JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 30, 190-203 (1995)

Techniques for Scheduling 1/0O in a High Performance
Multimedia-on-Demand Server

DivyesH Jabpav, CHUTIMET SRINILTA, ALOK CHOUDHARY, AND P. BRUCE BERRA

CASE Center and Department of Electrical and Computer Engineering, Syracuse University, Syracuse, New York 13244

One of the key components of a multiuser multimedia-on-
demand system is the data server. Digitalization of traditionally
analog data such as video and audio, and the feasibility of
obtaining network bandwidths above the gigabit-per-second
range, are two important advances that have made possible
the realization, in the near future, of interactive distributed
multimedia systems. Secondary-to-main memory 1/0 technol-
ogy has not kept pace with advances in networking, main
memory, and CPU processing power. Consequently, the perfor-
mance of the server has a direct bearing on the overall perfor-
mance of such a system. In this paper, we present a high-
performance solution to the I/0 retrieval problem in a distrib-
uted multimedia system. We develop a model for the architec-
ture of a server for such a system. Parallelism of data retrieval
is achieved by striping the data across multiple disks. We pre-
sent the algorithms for server operation when servicing a con-
stant number of streams, as well as the admission control policy
for accepting requests for new streams. The performance of
any server ultimately depends on the data access patterns. Two
modifications of the basic retrieval algorithm are presented
to exploit data access patterns in order to improve system
throughput and response time. Finally, we present preliminary
performance results of these algorithms on the IBM SP1 and
Intel Paragon parallel computers. © 1995 Academic Press, Inc.

1. INTRODUCTION

1.1. Motivation

Digitalization of traditionally analog data such as video
and audio, and the feasibility of obtaining networking
bandwidths above the gigabit-per-second range, are two
key advances that have made possible the realization, in
the near future, of interactive distributed multimedia sys-
tems. A multimedia information system requires the inte-
gration of communication, storage and presentation mech-
anisms for diverse data types including text, images, audio

and video to provide a single unified information system
[BCG+92).
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The reason why multimedia data processing is difficult
is that such data differs markedly from the unimedia data
(text) that conventional computers are built to handle
[RaV92]:

* Multiple data streams: A multimedia object can consist
of text, audio, video, and image data. These data types
have very different storage space and retrieval rate require-
ments. The design choices include storing data of the same
type together, or storing data belonging to the same object
together. In either case, multimedia data adds a whole new
dimension to the mechanisms used to store, retrieve, and
manipulate the data.

* Real-time retrieval requirements: Video and audio
data are characterized by the fact that they must be pre-
sented to the user, and hence retrieved and transported,
in real-time. In addition, compound objects (objects con-
sisting of more than one media type) usually require two
or more data types to be synchronized as the object is
played out. This further complicates the real-time retrieval
requirements.

* Large data size: The size of a typical video or audio
object is much larger than that of a typical text object. For
example, a 2 hour long movie stored in MPEG-1 [Gal91]
format requires over 1 Gbyte of storage. Off-the-shelf PCs
and workstations are ill-equipped to handle such storage
requirements.

Multimedia information systems have been found to be
useful in areas such as education, medicine, entertainment,
and space research, with new uses being announced day
by day. In this paper, we focus on one such application,
video-on-demand in a distributed environment. This term
refers to making it possible for multiple viewers to view
video data. A typical scenario would allow a remote user
sitting in his/her home to connect through a computer with
any video store, browse through the catalog, select a movie,
and start viewing it. The viewer can perform the conven-
tional video functions such as pausing, fast-forwarding, and
rewinding of the movie. The implications of such a system
on the technology and the infrastructure needed are tre-
mendous. The storage of even a modest hundred movies
requires almost a terabyte of storage capacity in the server.
Similarly, Gbyte/s and Tbyte/s bandwidth networks are
necessary to carry the movies to the consumers. In addition,
software is required to translate the object requests into
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scheduling of the network and server resources to guaran-
tee real-time data delivery.

In the absence of adequate hardware support, past and
present interactive digital multimedia systems have been
forced to make compromises such as providing single-user
instead of multiuser support, small-window displays in-
stead of full-screen display of video and image data, the
use of lossy compression techniques, and low audio/video
resolution. Recent advances in underlying hardware tech-
nologies, however, obviate the need for such compromises.
One need only examine the state-of-the-art hardware to
verify this. Asynchronous Transfer Mode (ATM) technol-
ogy is increasingly becoming the candidate of choice for
the high-speed networks capable of carrying multimedia
data, as it has the requisite speed and the ability to carry
voice and other data in a common format that is equally
and equitably efficient for both [Lan94]. Compression and
decompression of multimedia data can now be done on
the fly at low cost, as CPUs are getting smaller and faster,
and RISC technology is accentuating this progress. The
capacity of secondary storage is approaching gigabytes/
disk, while disk sizes and price/byte of storage decrease.
Massively parallel processors of gigaflops CPU capacity
and with teraflop storage space are commercially available.

In spite of these technological advances, there is one
bottleneck that plagues the realization of such a system:
the speed of data transfer from the secondary data storage
to main memory. Secondary to main memory data transfer
time in the most popular form of secondary storage, mag-
netic disks, is still governed by the seek and rotational
latencies of these devices. These latencies have not de-
creased commensurately with the advances in other areas
of computer hardware. Thus, although the data transfer
rates of magnetic disks are high compared to those of other
forms of secondary storage (e.g. CD-ROMs), stand-alone
magnetic disks are inadequate for supporting multiple
streams (for example, a 5 Mbyte/s disk array can, at best,
support 26 MPEG-1 streams). Multimedia information sys-
tems are inherently 1/O intensive, and especially so in a
distributed environment; it is therefore critical to reduce
the ill-effects of this bottleneck.

