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Abstract—X-ray diffraction (XRD) is a well-known technique
used by scientists and engineers to determine the atomic-scale
structures as a basis for understanding the composition-structure-
property relationship of materials. The current approach for
the analysis of XRD data is a multi-stage process requiring
several intensive computations such as integration along 2θ for
conversion to 1D patterns (intensity-2θ), background removal
by polynomial fitting, and indexing against a large database of
reference peaks. It impacts the decisions about the subsequent
experiments of the materials under investigation and delays the
overall process. In this paper, we focus on eliminating such
multi-stage XRD analysis by directly learning the phase regions
from the raw (2D) XRD image. We introduce a peak area
detection network (PADNet) that directly learns to predict the
phase regions using the raw XRD patterns without any need for
explicit preprocessing and background removal. PADNet contains
specially designed large symmetrical convolutional filters at the
first layer to capture the peaks and automatically remove the
background by computing the difference in intensity counts
across different symmetries. We evaluate PADNet using two
sets of XRD patterns collected from SLAC and Bruker D-8
for the Sn-Ti-Zn-O composition space; each set contains 177
experimental XRD patterns with their phase regions. We find that
PADNet can successfully classify the XRD patterns independent
of the presence of background noise and perform better than the
current approach of extrapolating phase region labels based on
1D XRD patterns.

I. INTRODUCTION

In materials science and crystallography, X-ray diffraction
(XRD) is a widely used experimentation technique to probe
materials at the atomic level. XRD analysis is used by
scientists and engineers to understand atomic-scale crystal
structures and predict their properties [1]–[5]. XRD patterns
not only provide the geometrical information about the crystal
structure, they are also used to determine the possible flaws
in materials [6]. High throughput experimental techniques
developed over the last few decades have accelerated the
exploration of material properties. Combinatorial methods
allow experimentalists to synthesize hundreds or thousands of
materials at a time, with each sample varying by synthesis
and processing parameters [7]. Composition spreads are one
example, where a wafer is generated containing hundreds of
samples, each varying in composition. Once such a wafer
is generated, the properties of each sample can be rapidly
measured using scanning microscopy techniques [8]. As a
result, over the course of hours, XRD data can be collected
for hundreds or thousands of materials.

Currently, human experts analyze the XRD patterns using
domain knowledge such as peak shape and location; they are
correlated with the sample composition and known phases
to identify the phases in the measured sample. The current
approach for the analysis of XRD patterns is a multi-stage
process composed of multiple computationally intensive steps.
First step is to convert the raw 2D XRD pattern to an intensity-
2θ (1D) pattern by mapping the raw XRD image to the χ vs
2θ space and then integrating the intensity peaks along the
2θ axis [9]. XRD patterns are often noisy due to a collection
of issues including background radiation, detector noise, and
low count of incident X-rays. In addition, other background
issues may be introduced by the sample-detector configuration,
resulting in significantly varying measurement background
from sample to sample [10]. The presence of highly irregular
background makes the peak searching procedure complicated.
Hence, next the background signal is removed from the
1D patterns by fitting background curve [11]–[13]. This is
followed by indexing the peaks against an existing database of
reference peaks and correlating with the sample composition
to identify the phases in the measured sample using available
software which often requires verification by a domain expert.

Over the last decade, machine learning has been used to ac-
celerate the process of indexing using 1D XRD patterns [14]–
[16]. Clustering has been used to sort samples into groups
of materials that share the same constituent phases - thus
reducing the number of samples required to index for unique
phases [17], [18]. When plotted against the synthesis and
processing parameters used to generate the samples, these
clusters describe geometric ”phase regions“ - regions of the
generative space where materials are expected to share the
same constituent phases. Additionally, once a subset of sam-
ples have been sorted into phase regions, classification has
been used to extrapolate these phase region labels to the rest
of the samples [16]. Recently, Park et al. [19] used a CNN to
classify 1D XRD patterns into space group, extinction-group
and crystal-system classification. They used 150000 powder
XRD patterns calculated from the structure solutions of entries
in the Inorganic Crystal Structure Database (ICSD) using DFT.

