted
by the data transfer rate of the disk. [S] get around
these problems by striping media data across several
disks in a round robin fashion. The effective retrieval
bandwidth is then proportional to the number of disks
used. Our model is similar to this model in using
data striping, round robin distribution of successive
stream fragments and contiguous allocation within a
given fragment. [7] categorize real time clients into 2
classes, those that require hard and soft performance
guarantees, respectively. For the latter class, the worst
case assumptions made in admitting new users are re-
laxed based on the observed server load to increase the
number of users that can be supported. Most previous
work has concentrated on minimizing rotational and
seek overheads in retrieving data. Our approach is to
increase the granularity of data retrieved so that the
random effects of disk overheads form a smaller frac-
tion of request service time. Moreover, little attention
has been paid to the issue of tuning server performance
based on user access patterns.
1.3 Our Research Contributions

In this paper, an integrated approach to the stor-
age and retrieval of video data so as to maximize the
number of users, while at the same time providing real-
time service, is presented. Our model uses parallelism
of retrieval to tackle the problem of the low speed of
data transfer from secondary-storage to main mem-
ory. An algorithm (the Remote Disk Stream Schedal-
ing (RDSS) algorithm,) for server operation when
sourcing a constant number of media streams is pre-
sented. Two modifications of the basic RDSS algo-
rithm, the Local Disk Stream Scheduling (LDSS) and
the Local Memory Stream Scheduling (LMSS) algo-
rithms, are developed that exploit knowledge of data
access patterns to improve system throughput.

We propose a complementary approach, Gang
scheduling, that increases the number of streams that
a server can support when there are multiple requests

for the same media object, at the cost of increased re-
sponse time for some clients. We discuss the trade-offs
that this approach involves. Finally, we present ex-
perimental results on the IBM SPl and Intel Paragon
parallel computers.

The rest of this paper is organized as follows : Sec-
tion 2 describes the architecture of the server. Sec-
tion 3 describes the proposed scheduling policies. We
present performance results in Section 4. Section 5
summarizes this paper.

2 The High Performance Server
2.1 Architecture

As explained above, multimedia applications strain
the resources of a uniprocessor computer system for
even a single-user mode of operation. When the server
has to handle multiple requests from multiple users si-
multaneously, it is clear that the server must be con-
siderably more powerful than a PC or workstation-
type system. At the very least, the server should
have terabytes of secondary storage, gigabytes of main
memory, and be connected to a high-speed wide-area
network. The server may also be required to perform
fast compression of multimedia data. Hence it should
have good floating-point and scalar arithmetic perfor-
mance. A parallel computer is a good candidate to
satisfy these requirements.

However, it must be noted that most parallel com-
puters available till recently have concentrated on min-
imizing the time required to handle workloads simi-
lar to those found in the scientific computing domain.
Hence, the emphasis was laid on performing fast arith-
metic and efficient handling of vector operands. On
the other hand, multimedia-type applications require
fast data retrieval and real-time guarantees. Secondly,
parallel computers have traditionally been expensive
on account of their high-end nature and the compar-
atively small user community as compared to that
of PCs. The advent of multimedia applications has
brought the esoteric parallel machines in direct com-
petition with volume-produced PCs and workstations.

We propose a logical model for a continuous me-
dia server, which is independent of the architec-
tural implementation. The same model can be im-
plemented on a parallel machine or a collection of
PCs/workstations interconnected by high-speed links.
In this paper, we have used the parallel computer ap-
proach to validate our work.

Accordingly, the architecture of the server is that
of a parallel computer with a high-capacity magnetic
disk(s) per node, with the nodes being connected by
a high-speed interconnection network. Each node is
a computer in its own right, with a CPU, RAM and
secondary storage. In addition, each node has an in-
terface with the interconnection network. This model
allows one to stripe multimedia data across the disks
of the server. This allows its retrieval to proceed in

287

Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS '95)
0-8186-7105-X/95 $10.00 © 1995 IEEE

Figure 1: Logical Model of the Server. Example com-
munication patterns are shown: dark lines indicate
data, dotted lines indicate control information

parallel, thus helping the server to satisfy real-time re-
quirements. In addition, the shrinking size and cost of
RAM makes it possible to have hundreds of megabytes
of main memory per node; memory capacity of this
range is an advantage for buffering multimedia data
during storage and retrieval.

2.2 Logical Model of the Server
Figure 1 shows a block diagram of the logical view

of the proposed server. The physical server nodes
are divided into three classes based on functionality
: Object Manager (A), Interface (I), and Server
(S) nodes. The three types of nodes are explained in
greater detail below :

1. The Object Manager node is at the top of
the server’s control hierarchy. The Object Man-
ager receives all incoming requests for media ob-
jects. It has knowledge of which Server nodes an
object resides on and the workload of the Inter-
face nodes. Based on this knowledge, it delegates
the responsibility of serving a request to one of
the Interface nodes. The Object Manager node
also logs data request patterns, and uses this in-
formation to optimize server response time and
throughput. This is explained in 3.2.