1.2. Related Work

Researchers have proposed various approaches for the
storage and retrieval of multimedia data. Anderson et al.
[AOG92] have proposed file system design techniques for
providing hard performance guarantees. Reddy and Wyllie
[ReW93] have proposed a disk arm scheduling approach
for multimedia data. Rangan ef al. [RaV92, RVR92] have
proposed a model based on constrained block allocation,
which is basically noncontiguous disk allocation in which
the time taken to retrieve successive stream blocks does
not exceed the playback duration of a stream block. Con-
tiguous allocation of disk blocks for a media stream is
desirable, for it amortizes the cost of a single seek and
rotational delay over the retrieval of a number of media
blocks, thus minimizing the deleterious effects of disk arm
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movement on media data retrieval. However, continguous
allocation causes fragmentation of disk space if the entire
stream is stored on a single disk. Moreover, if a stream is
stored on a single disk, the maximum retrieval bandwidth
is restricted by the data transfer rate of the disk. Ghande-
harizadeh and Ramos [GhR93] get around these problems
by striping media data across several disks in a round
robin fashion. The effective retrieval bandwidth is then
proportional to the number of disks used. Our model is
similar to this model in using data striping, round robin
distribution of successive stream fragments, and contigu-
ous allocation within a given fragment. Our work differs
from previous approaches in that they have not addressed
the issue of exploiting data access patterns to maximize
the number of simultaneous streams that a multimedia
Server can source.

1.3. Research Contributions

In this paper, we propose 1/0O scheduling algorithms for
a distributed video-on-demand application. An integrated
approach to the storage and retrieval of video data so as
to maximize the number of users, while at the same time
providing real-time service, is presented. Our model uses
parallelism of retrieval to tackle the problem of the low
speed of data transfer from secondary storage to main
memory. An algorithm (the Remote Disk Stream Schedul-
ing (RDSS) algorithm,) for server operation when sourcing
a constant number of media streams, as well as the criteria
for accepting new stream requests are presented. We ad-
dress the problem of buffer management that arises due
to the large size of multimedia data. Two modifications of
the basic RDSS algorithm, the Local Disk Stream Schedul-
ing (LDSS) and the Local Memory Stream Scheduling
(LMSS) algorithms, are developed that exploit knowledge
of data access patterns to improve system throughput and
response time. We are in the process of evaluating the
performance of these algorithms on the IBM SP1 and Intel
Paragon parallel computers, and report preliminary results.

The rest of this paper is organized as follows: Section 2
presents a general overview of our model. In Section 3,
we describe the architecture of the server. Section 4 de-
scribes the proposed scheduling policies that exploit data
access patterns to optimize service time. Admission control
algorithms for these policies are put forward in Section 5.
We present performance results in Section 6. Section 7
summarizes this paper and outlines our future work.

2. OVERVIEW OF THE DISTRIBUTED MULTIMEDIA
SYSTEM

Figure 1 shows the overall architecture of the system
which we consider.

At the heart of the system is a high-performance server
optimized for fast I/O. A parallel machine is a good candi-
date for a server for such a system on account of its ability
to serve multiple clients simultaneously, its high disk and
node memory, and the parallelism of data retrieval that
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can be obtained by data striping. The server is connected
to a high-speed wide-area network with ATM switches.
The remote clients are computers with tens of megabytes
of main memory and hundreds of megabytes of second-
ary storage.

The data is stored at the server and transmitted in com-
pressed digital form. As the multimedia industry evolves,
standards are being enacted. For instance, the MPEG-1
standard is suitable for digital video upto a data rate of
1.5 Mbit/s [Gal91], while MPEG-2 is a digital video stan-
dard being finalized for supporting applications such as
HDTYV requiring higher bandwidths of 15 Mbit/s and be-
yond. The decompression of the data is done at the remote
client’s multimedia terminal, which is an intelligent com-
puter with hardware such as a microphone, digital video
camera, high-resolution graphics display, stereo speakers,
and a sophisticated cable decoder. The cable decoder is
the interface to the high-speed wide-area network. It has
tens of kilobytes of buffer space and compression and
decompression hardware built into it [Per94]. This is a
typical example of how the digitalization and integration
being brought about by multimedia concepts is blurring
the classical boundaries between the computer, communi-
cation, and consumer electronics industries [Aok94].

3. THE HIGH-PERFORMANCE MULTIMEDIA SERVER
3.1. Why Use a Parallel Computer for the Server?

The goal of a server for the type of application described
above is to maximize the number of simultaneous real-

Block diagram of a distributed multimedia system.

time streams that can be sourced to clients. As explained
above, the advent of multimedia applications strains the
resources of a uniprocessor computer system for even a
single-user mode of operation. When the server has to
handle multiple requests from multiple users simultane-
ously, it is clear that the server must be considerably more
powerful than a PC or workstation-type system. At the
very least, the server should have terabytes of secondary
storage, gigabytes of main memory, and a high-speed wide-
area network. The server may also be required to perform
fast decompression (e.g.. for supervisory and diagnostic
purposes) and compression of multimedia data. Hence it
should have good floating-point and scalar arithmetic per-
formance. In order to satisfy all these requirements, we
propose that the server be one of a class of parallel ma-
chines. Specifically, the architecture is based on the inter-
connection of tens to hundreds of commodity microproces-
sor-based nodes, which provides scalable high performance
over a range of system configurations. This is the class of
parallel machines that is helping in commercializing paral-
lel processing technology [Zor92, Khe%4].

At the same time, it must be noted that most parallel
computers available until recently have concentrated on
minimizing the time required to handle workloads similar
to those found in the scientific computing domain. Hence,
the emphasis was laid on performing fast arithmetic and
efficient handling of vector operands. On the other hand,
multimedia-type applications require fast data retrieval
and real-time guarantees. I/O constitutes a severe bottle-
neck in contemporary parallel computers and is the topic
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of vigorous research currently. Rosario and Choudhary
[RoC94] present a comprehensive survey of the problems
in high-performance 1/O. Second, parallel computers have
traditionally been expensive on account of their high-end
nature and the comparatively small user community as
compared to that of PCs. The advent of multimedia appli-
cations has brought the esoteric parallel machines in direct
competition with volume-produced PCs and workstations.
This is borne by the fact that vendors are building multime-
dia servers based on both MPP and PC technology. For
instance, companies like Oracle and Silicon Graphics advo-
cate powerful and expensive parallel processing technology
to build multimedia servers, while companies like Micro-
soft, Intel, and Compaq claim to achieve equivalent func-
tionality at a lower cost by building servers by interconnect-
ing the same chips used in PCs [HPC94]. An example of
the latter approach is Microsoft's Tiger file system, which
uses a high-speed communication fabric to interconnect
Intel Pentium-processor based nodes.