Time is a limiting factor when collecting and analyzing X-
ray diffraction data. For typical lab systems, low beam inten-
sity means measuring each sample can take tens of minutes
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to hours. Additionally, when performing X-ray diffraction at
the beamline, measurements only take tens of seconds, but
total time is often limited to hours or days. Accelerating
the computational time required in data analysis can directly
impact the measurement experiment since it directly impacts
the decisions. Hence, our goal is to build a predictive model
for eliminating the current computationally intensive process
of multi-stage XRD analysis process. We focus on directly
learning the phase regions from the raw (2D) XRD patterns
through classification using deep learning to make the overall
process automatic and faster.

In this paper, we introduce a Peak Area Detection Network
(PADNet) to directly learn to predict the phase regions from
the raw XRD patterns without any need for preprocessing or
background noise removal. PADNet is a specially designed
CNN that contains large symmetrical convolutional filters with
filter size of 50 × 50 in the first layer. These filters are
initialized using either 1 or -1 across different symmetries
and they compute the difference in intensity counts across
different symmetries which enable them to capture the peak
areas and automatically remove the background noise. To
evaluate the proposed approach, we experiment using two sets
of XRD patterns from SLAC [8] and Bruker D-8 [20]; each
of them contains 177 XRD patterns from a Sn-Ti-Zn-O thin-
film, composition-spread, combinatorial library sample with
eight phase regions as the labels. The XRD patterns from
SLAC contain significant irregular background which varies by
sample, while the ones from Bruker contain comparably low
background which, as a function of 2θ, does not significantly
vary from sample to sample. To our knowledge there does
not exist any algorithm for removing background noise for
the raw 2D XRD image; hence, we also explore some novel
background removal techniques based on minimum and mean
convolutional filters.

We evaluate the performance of PADNet using 10-fold cross
validation. PADNet achieves an overall classification accuracy
of 84% for the multi-class labeling task, with the SLAC
model performing slightly better than the Bruker model. Our
results demonstrates that PADNet can successfully predict the
phase regions from the raw 2D XRD patterns independent of
presence of background noise. We also compared our approach
against the recent approach of phase region classification using
1D XRD patterns from Bunn et al. [16]; PADNet significantly
outperformed the AdaBoost classifier for both datasets.

II. BACKGROUND AND MOTIVATION

A. Background

X-ray diffraction is an atomic scale probing technique for
determining the crystal structure of materials [2]–[5]. The
crystal structure causes the beam of incident X-rays to diffract
into many specific directions; a 3D image representing the
density of electrons in the crystal can be constructed by
measuring the angles and intensities of the diffracted intensity
patterns. An X-ray diffraction image is a plot of the intensity
of X-rays scattered at different angles by a materials sample,
as measured by a 2D detector, with each pixel measuring

the number of incident X-rays. The atomic-scale structures
of materials can be determined using the XRD technique [1].

The XRD pattern from a material composed of periodic
atomic structures is composed of multiple sharp spots known
as Bragg diffraction peaks; the positions and intensities of
these peaks determine the phase of the materials - the spe-
cific chemistry and atomic arrangement. For instance, quartz,
cristobalite and glass are all different phases of SiO2; they are
chemically identical but the atoms are arranged differently, the
XRD pattern is distinct for each phase. A phase map represents
the physical conditions at which thermodynamically distinct
phases occur and coexist. The constituent phases in the phase
map represent the different crystal lattice structures for varying
material composition. Scott [9] provides more details about X-
ray powder diffraction.