2. Interface Nodes are responsible for scheduling
and serving stream requests that have been ac-
cepted. Their main function is to request the
striped data ’ from the server nodes, order the
packets received from the server nodes, and send
the packets over the wide area network to the
clients. Eficient buffer management algorithms
are vital towards achieving these functions. An
interface node can also use its local secondary
storage to source frequently accessed data ob-
jects.

Symbol 1 Description
&I] Required playback rate

Size of packets sent by an I node
Duration of a packet sent by an I node
Buffer size at an I node
Size of packets sent by a S node
Duration of data in Bz
Period of issuing fetches to S
Stripe factor

Table 1: The parameters used in this paper

3. Server Nodes actually store multimedia data
on their secondary storage in a striped fashion,
and retrieve and transmit the data to an interface
node when requested to do so. It is to be noted
that the disk-per-node assumption is not literal :
a node can have a disk-array instead for greater
I/O throughput.

3 Scheduling Algorithms
3.1 Parameters Used and Scheduling

Constraints
The data is stored at the server and transmit-

ted in compressed digital form. For the purposes of
this paper we assume the MPEG-1 compression stan-
dard [4]. The decompression of the data is done at
the remote client’s multimedia terminal.. We assume
that the wide-area network have the necessary band-
width to support multimedia data rates and multiple
clients. As mentioned earlier, the data is compressed
and striped across the server nodes in a round-robin
fashion. The number of nodes across which an object
is striped is called the stripe factor. Since the stripe
fragments on any given server node’s disk are not con-
secutive fragments, it is not necessary to store them
contiguously. Disk scheduling algorithms to optimize
retrieval from the disk surface have been proposed [5],
and can be used in our model. We are concerned with
harnessing the parallelism provided by striped storage
and investigating the buffering policies for the data.
Table 1 shows the parameters used by our model.

61 is the time for which a packet sent by an I node
to a client will last at the client. Hence, this is also
the deadline by which the next packet from the I node
must be received at the client. Its value is given by:

Once the requested stripe fragments from the S
nodes have arrived at the destination I node, the latter
arranges them in the proper sequence and continues
sending packets of size PI to the client no less than ev-
ery 61 seconds. The buffer at the I node will last for
6s time, before which the next set of stripe fragments
must have arrived from the S nodes.

288

Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS '95)
0-8186-7105-X/95 $10.00 © 1995 IEEE

Figure 2: Time relationships of I-S node traffic

The average time to retrieve Ps bytes from a S
node is given by

40 = &q + Lg,,,), + bvg,,, + &r, + &Awps (2)

where S,, is the time delay for a request from an I node
to reach a S node, 6avg,..r and 6a,,g,,t are the average
seek and rotational latencies for the disks being used,
6 trPS is the disk data transfer time for PS bytes, and
6 nwPs is the network latency to transport P, bytes
from a S node to an I node.

Thus, if the playout of an I node buffer is started
at time t, then the latest time by which the requests
for the next set of stripe fragments must be issued to
the S nodes is :

t maz = t + 6s - 6i,

Figure 2 shows these relationships.
(3)

Note that equation 2 uses average seek and rota-
tional latencies for disk accesses. Since these latencies
are variable, there will be boundary conditions when
the time to retrieve Ps bytes is much more (less) than
the average value. However, the effect of this devia-
tion from the average value on the overall service time
depends on the relative magnitudes of the other com-
ponents of the service time. Our approach is based on
the fact that when the granularity of data read from
disk is increased, the effect of random disk seek and
rotational overheads is reduced. While it is true that
doing so increases buffering requirements, contempo-
rary processors have large main memories, and using
such processors is well worth the gain obtained in mak-
ing disk service time more predictable. Another point
in support of using average overhead values is that the
worst case is rarely encountered in practice. Of course,
if some clients require strict performance guarantees,
then one can categorize users into those requiring hard
and soft deadlines as in[9], and use the maximum val-
ues of the disk overheads for admitting users of the
latter kind.
3.2 Exploiting Data Access Patterns

It is natural that certain objects in a database are
accessed more frequently than other objects. For ex-
ample, in this particular application, it is highly likely

that the demand for newly released movies will be
higher than that for older movies. We now present
three different algorithms that address this issue. The
first algorithm does not take frequency of data access
into account, while the next two exploit this feature
to reduce the response time to new requests.