We propose a logical model for a continuous media
server, which is independent of the architectural imple-
mentation. The same model can be implemented on a
parallel machine or a collection of PCs/workstations inter-
connected by high-speed links. In this paper, we have used
the parallel computer approach to validate our work. We
present our results for the Intel Paragon and the IBM SP1.

Accordingly, the architecture of the server is that of a
parallel computer with a high-capacity magnetic disk(s)
per node, with the nodes being connected by a high-speed
interconnection network. This is the so-called shared-noth-
ing architectural model (Fig. 1) [Sto86]. The reason for
this nomenclature is that each node is a computer in its
own right, with a CPU, RAM, and secondary storage.
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In addition, each node has an interface with the intercon-
nection network. Consequently, a node can operate inde-
pendently of other nodes or two or more nodes can cooper-
ate to solve the same problem in parallel. This model allows
one to stripe the multimedia data across the magnetic disks
of the server. This allows its retrieval to proceed in parallel,
thus helping the server to satisfy real-time requirements.
In addition, the shrinking size and cost of RAM makes it
possible to have hundreds of megabytes of main memory
per node; memory capacity of this range is an advantage
for buffering multimedia data during secondary memory
storage and retrieval. Secondly, the increasing acceptance
of the shared-nothing approach in a number of commercial
and research database systems suggests that it will be the
architecture of choice for future generations of at least
commercial  high-performance database machines
[DeG92], if not for all large scale parailel computers.

3.2. Logical Model of the Server

Figure 2 shows a block diagram of the logical view of
the proposed server.

The physical server nodes are divided into three classes
based on functionality: object manager A, interface I, and
server S nodes. In the figure, dotted lines indicate control
traffic, while the solid lines indicate data traffic. (Note
that the connections shown are just software (conceptual)
connections and not physical links.) In a typical request-
response scenario, the object manager node would receive
arequest for an object, M. The server node(s) on which the
object resides would be identified by the object manager. If
the resource requirements of the request are consistent
with the system load at that time, then the request is ac-
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cepted. (This is explained in Section 5). An interface node
to serve the stream is chosen by the object manager, and
the interface node then takes over the authority and re-
sponsibility of serving the stream. To that end, it retrieves
the stream fragments from the server nodes and transmits
them at the required rate to the client. The three types of
nodes are explained in greater detail below:

1. The object manager node is at the top of the server’s
control hierarchy. The object manager receives all incom-
ing requests for media objects. It has knowledge of which
server nodes an object resides on and the workload of the
interface nodes. Based on this knowledge, it delegates the
responsibility of serving a request to one of the interface
nodes. The object manager node also logs data request
patterns and uses this information to optimize server re-
sponse time and throughput. This is explained in Section
4.2.

2. Interface nodes are responsible for scheduling and
serving stream requests that have been accepted. Their
main function is to request the striped data from the server
nodes, order the packets received from the server nodes,
and send the packets over the high-speed wide area net-
work to the clients. Efficient buffer management algorithms
are vital to achieving these functions. An interface node
can also use its local secondary storage to source frequently
accessed data objects.

3. Server nodes actually store multimedia data on their
secondary storage in a striped fashion, and retrieve and
transmit the data to an interface node when requested to
do so. It is to be noted that the disk-per-node assumption
is not literal: a node can have a disk-array instead for
greater 1/O throughput.

Given an n-node machine, interesting trade-offs are pos-
sible with respect to partitioning the machine into node
types. Since it is the interface nodes that actually source
the client streams, it is desirable that their number be large,
so that the total streaming capacity of the server is high.
(It must be noted here that the number of interface nodes
cannot be arbitrary: the server architecture and the number
of ports provided by the switch interface between the
server and the WAN impose an upper bound on the num-
ber of interface nodes.) On the other hand, since it is the
S nodes that actually store the media data, it is desirable
that their number be large also, so that more objects can
be stored, or the same number of different objects plus
some replicas can be stored. These trade-offs can be char-
acterized in terms of the ratio of S nodes to I nodes. It is
shown in [JCB95] that a low § to [ ratio results in higher
average total retrieval time compared to a high S to / ratio.
Given a fixed total number of nodes and a certain ratio of
S nodes to I nodes, the designer can increase the ratio so
that more storage space is available. Although the total
number of streams that the server can source will decrease,
the designer can afford to choose disks with lower perfor-
mance so that the same quality of service can be guaranteed
to clients at a lower net server cost.
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4. SCHEDULING ALGORITHMS

4.1. Parameters Used and Scheduling Constraints

We assume that the interprocessor connection network
of the server and the wide-area network have the necessary
bandwidth to support multimedia data rates and multiple
clients. As mentioned earlier, the data is compressed and
striped across the server nodes in a round robin fashion.
The number of nodes across which an object is striped is
called the stripe factor. Since the stripe fragments on any
given server node’s disk are not consecutive fragments, it is
not necessary to store them contiguously. Disk scheduling
algorithms to optimize retrieval from the disk surface have
been proposed [ReW93], and can be used in our model.
We are concerned with harnessing the parallelism provided
by striped storage and investigating the buffering policies
for the data. Table I shows the parameters used by our
model.

6; is the time for which a packet sent by an / node to a
client will last at the client. Hence this is also the deadline
by which the next packet from the / node must be received
at the client. Its value is given by

pl

Once the requested stripe fragments from the S nodes
have arrived at the destination 7 node, the latter arranges
them in the proper sequence and continues sending packets
of size P, to the client no less than every &, seconds. The
buffer at the / node will last for &g time, before which the
next set of stripe fragments must have arrived from the
S nodes.