B. Motivation

Our current work is motivated by the success of convo-
lutional neural networks for image classification [21], [22].
In our previous work, we have shown the efficiency of
deep neural networks in learning crystal orientations directly
from electron diffraction patterns [23]. Recently, Park et al.
applied convolutional neural networks for classification of
crystal structure using 1D XRD patterns. Since deep neural
networks are supposed to require large training datasets and
the experimentally measured XRD patterns are limited, they
used 150,000 1D XRD patterns calculated from the structure
solutions of every entry from the Inorganic Crystal Structure
Database [24]. However, our previous work has shown that
deep neural networks can be leveraged even with relatively
smaller datasets and perform better than traditional machine
learning techniques [25].

Directly using the raw 2D XRD patterns is also beneficial
from the perspective of information content. The conversion
from 2D raw patterns to 1D intensity-2θ patterns results in loss
of important information due to their limited representation.
The peak characteristics such as peak height, peak width,
presence of secondary peaks (peak doublets), are very critical
to correctly understand the materials structure. For instance,
the peak broadening can be used to quantify the average
crystalline size of nanoparticles, lines on the 2D raw pattern
represent polycrystalline structure, and points on the 2D raw
pattern represent very well ordered crystalline structure. Such
fine grained differentiation is very critical to understand the
true structure of materials. However, these facts are ignored
because during the conversion to 1D, such information is lost.

III. METHODS AND TECHNICAL SOLUTIONS

A. Challenges

The primary challenge of XRD data analysis is the presence
of background noise which can be highly irregular such as in
the case of SLAC as shown in Figure 1. During the experiment,
several factors can impact the XRD pattern captured, some
of which are beyond human control. It depends on multiple
effects: machine setup, air around the wafer, etc. The presence
of background makes it difficult to detect the intensity peaks



(a) 1D XRD Pattern from SLAC with
background

(b) 1D XRD Pattern from SLAC after
background removal

(c) 1D XRD Pattern from Bruker with
background

(d) 1D XRD Pattern from Bruker after
background removal

Fig. 1: 1D XRD Patterns from SLAC and Bruker. The XRD patterns from SLAC contains highly irregular noise while the
noise in the case of XRD patterns from Bruker is a constant function of 2θ.

Fig. 2: Distribution of class labels for the two XRD datasets.
XRD Patterns are collected for the same composition space of
Sn-Ti-Zn-O from both Bruker and SLAC; hence, they refer to
same samples.

which are important for obtaining the crystal information. For
beamline, the resulting background is not a simple bias to
subtract. Hence, background removal is a primary concern for
XRD pattern analysis for the domain scientists.

Although several techniques exist for removing background
in the 1D XRD samples [11]–[13], and parsed 2D XRD
patterns [26], to our knowledge, there exists no technique
for removal of background noise from the raw XRD patterns
coming directly from the experiments. The raw 2D XRD
patterns are convoluted rather than being a 2D rectangle; the
background removal methods for parsed 2D XRD patterns
do not work for the raw XRD patterns. For example, we
implemented the Cache-efficient 2D Bruckner Filter from Baur
et al. [27] which is designed for parsed 2D XRD patterns, but
it did not work for the case of raw 2D XRD patterns.

Another challenge associated with this task is the limited
dataset size. Our dataset contains only 177 XRD samples
(and we have eight classes to learn). Since deep neural
networks are supposed to require large training datasets and
the experimentally measured XRD patterns are limited, Parker
et al. [19] used 150,000 1D XRD patterns calculated from the
structure solutions of every entry from the Inorganic Crystal
Structure Database [24]. However, here our goal is to directly
learn from the raw 2D XRD images coming from experiments.

B. Datasets

We leverage the XRD patterns collected from Stanford
Linear Accelerator Center (SLAC) [8], and Bruker D-8 [20] at
National Institute of Standards and Technology (NIST). SLAC
has a high throughput system for XRD experiments [8]; it
outputs a single XRD pattern for a specific range of 2θ; the
configuration used gives a 2θ range of 5.365 to 58.566 for
our experiments. The Bruker system was used to collect two
diffraction frames centered at the 2θ values of 25 and 45,
the range for the two frames were [10, 40] and [30, 60].
XRD patterns from SLAC contain more features due to the
high energy of the beam, we are able to resolve XRD with
greater signal to noise ratio at greatly reduced exposure times;
however, the instrument is less available.