3.2.1 Remote Disk Stream Scheduling Algo-
rithm (RDSS)

In this algorithm, each video stream is scheduled by
explicitly retrieving stripe fragments from the S nodes.
In this approach the I/O scheduler takes no advan-
tage of the possibility that the same multimedia ob-
ject is being used by multiple users simultaneously.
Consequently, when many objects have this reference
pattern, this policy will create excess interconnection-
network and disk traffic. However, it is the simplest
to implement.

3.2.2 Local Disk Stream Scheduling Algo-
rithm (LDSS)

This algorithm and the next one depend on being
able to detect that some objects are being accessed
more frequently than others. This function can be
performed by the object manager node (node A in fig-
ure 1). Since all new requests for streams come to
this node, it can log the object access patterns over a
specified time window, A,. If any object is accessed
at a rate above a threshold, Th,,, then that object
is classified as a popular object.

Having identified an object as being popular, when
the next request for that object comes in, the stripe
fragments are retrieved from the S nodes in the usual
way. However, in addition to sending packets of size PI
to the client, the stripe fragments retrieved from the S
nodes are written to the local disk at the corresponding
I node. Thus, when the next request for the object
comes in, the object can be streamed from the local
disk(s) of the I node. This has the benefit of reducing
interconnection-network and (S node) disk traffic, and
also improving the overall response time of the system.
Note that the overhead of storing the stripe fragments
on local disk is marginal, since disk writes are non-
blocking and can proceed in the background.

3.2.3 (Local) Memory Stream Scheduling Al-
gorithm (LMSS)

This algorithm goes a step further in reducing system
response time for popular objects. In this case, a pop-
ular object is stored on the I node backing store as in
the LDSS scheme. In addition, the first few packets
of the object are stored in the main memory of the
I node, so that when a request comes in, it can be
served immediately once it has been accepted.

289

Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS '95)
0-8186-7105-X/95 $10.00 © 1995 IEEE

280, ,

ps 1 128 KB

Table 2: Parameter values used for experiments

In both the LDSS and LMSS schemes, it is also
necessary to keep track of when the f requency of access
of a object falls below the threshold separat ing popular
object and other objects. In that case, the disk space
occupied by that object at the I node can be used to
store another popular object.

4 Results
W e have evaluated the performance of our logical

server model. W e present results for the IBM SPl and
Intel Paragon below.

Due to storage space and availability of real-world
data limitations, the disk access part was simulated.
W e have assumed gigabytes of disk space per node,
and a disk data transfer rate of 10 Mbytes/set. The
time for one rotation of the disk was modeled as 11.1
ms, while the average seek time was modeled as 9.4
ms. Table 2 shows the values of the parameters de-
f ined in table 1 that we used for our experiments. The
playback time for each stream varied between 4 and
5 minutes, depending on the time of arrival of the re-
quest for that stream.

4.1 Performance of the RDSS, LDSS and
LMSS algorithms -

W e noted the performance of the algorithms for a
server configuration of 6 interface nodes and 24 server
nodes, and a stripe factor of 4. The composit ion of the
requests was varied as follows : starting from requests
for unique media objects, the percentage of requests
for the same object was successively increased. Fig-
ure 3 shows the maximum number of streams that
could be simultaneously supported using each policy
on the SPl.

W e observe that for a low percentage of requests for
the same object, the RDSS algorithm outperforms the
other two algorithms. This is so because in the latter
two cases we allocate a dedicated I node for the pop-
ular object. For a low percentage of requests for the
popular object, the dedicated node is underuti l ized :
it sources less streams than its full capacity, while a
normal I node in its place could have sourced the max-
imum number of streams that such a node can source.
W ith increasing amounts of requests for the same ob-
ject, however, the LDSS and LMSS algorithms out-
perform the RDSS algorithm as they reduce the load
on the server nodes caused by frequently accessing the
same object. Between the LDSS and LMSS algo-
rithms, the latter clearly outperforms the former for

240

220

200

180

5 10 15 20 25 30
Z requests for same object

Figure 3: Maximum number of supported streams for
varying number of requests for the same object (6 I
nodes, 24 S nodes, IBM SPl).

320

300

280

260

240

220

200

180

160
0 5 10 15 20 25 30

i requests for same object

Figure 4: Maximum number of supported streams for
varying number of requests for the same object (6 I
nodes, 24 S nodes, Intel Paragon).

different values of the percentage of requests for a pop-
ular object. Lastly, the performance of the RDSS
algorithm deteriorates rapidly as the percentage of re-
quests for the popular object is increased, due to the
corresponding increase in the load of the S nodes on
which the popular object is stored.

W e ported our code to the Intel Paragon and re-
peated the same experiment as above. Figure 4 shows
the results. The effect of varying the number of re-
quests for the same object on the maximum number
of streams that can be supported is similar as above.