The average time to retrieve Pg bytes from a § node is
given by
T

avgy

5141 = arq + 6

aUg,,

)

+ 8ry + B

where &, is the time delay for a request from an / node
to reach a S node, 8, , and 8,,  are the average seek
and rotational latencies for the disks being used, 5,, is the

disk data transfer time for P, bytes, and é‘,,w,,_ is the network

latency to transport P, bytes from a S node to an I node.

TABLE 1
The Parameters Used in This Paper

Symbol Description Units
Ry Required playback rate byte/s
P, Size of packets sent by an / node byte
] Duration of a packet sent by an / node s
B, Buffer size at an / node byte
Ps Size of packets sent by a § node byte
Os Duration of data in B; s
Ty Period of issuing fetches to S nodes from / node s
S Stripe factor ~—
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Interface Node Buffer of size B p

FIG. 3. Time relationships of interface—server node traffic.

Thus, if the playout of an  node buffer is started at time
t, then the latest time by which the requests for the next
set of stripe fragments must be issued to the § nodes is

tmax = [ + 35 — S5 (3)

In order to ensure that the worst-case is not encountered,
and thus to guarantee that a packet deadline is not missed,
we introduce a slack factor, ., such that ¢, is reduced to

e =1+ 8 —ax&,, a>1. 4)

Figure 3 shows these relationships. The factor « essen-
tially overlaps playout of an / node buffer with filling it
for the next round of packets. This is required since the §
node packets need not arrive in order, and also to provide
a cushion against delays, such as those due to interconnec-
tion network and disk traffic. We can have a similar slack
factor with respect to sending stream packets to the client.
The value of the slack factor depends on factors like qual-
ity-of-service requirements, burstiness of the traffic and
system utilization, among others. The computation of the
slack factor is beyond the scope of this paper due to
space limitations.

4.2. Exploiting Data Access Patterns

It is natural that certain objects in a database are ac-
cessed more frequently than other objects. For example,
in this particular application, it is highly likely that the
demand for newly released movies will be higher than that
for older movies. Similarly, requests for movies will be
more frequent during evenings and nights than during day-
time, and more frequent on weekends than during week-
days. We now present three different algorithms that ad-
dress this issue. The first algorithm does not take frequency
of data access into account, while the next two exploit this
feature to reduce the response time to new requests.

4.2.1. Remote Disk Stream Scheduling Algorithm
(RDSS). In this algorithm, each video stream is sched-
uled by explicitly retrieving stripe fragments from the §
nodes. In this approach the I/O scheduler takes no advan-
tage of the possibility that the same multimedia object is
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being used by multiple users simultaneously. Conse-
quently, when many objects have this reference pattern,
this policy will create excess interconnection-network and
disk traffic. However, it is the simplest to implement.

4.2.2. Local Disk Stream Scheduling Algorithm
(LDSS). This algorithm and the next one depend on
being able to detect that some objects are being accessed
more frequently than others. This function can be per-
formed by the object manager node (node A in Fig. 2).
Since all new requests for streams come to this node, it
can log the object access patterns over a specified time
window, A,. If any object is accessed at a rate above a
threshold, 7#,,,, then that object is classified as a popu-
lar object.

Having identified an object as being popular, when the
next request for that object comes in, the stripe fragments
are retrieved from the S nodes in the usual way. However,
in addition to sending packets of size P, to the client, the
stripe fragments retrieved from the § nodes are written to
the local disk at the corresponding I node. Thus, when the
next request for the object comes in, the object can be
streamed from the local disk of the 7 node. This has the
benefit of reducing interconnection-network and (S8 node)
disk traffic, and also improving the overall response time
of the system. Note that the overhead of storing the stripe
fragments on local disk is marginal, since disk writes are
nonblocking and can proceed in the background. It is bene-
ficial to use a disk array at the / notes to compensate for the
loss of parallelism in retrieval due to using this algorithm.

4.2.3. (Local) Memory Stream Scheduling Algorithm
(LMSS). This algorithm goes a step further in reducing
system response time for popular objects. In this case, a
popular object is stored on the  node backing store as in
the LDSS scheme. In addition, the first few packets of the
object are stored in the main memory of the I node, so
that when a request comes in, it can be served immediately
once it has been accepted.

In both the LDSS and LMSS schemes, it is also necessary
to keep track of when the frequency of access of an object
falls below the threshold separating popular objects and
other objects. In that case, the disk space occupied by
that object at the 7 node can be used to store another
popular object.

5. ADMISSION CONTROL POLICIES

We define the admission control policies for new stream
requests in this section. A new request can be accepted
only if an I node and each of the § nodes across which the
stream is striped can sustain the extra load due to the new
stream, while still guaranteeing undisturbed service to the
existing streams that each is serving at that point of time.
An additional consideration is that the node interconnec-
tion network has a fixed bandwidth in the absence of link
contention. The traffic on the network should be scheduled
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in such a manner as to achieve the maximum throughput
and to minimize performance degradation due to link con-
tention. The criteria for a S node and / node are explained
first for the RDSS algorithm, and then extended to the
other two algorithms. This is followed by an approach
for admission control which takes into account scheduling
communication on the interconnection network.

5.1. Criterion for a S Node

In steady state, a given S node will be servicing some
number of client streams. Ty is the period at which an [/
node requests a S node for stripe fragments. Each S node
maintains the minimum period amongst all the streams it
is serving (this corresponds to the maximum rate at which
the § node will have to retrieve stream fragments). We
denote this parameter by 7; . This value constitutes an
upper bound on the overhead that a § node can incur in
between two consecutive transmissions of that stream. The
overhead arises due to processing requests from /7 nodes
for fragments of the streams being serviced by that S node,
retrieving the requested data from disk(s), and sending it
to the requesting / node. Hence, if the new request is to
be accepted. the overhead due to it, when added to the
existing S node overhead, must not exceed the upper
bound.