Each dataset is composed of 177 XRD patterns for the
material alloy system with different compositions of Tin,
Titanium, and Zinc (Oxygen is also present but not controlled)
from experiments. Each XRD pattern is of size 2048 × 2048
containing the intensity values; hence, they are not like RGB
images used for image classification such as in ImageNet [21].
In addition to the XRD patterns, the composition information
for each sample is also available in the dataset. The samples
were labeled by converting to 1D, clustered, then followed
by human expert validation. There are eight phase region
classes, some represent pure constituent phases while others
represent mixed phases. As shown in Figure 2, the distribution
of the dataset is not balanced. The largest class has 37 samples
while the smallest class has only 7 samples. We used random
split during our ten-fold cross validation; for each training
set from the random split, the smallest class was present in
all of the training set during 10-fold cross validation. One
option could be to remove the class with data count below a
certain threshold, but our dataset is already limited and some
of the phase regions are mixed (combination) of other phase
regions (classes); hence, learning one phase region can help in
predicting the other phase region. Therefore, we decided not
to drop any phase region class from our dataset.

C. Peak Area Detection Network

The Peak Area Detection Network (PADNet) is a deep
convolutional neural network for directly learning the phase
regions from the 2D raw XRD patterns. PADNet is composed



(a) PADNet for XRD patterns from SLAC (b) PADNet for XRD patterns from Bruker

Fig. 3: PADNet model architectures for the XRD patterns from SLAC and Bruker. Since both datasets refer to the same
composition space of Sn-Ti-Zn-O and have same samples, we constrained both models to have same number of model
parameters and same architecture. PADNet for Bruker is composed of two convolutional graph to handle the two XRD
patterns compared to the PADNet for SLAC having one convolutional graph since SLAC outputs one XRD image.
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Fig. 5: Convolutional Graph: The component of the CNN network for the raw 2D XRD pattern in the input.

of three components - a convolutional graph with a peak
area detection component for each input XRD pattern, a
dense network for vector composition in the input and a final
classifier network containing dense layers for classification.
The PADNet architecture for the XRD patterns from both
sources are shown in Figure 3.

The first layer of the convolutional graph is composed
of four large convolutional filters with filter size f = 50.
These filters are initialized in a special symmetrical manner
as follows:

F1i,j =

{
−1, if i < j

1, otherwise
(1)

F2i,j =

{
−1, if i+ j > f

1, otherwise
(2)

V Fi,j =

{
−1, if i < f/2

1, otherwise
(3)

HFi,j =

{
−1, if j < f/2

1, otherwise
(4)

F1 and F2 are two diagonal filters symmetrical about the
diagonals. HF is a filter symmetrical about the horizontal
and V F is symmetrical about the vertical. These filters are
illustrated visually in Figure 4. Due to their symmetries with
opposite signs on the two sides, these filters F measure the
difference in intensity counts and the background is automat-
ically implicitly subtracted at each point in Equation 5, where
I is the input XRD pattern and we refer to these filters as
slope filters.

Ii,j =
∑

(Ii+x,j+y) · Fx,y for− f/2 ≤ x, y ≤ f/2 (5)



The symmetry with opposite sign also means that the value
computed on opposite symmetries around the peak will have
opposite signs. We are interested in the peak area. Hence, we
take their absolute values as follows:

Ii,j = |Ii,j | (6)
The value of slope measured at the actual peak should

be zero since the intensity counts across a peak should be
symmetrical. Hence, to detect the area around a peak including
the peak itself, we apply a maximum filter with a filter size
f = 50 as follows:

Ii,j = max(Ii+x,j+y) for − f/2 ≤ x, y ≤ f/2 (7)