4.2 Gang Scheduling
The LDSS and LMSS algorithms exploit the fact

that some objects are more popular than others, and
thus are requested more frequently. This fact is used
to maximize the number of supportable streams of
such objects by dedicating nodes to service requests
for them.

In the first set of experiments, the servicing of a

290

Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS '95)
0-8186-7105-X/95 $10.00 © 1995 IEEE

0 10 20 30 40 50 60
C requests for same object pat gang window

Figure 5: Number of supported streams for RDSS al-
gorithm for varying number of requests for the same
object per gang window (stripe factor 5, 2 I nodes, 6
S nodes, Paragon).

request is started it9 soon as the request has been ad-
mitted. The performance of all three algorithms can
be improved by accumulat ing requests over an interval
of time, and avoiding multiple fetches for requests re-
ceived for the same object during that interval of time.
W e call this method gang scheduling. For instance, if
dur ing a gang window of 5 minutes, 10 requests are
received for a certain object, then the server can start
retrieving only one stream at the end of the gang win-
dow and source 10 client streams from the one stream.

For evaluating gang scheduling, we used a configu-
ration of 2 I nodes and 6 S nodes, and a stripe factor
of 5. W e used a gang window of 1.5 seconds and 30
requests per gang window. Of course, in practice a
longer window would be used. W ithout loss of gener-
ality, we use the window ment ioned for the run time
of 5 minutes. The values of the other parameters are
the same as in table 2. Figure 5 shows the effect of
varying the percentage of requests for the same object
per gang window on the maximum number of streams
that can be supported on the Paragon for the RDSS
algorithm.

Gang schedul ing involves an extra overhead of accu-
mulating requests over the gang window and searching
through the accumulated requests to identify repeated
requests. Hence we observe from the figure that RDSS
with gang schedul ing is inferior to pure RDSS for low
number of repeated requests per gang window. How-
ever, as the percentage of requests for the same object
per gang window increases,, RDSS with gang schedul-
ing identifies the request pattern and outperforms pure
RDSS. In effect, this method delays the servicing of
some admitted requests in order to minimize the load
on the server. Hence there is a tradeoff between the
response time for clients and reduction in server work-
load. Consequent ly, the size of the gang window is a
crucial parameter in making use of gang scheduling.

5 Conclusions
In this paper we have presented an I/O model for a

server in a distributed mult imediasystem. Three algo-
rithms that exploit knowledge of data access patterns
were developed to maximize the number of streams
that the server can source simultaneously. Our exper-
iments showed that the LMSS algorithm outperforms
the LDSS algorithm, which in turn outperforms the
RDSS algorithm when an appreciable percentage of
stream requests are for the same media object. W e
showed the utility of gang schedul ing in further im-
proving the performance of all three algorithms. In
gang scheduling, a single stream between interface and
server nodes is used to serve multiple clients. In con-
clusion, we reiterate that it is crucial to exploit user
access patterns to maximize the throughput of a mul-
t imedia server.

References
PI

PI

131

Bl

[51

161

171

PI

PI

P. B. Berra, C.-Y. Chen, A. Ghafoor and T. Lit-
tle. Issues in networking and data management
of distributed multimedia systems. In proceedings
of 2he First Iniernational Symposium on High
Performance Distributed Compuling, September
1992.

P. V. Rangan and H. Vin. Efficient storage tech-
n iques for digital cont inuous multimedia. IEEE
Transact ions on Knowledge and Data Engineer-
ing , Vol. 5, No. 6, August 1993.

D. Anderson, Y. Osawa and R. Govindan. A
file system for cont inuous media. ACM Trans.
on Computer Systems, Vol. 10, No. 4, November
1992.

D. Le Gall. MPEG: a video compression standard
for multimedia applications. Communicat ions of
Ihe ACM, April 1991.

A. Reddy and J. Wyllie. Disk-scheduling in a mul-
t imedia I/O system. Proceedings of the 1st ACM
Intl. Conference on Multimedia, August 1993, pg.
225.

A. Reddy and J. Wyllie. I/O issues in a multime-
dia system. IEEE Computer, March 1994.

P. Rangan, H. Vin and S. Ramanathan. Designing
an on-demand multimedia service. IEEE Com-
munications, Vol 30, No. 7, July 1992.

S. Ghandehar izadeh and L. Ramos. Cont inuous
retrieval of multimedia data using parallelism.
IEEE Trans. on Knowledge and Data Engineer-
ing, Vol. 5, No. 4, August 1993.

H. Vin, A. Goyal, et. al. An observat ion-based ad-
mission control algorithm for multimedia servers.
Proc. of the Intl. Conference on Multimedia Sys-
lems and Computing, May 1994.

291

Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS '95)
0-8186-7105-X/95 $10.00 © 1995 IEEE