The average time to retrieve a stripe fragment from a
S node is given by

+ i, (5)

try = Busgypy + Ouvg,,,
where the terms on the right-hand side are as defined in
Eq. (2). Then, given a request for a stream M, it can be
accepted if, and only if, VS, that will serve the stream,

mi

Tf,‘mm > ZD (tps)/ + tPS ? (6)
- ‘
where m; is the number of streams that S; is currently
servicing, and (¢p); is the value of tp_for the jth stream

being served by §;. T;  denotes the minimum fetch period

among the m, streams that §; is currently servicing and the
requested stream, i.e.,

1, = min(T;, . Tp,). 7

This criterion is illustrated in Fig. 4.

In order to ensure that the next set of packets reaches
the I node before the current data in its buffer has been
consumed, we must ensure that the boundary condition is
not reached. Accordingly, we introduce a S node Safety
Factor, SFs, by modifying Eq. (6) to

ml

SFS* T}mm, > ]Zb (tPS.)j + [PSM, O < SF‘S < 1. (8)
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FIG. 4. Admission control criterion at a S node.

The value of this factor is a function of the disk latencies,
the granularity of transfer, and the number of streams that
the server node is currently servicing.

5.2. Criteria for an I Node

In this case, two conditions must be satisfied. First, there
must be sufficient buffer space at the / node to satisfy
buffering requirements of the new stream. Second, as in
the case of a S node, the overhead due to the new stream,
when added to the existing overhead at the / node, must
not exceed the maximum allowable value (imposed by
the stream that has the highest playback rate among the
streams being sourced by the I node). These criteria are
explained below:

* If an / node is serving n streams, and B, is the total
buffer space at the interface node, then in order to start
serving a new stream request, M, there should be sufficient
buffer space for the new stream:

B, > >, B, + By, (9)

j=0

* If 10, denotes the time overhead for composing and
extracting control and data packets for stream j at the /
node, then the sum of the overheads for active streams
and the overhead of the new stream, M, should be less
than the minimum period of transmitting stream packets
to remote clients, i.e.,

8. > 2 1o + 1oy, (10)
j=0 ‘
where, as in the case of T;
8;min = min( 6Imm’ 5’}\4). (11)

As in the case of a S node, to ensure that deadlines are
not missed, we make the condition of Eq. (10) more conser-
vative by introducing an  note Safety Factor, SF;, by modi-
fying Eq. (10) to

n
SFix8 > ]EO to + 1oy, 0<SF <1

(12)
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to 1, to I, to I to L,
FIG. 5. Admission control criterion at a / node.

The value of SF, is a function of the number of streams
that the interface node is handling and the overhead due
to buffering and interconnection network transport. We
are in the process of identifying and quantifying this depen-
dence. This criterion is illustrated in Fig. 5.

5.3. Admission Control for the LDSS and
LMSS Algorithms

In both of these schemes, the conditions for admission
control at a § node are the same as in the RDSS scheme,
while the 7/ node conditions are more complex. In both
these schemes, an I node also functions as a § node for
the popular object resident on its disk(s). Hence, intu-
itively, the conditions for accepting a request are a combi-
nation of the conditions for an / node and a § node. More-
over, when a new request comes in at a given / node, the
node may or may not be home to a popular object. If the
I'node is not home to a popular object, then the conditions
to be met in order to accept the request are identical to
the RDSS case. We explain the case when it is sourcing
some number of streams of a popular object; the case of
migrating an object which has been detected to be a popu-
lar object to the I node is a special case, as explained below.
We derive below the conditions for the case where a given
I node is home to only one popular object; they can be
extended to the case when the / node is home to multiple
popular objects.

Consider first the LDSS algorithm. Suppose that a given
I node is serving k streams of the popular object when a
request for a stream M comes in. The new request can be
for a stream of either the popular object or another object.
Depending on that, one of two conditions must be satisfied.
With respect to Eq. (8), Ty is just Tf,m,,’ the value of T
for the popular object. Let the safety factor be denoted
by SFs. Consider an interval Tf . In the worst case, be-
tween successive fetches from dlsk for that stream, & disk
fetches will have to be performed for the streams of the
popular object. In addition, suppose / packets of the stream
corresponding to §; _have to be sourced in the interval
T; - Then, if the new request is for a stream of the popular
ob]ect we must have

SFig* > (k+1)*tp

+I%(SF+g; ), (13)

[mp

while if the request is for a stream of another object, we
must have

197

SFis* Tpop > (k)*tp + 1'% (SF*6; ), (14)

where [’ reflects the change in / (likely to be) caused by
the introduction of &;  (as defined in Eq. (11)) instead of
6, - Note that puttmg % =0in Eq. (13) gives the condition
for makmg the I node as the new home of an object that
has been detected to be a popular object.

In addition to requiring that one of Eqs. (13) or (14) (as
applicable) hold, the / node should also have sufficient
buffer space for the new stream, so that Eq. (9) must hold.

In terms of main memory requirements and disk usage,
the only difference between the LDSS and LMSS algo-
rithms is that in the latter case the amount of buffer space
available at a given I node for allocating to a new stream
is likely to be much less than that in the former case, on
account of the fact that part of the popular object is stored
“permanently” in main memory. Thus the conditions for
accepting a new request in the LMSS scheme are identical
to those for doing so in the LDSS scheme, but availability
of sufficient buffer space (as embodied by Eq. (9)) is likely
to be the constraint, rather than Eqgs. (13) or (14).

5.4. Effect of the Interconnection Network on
Admission Control

The derivation of admission control criteria for the inter-
connection network is highly dependent on network-spe-
cific factors like topology, routing, and the switching tech-
nique used. We present below an approach for a mesh-
connected computer which uses wormhole routing to
switch data from the input channels to the output channels
of the network routers. An example of such an architecture
is the Intel Paragon.

In wormhole routing, a packet is divided into a number
of flits (flow control digits) prior to transmission. A header
flit carries the route and the remaining flits follow in a
pipeline fashion. A comprehensive survey of wormhole
routing techniques is given in [NiM93, MTR94]. The most
important metric of an interconnect for multimedia data
is its communication latency, which is the sum of three
factors: start-up latency, network latency, and blocking
time. The first two are static features for a given system
in that the sum of their values represents the latency of
packets sent in the absence of network traffic and transient
system activities. Blocking time includes all possible delays
encountered during the lifetime of a packet, such as those
due to channel contention. In order to provide a guaran-
teed data arrival rate at the interface nodes, this is the
crucial component that must be checked for in the admis-
sion control for the network.