Next, we normalize the outputs from each filter using batch
normalization to make the mean zero and variance 1 for
proper learning in the next convolutional layers. After the
batch normalization, we apply a softmax activation function so
that the network puts more emphasis on the points with high
slopes and hence, high intensity counts. The softmax function
is defined as follows:

softmax(Ii,j) =
eIi,j∑
eIi,j

(8)

Figure 4 illustrates the specially designed network compo-
nent for the peak area detection. The output from the peak
area detection component is fed into the next convolutional
layer of the convolution graph component. Figure 5 illustrates
the convolutional graph of the CNN network used for the
two datasets. Since Bruker outputs two XRD patterns, the
Bruker model contains two convolutional graphs for each input
pattern, but with half number of filters compared to SLAC
model. In this way, both SLAC and Bruker models have equal
number of trainable parameters, and we can fairly compare
their performance with each other using our domain intuition.

The dense network for composition input is composed of
two fully connected layers with 256 outputs in each layer.
The output from the convolutional graph is concatenated with
output from the dense network for composition input and
fed into a final classification network that learns to predict
the crystal phase label. The final classification network is
composed of two layers with 256 outputs in the penultimate
and 8 outputs in the last layer. ReLU [28] is used as the
activation function. Batch normalization [29] is used after
each layer for the faster convergence. Since there are eight
phase labels in our datasets, the last fully connected layer in
the classification network has softmax activation with eight
outputs.

D. 2D Background Removal from Raw XRD Pattern

One of the domain constraints before performing any anal-
ysis is how to remove the background from the XRD patterns
so that the peaks can be easily detected. Hence, we explored
some of the commonly used techniques used for background
removal and smoothing for background removal from the raw
2D XRD patterns. The raw 2D XRD patterns are either in

GFRM or TIF format, we will refer them as I . These XRD
patterns contain intensity values for different values of χ vs
2θ and have a size of 2048×2048. Generally, resizing is done
to reduce the computation required; but, we do not perform
any resizing as that can lead to information loss.

First, we apply a minimum 2D filter of size f × f to the
raw input image I as follows:

MFi,j = min(Ii+x,j+y) for − f/2 ≤ x, y ≤ f/2 (9)

MF represents the background obtained by fitting a mini-
mum filter. This can be subtracted from the raw pattern I to
obtain the pattern with background removal IM .

After applying the minimum filter, we found that the output
pattern IM contains some edges and corners. Next, following
the smoothing techniques for 1D XRD patterns such as in
[11], we apply a convolutional filter of size f × f to smooth
the background as follows:

CSi,j =
∑

(IMi+x,j+y · Fx,y)

for − f/2 ≤ x, y ≤ f/2
(10)

where F is a constant mean filter containing the same value
at each position that sum up to one. Since the XRD pattern
is large in size 2048 × 2048, fitting a polynomial using least
square can be very expensive without scaling down the size
which will impact the quality leading to loss of information.
Hence, we applied the convolution mean filter. The smooth
background CS can be subtracted from the image I to obtain
the XRD pattern without background- IC. We will used both
IM and IC as the input XRD pattern evaluate our model
performance.

Time Complexity: The time complexity for the background
removal for 2D raw XRD patterns is O(h ·w · f2) where h is
the height and w is the width of the input XRD pattern I and
f is the filter size.

IV. EMPIRICAL EVALUATION

A. Experimental Settings

We have used python and the TensorFlow [30] deep learning
framework to implement the deep neural network models.
For machine learning algorithms, we used their implemen-
tations from Scikit-learn [31]. The models were trained using
NVIDIA Titan X GPUs. We learn to predict the phase label
for understanding the crystal structure. As the dataset is small,
we performed a ten-fold cross-validation and aggregated the
results. Generally each fold had 160 and 18 samples in the
training and test set respectively. The data splitting used
for cross-validation is the same across all experiments. We
experimented with different types of preprocessing such as
normalizing and image whitening, but none of them worked
well. Hence, we do not use any kind of preprocessing or
feature engineering other than the background removal as
stated. We performed a detailed hyperparameter search and
architecture search for the PADNet model for both cases, but
limited the two PADNet models for both datasets to same
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Fig. 6: Background and Processed XRD images: I is the original XRD pattern. The first row of subfigures represent the
background and the second row of subfigures shows the XRD patterns after background removal using the two techniques.
We used a filter size of 200 for both the minimum filter and the convolutional mean filter for both cases. For SLAC, the raw
XRD pattern is similar to the background images using the two techniques; this illustrates that SLAC image contains high
background noise. For Bruker, the pattern after background removal look similar to the raw pattern since the background is
very small. This concurs with the domain expertise, thereby suggesting that the proposed background detection module is
working as expected.

architectures for a fair comparison between the two sources
since both datasets are for the same composition space. Since
the dataset is limited, we used early stopping with patience of
30 and also used L2 regularization with regularization coeffi-
cient of 0.0001 to avoid overfitting. For training our models,
we used a learning rate of 0.001 and Adam as the optimizer.
Since we are dealing with a multi-class classification problem,
we used the softmax cross entropy as the loss function and
the evaluation metric is prediction accuracy which represents
the total number of samples correctly classified by the model
across all class in the dataset. The evaluation is carried out by
training and testing the models on the raw XRD pattern I and
the XRD patterns after removing background using the two
methods- MF and CS.

B. Background Removal from 2D Raw XRD Patterns

Figure 6 presents the results from background removal using
the two techniques. In the case of SLAC, the background
is very high and varies within a sample. The background
removal using minimum filter method demonstrates that the
background obtained using this technique contain some edges
and patches. The mean convolution filter removes them by
smoothening using the mean of a window of size f×f where
we used f = 200. There exist a trade-off between the size of
filter and loss of peaks. If the filter size is small, it leads to
loss of peaks. If the filter size is large, the background signal
is still present in the output. Also, large value for filter size
makes it computationally expensive since the computations
required are directly proportional to the square of filter size f .
The convolutional operation to compute CS background with
f = 200 took around 7 minutes for each image on a single
core of a 2.3 GHz CPU. We implemented the convolution
mean filter operation using TensorFlow [30] to run on Tesla

Titan X GPU, this reduced the operation time by 7×. We
experimented with several values of f , f = 200 worked best
for our experimentation here.

C. Performance using PADNet

Figure 7 illustrates the efficiency of using the peak area
detection network for learning phase regions from raw 2D
XRD patterns. For a thorough evaluation, we trained different
models on the original raw 2D XRD images with and without
background removal using the two methods MF and CS;
hence, there are three types of training datasets - I , I −MF
and I −CS. To evaluate the efficiency of PADNet trained on
different input types, we also evalaute them using the three
types of inputs for each model - I , I − MF and I − CS.
Next, the peak detection component in the convolutional graph
of each model can be either held constant or trained using
backpropagation so that the network can learn the slope
filter parameters itself. Therefore, Figure 7 demonstrates the
performance of all types of models using different possible
combinations of type of training data, type of test data and
the configuration of slope filters.

For SLAC, we observe a cons istent performance across
all input types used during evaluation for both types of
configuration of slope filters and for all types of training data.
The predictions made for input raw XRD pattern is completely
independent of background removal which illustrates that the
model can be directly used to predict the phase region labels
from the raw input XRD pattern measured from experiment.
The performance of the model slightly improves if the back-
ground is removed from the data.

We observe similar performance for Bruker; the perfor-
mance is almost consistent for all types of test XRD patterns
when the peak area detection component is held constant. If
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Fig. 7: Performance with peak area detection network using a ten-fold cross validation.The uniform performance across all
test input pattern types exhibits the efficacy of PADNet for phase region classification directly from raw 2D XRD pattern.

the peak area detection component is allowed to be trained,
the performance is slightly lower for raw XRD patterns if
the model is trained using XRD patterns with background
removed.