An important reason for the growing popularity of
wormhole routing as a switching technique in interconnec-
tion networks is that when it is used, the network latency
is almost independent of the path length when there is no
link contention and the packet size is large. Therefore, in
order to exploit this feature in a multimedia server, prior
to admitting a new stream request, the server must ensure
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that accepting the request does not produce high link con-
tention. This, in turn, ensures that the deleterious effects
of blocking time are kept in check, which, as explained
above, is crucial to providing real-time communication
guarantees.

By its very nature, wormhole routing is highly suscepti-
ble to deadlock conditions. Various routing algorithms
have been proposed and used to provide deadlock-free
wormhole routing. We use deterministic XY routing in
which packets are first sent along the X direction and then
along the Y direction.

The approach we use to schedule multiple streams over
the network is that of virtual channels, in which a single
physical channel is time-multiplexed among several virtual
ones. Doing so guarantees the availability of a guaranteed
minimum bandwidth to each virtual channel so long as
the number of virtual channels sharing the same physical
channel is bounded.

The communication scheduler keeps track of the streams
that require data from the S nodes during a period of
time called the communication scheduling window, 8. For
instance, Fig. 6 shows the streams whose data needs to be
scheduled to be retrieved from the S nodes during a certain
span of three windows.

Corresponding to a &., a matrix known as the stream
connectivity matrix (SCM) of size n X k is maintained,
where n is the number of source nodes and k& is the number
of destination nodes for network data. Clearly, n equals
the total number of server nodes and k equals the number
of interface nodes in the server configuration. Figure 7a
shows the SCM for 5(.“ where s; represents the ith source
node and d; represents the /th destination node.

In other words, the SCM stores which § nodes need to
communicate with which / nodes during the communica-
tion scheduling window. In dimensional XY routing, given
a s, and d;, the path traversed by packets is completely
determined. Consequently, given the SCM for the time
window, it is easy to identify the links that will carry the
data during the time window. This information is computed
and stored in a vector called the link utilization matrix
(LUM), which has an entry for each link in the mesh.
Figure 7b shows an example LUM. where the value of an
element represents the usage count of the corresponding
link, as explained below. (r is the total number of links in
the mesh.)

We now explain how the SCM and LUM can be used

FIG. 6. An example of the communication scheduling window. §,.
The figure shows three consecutive windows and the streams to be sched-
uled in each (»1;).
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FIG. 7. (a) The stream connectivity matrix (SCM) for 5. (b) An
example link utilization matrix (LUM).

for admission control of new stream requests. Since the
bandwidth of a physical channel is fixed, there is a limit
on the number of virtual channels that can simultaneously
share a physical channel if each virtual channel is to be
guaranteed a minimum bandwidth. The number of streams
contending for use of a physical channel during a &, is
maintained by the LUM. Each stream that uses link i
increases the value of LUMY(/) by a fixed amount. Given
an interconnect, the actual value depends on the packet
size (Py) and bandwidth required by the stream. In the
simplest case, we can assume that all streams have the
same playback rate and packet size, so that each stream
using link / increases the value of LUM(i) by one. Since
the maximum bandwidth of a given interconnect is known,
it can be translated to a link threshold, I;. Accordingly,
given the SCM and LUM for a §,, a new stream request
can be accepted only if accepting the request leaves the
LUM in a safe state, i.e., LUM(i) < 1, V..

The operation of this scheme is an iterative process,
whereby at the beginning of each &, the LUM is computed
from the SCM. If there is a pending request for a new
stream, the links it needs to use if it is scheduled during
the given 8., say /), [, ... [,, are computed from the source
and destination nodes for the request. If

LUM@G) + 1=y, Y, =1,bL .1, (15)
then the new request can be accepted and scheduled during
the given &, while still providing the reserved bandwidth
for the existing streams. If the request is accepted, then
the SCM and LUM for &, are updated; if the request is
not accepted, then the same procedure is repeated for
d.,,,- If the request cannot be accepted in any of the sched-
uling windows, then the server cannot accept the new re-
quest due to interconnection network saturation. The cli-
ent is turned away and must try again after some time.

Figure 8 shows an example of the admission control
algorithm. Figure 8a shows an example mesh configuration
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FIG. 8. Example of the admission control policy. (a) Example con-
figuration. (Dashed lines represent existing communication pattern,
dotted lines show pattern required by the pending request.) (b) SCM for
the §,. (¢) LUM corresponding to the SCM. (d) Result of applying the
admission control policy to the LUM.

with 4 S nodes and 4 I nodes (thus n = k = 4). In a certain
é,,, node §, needs to communicate with node I, and node
S,. with node 7. Figure 8b shows the corresponding SCM,
and Fig. 8c shows the LUM for the SCM. Assume that
I, = 2 for this case. Thus, link /, is already saturated. If a
request requiring S, to communicate with /5 is pending,
the admission control policy tries to see if the request can
be scheduled in the current §,. Figure 8d shows the result
of applying Eq. (15) to the LUM. As shown in the figure,
the LUM(/,) exceeds [, and consequently, the request
cannot be scheduled in the 8. under consideration.
Before closing this subsection, we mention some imple-
mentation issues. The communication scheduler that exe-
cutes the admission control algorithm needs centralized
information regarding stream scheduling. Hence, with ref-
erence to the logical model, it is best implemented as part
of the object manager node. Second, the size of a communi-
cation scheduling window is a design choice that depends
on many factors such as packet size, playback rate, and
server work load. In the simple case of a single playback
rate and uniform packet size, a lower bound would be the
time to transfer Pg bytes over the interconnection network,
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while an upper bound is the duration of a service round
(the time to cycle through replenishing the interface node
buffer of all streams being served).