The results illustrates that PADNet can be used for directly
making prediction of phase region labels from the raw XRD
patterns without any need for background removal. The perfor-
mance is specially interesting in the case of highly irregular
background present in the case of SLAC (Figure 1) where
the performance is completely independent of the background
removal process.

D. Comparison with Current Approach

We compared the performance of PADNet against the
current approach of phase region classification using 1D XRD
patterns. For dataset from Bruker, since there are two XRD
patterns for different range of 2θ, we combined them together.
Next, we subtracted the background from the 1D XRD patterns
for both datasets using the envelope function in MATLAB as
shown in Figure 1. Finally, we applied traditional machine
learning approaches to both datasets.

We followed the recent approach of training an AdaBoost
classifier from Bunn et al. [16]. We performed an elaborate
grid search for hyperparameter tuning of AdaBoost. For Ad-
aBoost classifier, we used Decision Tree Classifiers with vary-
ing depth from 2 to 10 as the estimator. For learning rate, we
used the values in [1, 0.1, 0.001] and for number of estimators,
we used [5, 10]. For SLAC, we obtained 34.78 ± 14.04%
accuracy and for Bruker we obtained 83.80± 14.50 accuracy

using a 10-fold cross validation. While using composition, we
achieved an accuracy of 70.80±15.80% on XRD patterns from
SLAC and an accuracy of 84.03±22.33 on XRD patterns from
Bruker.

We also analyzed the performance of other types of classi-
fiers such as Logistic Regression, Naive Bayes, DecisionTree
Classifier and SGD Classifier on the two datasets with and
without composition information. We performed extensive grid
search for hyperparameter tuning for all of them. In general,
the use of composition results into slight improvement of
performance. All these models had slightly worse performance
compared to AdaBoost on the two datasets, performing sig-
nificantly poorly on dataset from SLAC compared to the
dataset from Bruker. One reason behind this might be that, for
SLAC, the 1D XRD input contains only 931 intensity values
compared to XRD patterns from Bruker having 2501 intensity
values. The more information present in the input, the better
the models perform on the dataset. Another conjecture is that
these models perform bad on SLAC because of high noise
present in the raw XRD pattern which can lead to loss of
information while converting them to 1D.

Our PADNet performs significantly better than the current
approach of indexing using 1D XRD patterns on SLAC and
slightly better than AdaBoost and other classifier on 1D XRD
patterns from Bruker. PADNet also exhibits lower deviation
in the performance which shows that it can make more
robust predictions. The current approach analysis of 1D XRD
patterns is a computationally intensive process which involves
multiple steps- converting to 1D by integrating along 2θ axis,



background removal and comparison to reference database or
applying a machine learning based predictive model. PADNet
can provide a fast approach as the prediction takes less than
one second (on a Tesla Titan X GPU) for directly predicting
phase region from 2D XRD pattern.

V. CONCLUSIONS AND FUTURE WORKS

We designed a peak area detection network for predicting
phase regions directly from raw 2D XRD patterns from
real experiments. The classification results using the peak
area detection network demonstrated their invariance to the
presence of background in the input XRD pattern during
evaluation. This illustrates that PADNet can be directly used
to predict the phase regions from the raw 2D XRD patterns
without any background removal almost without any impact
in prediction performance. This is the first application of deep
learning on the raw 2D XRD patterns from real experiments.
Since deep learning works better with big training data, our
approach should provide better performance if applied on
larger datasets. It would hopefully pave the way for future
works tapping the potential of deep learning for this and
related problems. We hope this would foster the adoption of
deep learning techniques for rapid and automated analysis of
X-ray diffraction images, and more broadly in the field of
materials science and imaging. There exists a lot of scope
for future research to understand the efficacy of the proposed
methods such as automating the filter size selection, evaluating
these on other XRD patterns, and incorporating them in a real
time system for XRD analysis.
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