Finally, note that the analysis for admission control has
been performed with respect to the data packets only; i.e.,
the traffic due to the control packets has been neglected.
This can be justified as follows: The size of the control
packets is very small (few bytes) compared to the size of
the data packets (tens/hundreds of kilobytes). Moreover,
since we use virtual channels, some bandwidth can be re-
served for the control packets; the bandwidth required will
be small. Finally, with reference to the retrieval process,
most of the control messages travel in the direction oppo-
site to that travelled by the data messages. Assuming bidi-
rectional links, the small control messages do not cause
too much of traffic interference.

6. RESULTS

We have evaluated the performance of the three sched-
uling algorithms. We present preliminary results for two
popular parallel machines, the IBM SP1 and the Intel Para-
gon below.

The IBM 9076 SP1 uses RISC processor technology. The
compute nodes are interconnected by a high-performance
switch. A 128-node machine has been installed at Argonne
National Laboratories [Gro93] that has 128 Mbyte main
memory per node. The notable feature of this machine is
that the nodes can be used in isolation, as stand-alone
workstations, or in unison as a parallel machine. Three
communication modes are available: IP, EUI, and EUIH.
The first mode is useful when using the machine as a collec-
tion of interconnected workstations running NFS. The sec-
ond and third modes are for parallel configurations, with
EUIH being a faster mode than EUI. We used EUIH for
our experiments.

The Intel Paragon [Hwa93, Int93] is a mesh-based archi-
tecture with Intel i860XP microprocessors. There are two
types of nodes: compute nodes and I/O nodes, but their
number and hardware configuration is user controlled.
Each node is connected to a mesh-routing chip that con-
nects to the interconnection network. A node is connected
to its neighbors in the north, south, east, and west directions
through the mesh routing chip. Interprocessor communica-
tion is done using (XY) wormbhole routing. Any node can
communicate with any other node in software.

The disk access part was simulated on account of the
following reasons. The machines used were the 128 node
SP1 at Argonne National Laboratories and a 56-node Para-
gon at Caltech. These are research machines that are
shared by users all over the world. Hence, it was not possi-
ble to get the sufficient storage space for real data. More-
over, these machines do not have the required I/O config-
uration, i.e., a disk array per node. We have assumed
gigabytes of disk space per node, and a disk data transfer
rate of 10 Mbyte/s. We used a playback rate (R;,) equal
to the MPEG-1 rate of 1.5 Mbit/s. Table II shows the
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TABLE II
The Parameter Values Used for the Experiments
Symbol Description Value
Ry Required playback rate 1.5 Mbit/s
P, Size of packets sent by an / node 64 Kbyte
B, Buffer size at an / node 1 Mbyte
P Size of packets sent by a S node

128 Kbyte

values of the parameters defined in Table I that we used
for our experiments.” The database size used was 500 ob-
jects. A slack factor of 1.4 was sufficient to guarantee that
no deadlines were missed. The total run time of each exper-
iment was 5 min. Consequently, the playback time for each
stream varied between 4 and 5 min, depending on the time
of arrival of the request for that stream.

An important factor that affects retrieval time is the
placement of each stream’s media data relative to that
of other streams, i.e., the manner in which the data is
partitioned across multiple disks has a critical effect on the
retrieval time seen by any one stream. This is so because
some or all of the data of other streams that are being
served may overlap with the data of the observed stream
on the storage nodes. This overlap results in queueing
delays for the observed stream’s retrievals from the storage
nodes. For understanding the data partitioning strategy
used we define a term called the degree of overlap (DoO).
This is a positive integer, 0 = DoO =< § (S is the stripe
factor) and denotes the distance between the ith stripe
fragment of object j and the ith stripe fragment of object
j + 1,in terms of the number of storage nodes. The concept
of DoO is illustrated in Fig. 9.

Note that numerous trade-offs are possible with respect
to the data partitioning strategy, which are well reported
in [GhR93, GhS93]. We are in the process of investigating
such tradeoffs in our model. However, these are not the
subject of this paper. Without loss of generality, then, for
the purposes of this paper, we assume a DoO of 2 for all
the experiments.

6.1. Performance of the RDSS, LDSS, and
LMSS Algorithms

We noted the performance of the algorithms for a server
configuration of 6 interface nodes and 24 server nodes,
and a stripe factor of 4. The composition of the requests
was varied as follows: starting from requests for unique
media objects (uniform frequency of access), the percent-
age of requests for the same object was successively in-
creased. Figure 10 shows the maximum number of streams
that could be simultaneously supported using each policy
on the SP1.

? Note that a whole set of design trade-offs exists with respect to the
size of By and Ps. We have addressed this issue in [JCB95]. However,
that is not the subject of this paper. Without loss of generality, we assume
the sizes mentioned in the table for all the experiments.
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FIG. 9. Degree of overlap (DoO). The figure shows three objects,
M, M, and M., striped across six § nodes, and a DoO of 2.

We observe that for a low percentage of requests for
the same object, the RDSS algorithm outperforms the
other two algorithms. This is so because in the latter two
cases we allocate a dedicated / node for the popular object.
For a low percentage of requests for the popular object,
the dedicated node is underutilized: it sources less streams
than its full capacity, while a normal / node in its place
could have sourced the maximum number of streams that
such a node can source. With increasing amounts of re-
quests for the same object, however, the LDSS and LMSS
algorithms outperform the RDSS algorithm as they reduce
the load on the server nodes caused by frequently accessing
the same object. Between the LDSS and LMSS algorithms,
the latter clearly outperforms the former for different val-
ues of the percentage of requests for a popular object.
Finally, the performance of the RDSS algorithm deterio-
rates rapidly as the percentage of requests for the popular
object is increased, due to the corresponding increase in the
load of the S nodes on which the popular object is stored.

We ported our code to the Intel Paragon and repeated
the same experiment as above. Figure 11 shows the results

280 : : , : .
RDSS -+
260 | LDSS
LMSS .6
<)
: 240 | e 1
& 220 -~
D SR
D .
w“ 200 1
S 180 po 1
160 | 1
140 . . . . A
0 5 10 15 20 25 30

% requests for same object

FIG. 10. Maximum number of streams that can be supported for
each algorithm for 6 I nodes and 24 § nodes for a varying number of
requests for the same object on the IBM SP1.
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FIG. 11. Maximum number of streams that can be supported for

each algorithm for 6 / nodes and 24 S nodes for a varying number of
requests for the same object on the Intel Paragon.

we obtained. The effect of varying the number of requests
for the same object on the maximum number of streams
that can be supported is similar as above. One difference
is that the number of streams that can be supported was
higher for the Paragon than for the SP1, for all three
algorithms. The most important reason for this is the differ-
ence in the interconnection network bandwidth. For the
SP1, we attained the maximum bandwidth of 8.5 Mbyte/
s reported in [Gro93]. Although the maximum link band-
width of the Paragon is 200 Mbyte/s [Int93], this is the
theoretical value. Software overheads prevent this value
from being attained. We measured it as 13.5 Mbyte/s. How-
ever, this is still better than that of the SP1, which accounts
for the better performance.

6.2. Effect of Varying the Stripe Factor (S)

In another experiment, we investigated the results of
varying the stripe factor on the number of streams that
can be supported. In this experiment, the buffer size at
the interface node was 2 * P, * S (Table II). The value of
S was varied. All other values were the same as in Table
I1. The results are shown in Fig. 12 for the SP1, where the
number of streams supported have been normalized with
respect to the point (0,216) for the curve for the RDSS
algorithm in Fig. 10.

The number of streams that can be supported for a given
number of interface and server nodes increases as the stripe
factor is increased. This is on account of the fact that
increasing the stripe factor increases the amount of data
retrieved per stream by the interface nodes from the server
nodes. Consequently, the frequency of fetching from the
I nodes is reduced. There is a corresponding decrease in
retrieval overhead at the 7 nodes, which translates into a
gain of it being able to support more streams. However,
the stripe factor cannot be increased indefinitely: at higher
stripe factors, the performance degrades due to the greater
volume of traffic on the server’s interconnection network.
Another point to be noted from the graph is that for a
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fixed stripe factor, increasing the number of interface nodes
increases the number of supportable streams. This supports
the use of a MPP for the server, since the designer has
at his disposal multiple nodes, and these can be easily
partitioned between interface and server nodes in such a
way as to maximize the use of the server’s resources.

6.3. Gang Scheduling

The LDSS and LMSS algorithms exploit the fact that
some objects are more popular than others, and thus are
requested more frequently. This fact is used to maximize
the number of supportable streams of such objects by dedi-
cating nodes to service requests for them.

In the first set of experiments, the servicing of a request
is started as soon as the request has been admitted. The
performance of all three algorithms can be improved by
accumulating requests over an interval of time, and
avoiding multiple fetches for requests received for the same
object during that interval of time. We call this method
gang scheduling. For instance, if during a gang window of
5 min, 10 requests are received for a certain object, then
the server can start retrieving only one stream at the end
of the gang window and source 10 client streams from the
one stream. Clearly, this requires that all the 10 requests
will have to wait until the end of the gang window before
service can start. One stream can be used to serve multiple
clients by means of the multicast [Bou92] facility.

For evaluating gang scheduling, we used a configuration
of two I nodes and six § nodes, and a stripe factor of 5.
We used a gang window of 1.5 s, and 30 requests per gang
window. Of course, in practice a longer window would
be used. Without loss of generality, we use the window
mentioned for the run time of 5 min. The values of the
other parameters are the same as those in Table 1I. Figure
13 shows the effect of varying the percentage of requests
for the same object per gang window on the maximum
number of streams that can be supported on the Paragon
for the RDSS algorithm.
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FIG. 12. Normalized number of streams that can be supported for
each algorithm for various stripe factors and number of interface nodes
on the IBM SP1 (normalized with respect to the point (0,216) for the
curve corresponding to the RDSS algorithm in Fig. 10).
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FIG. 13. Number of streams that can be supported for the RDSS

algorithm for a stripe factor of 5, two I nodes and six S nodes, for a varying
number of requests for the same object per gang window (Paragon).

Gang scheduling involves an extra overhead of accumu-
lating requests over the gang window and searching
through the accumulated requests to identify repeated re-
quests. Hence, we observe from the figure that RDSS with
gang scheduling is inferior to pure RDSS for low number
of repeated requests per gang window. However, as the
percentage of requests for the same object per gang win-
dow increases, RDSS with gang scheduling identifies the
request pattern and outperforms pure RDSS.

In effect, this method delays the servicing of some ad-
mitted requests in order to minimize the load on the server.
Hence there is a trade-off between the response time for
clients and reduction in server workload. Consequently,
the size of the gang window is a crucial parameter in making
use of gang scheduling. An approach similar to gang sched-
uling is treated at length in [DSS94], where it is also shown
that the nature of customer waiting time tolerance leads
to scheduling tradeoffs.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an 1/O model for a
server in a distributed multimedia system. Three algo-
rithms that exploit knowledge of data access patterns were
developed to maximize the number of streams that the
server can source simultaneously. Admission control poli-
cies for the three algorithms were presented. Preliminary
experiments show that the LMSS algorithm outperforms
the LDSS algorithm, which in turn outperforms the RDSS
algorithm when an appreciable percentage of stream re-
quests are for the same media object. We have shown the
effect of varying the stripe factor on the number of streams
that can be supported. Increasing the number of interface
nodes translated into the ability to support a greater num-
ber of streams. We showed the utility of gang scheduling
in further improving the server performance. In gang
scheduling, a single stream between interface and server
nodes is used to serve multiple clients. One problem with
this approach is that if one of the clients interrupts the
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stream, say for pausing or fast forwarding, then that client
will fall out of phase with the single stream being retrieved.
Hence the server should be able to dynamically establish
a fresh server—interface stream for the interrupting client.
We are developing solutions to this problem so that the
delay seen by the interrupting client is minimum. We are
also developing algorithms for selecting an interface node
for serving as the home for a popular object and for com-
bining object replication with knowledge of data access
patterns to maximize the number of simultaneously sup-
portable streams, with guaranteed playback rates.
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