
Efficient Pairwise Statistical Significance Estimation using 
FPGAs 

Abstract - In this paper, we present a fast pairwise 
statistical significance estimator using a Field 
Programmable Gate Array (FPGA) coprocessor. The 
running time of the pairwise statistical significance 
estimation routine is dominated by the hundreds of local 
alignments it must compute. By offloading the alignment 
task to an accelerator designed to concurrently process 
multiple independent alignments, we are able to increase 
the end-to-end performance of the algorithm by more than 
200x over a baseline software implementation. Our 
proposed accelerator outperforms optimized, multicore 
software implementations and other FPGA implementations 
for pairwise statistical significance estimations. 
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1 Introduction 
 Estimating the statistical significance of a pairwise 
local alignment is an important problem in bioinformatics 
[1][2][3][4], and is a crucial step in many sequence 
comparison based applications in bioinformatics requiring 
homology detection. Statistical significance represents the 
likelihood that the similarity between two given sequences 
could have arisen by chance alone. In recent years, pairwise 
statistical significance [5][6][7][8] has been shown to be a 
promising alternative to database statistical significance 
(statistical significance reported by database search 
programs like BLAST, FASTA, etc.) for the purpose of 
identifying homologs. However, current implementations of 
the variants of pairwise statistical significance estimation 
are too slow to be useful in many large scale applications, 
such as database search, because the algorithm performs 
hundreds of alignments during the processing of a single 
sequence pair. The demonstrated significant improvement 
in retrieval accuracy using pairwise statistical significance 
strongly motivates the use of high performance computing 
techniques to speed-up the pairwise statistical significance 
estimation procedure.  

 In this paper, we use a large FPGA to accelerate the 
computationally intensive sequence alignment task 
performed during the pairwise statistical significance 
estimation procedure. An FPGA is a hardware device that 
can be configured at run-time to implement an arbitrary 
digital circuit. It excels in situations where simple 
operations, such as comparisons, logical operations and 
integer arithmetic, are performed on data streams. The 
regular data dependencies, abundant parallelism, and 

straightforward integer arithmetic of the alignment task 
make it suitable for implementation on an FPGA. We 
customize our implementation based on specific features of 
the pairwise statistical significance estimation procedure, 
which allows us to achieve significantly better performance 
than we would with a generic local alignment 
implementation. 

 The remainder of this paper is organized as follows. 
We provide an overview of the pairwise statistical 
significance algorithm in Section 2. Related work in the 
area of biological sequence alignment acceleration is 
summarized in Section 3. In Section 4 we present our 
architecture for accelerating the pairwise statistical 
significance algorithm. Section 5 discusses the performance 
results of our implementation. 

2 Algorithm overview 
 Consider the pairwise statistical significance as 
described in [5] to be obtainable by the following function:  

PairwiseStatSig(Seq1, Seq2, SC, N) 

where Seq1 and Seq2 are the two sequences, SC is the 
scoring scheme (substitution matrix, gap penalties), and N 
is the number of shuffles. The PairwiseStatSig function first 
generates a score distribution by aligning Seq1 with N 
shuffled versions of Seq2, and subsequently fits an Extreme 
Value Distribution (EVD)1 using censored-maximum-
likelihood to get the statistical parameters K and !. Finally, 
it reports the pairwise statistical significance of the 
alignment score of Seq1 and Seq2 (say x) in terms of the P-
value by calculating the following probability: 

! 

P(S " x) =1# e#Kmne
#$x                          (1) 

where m, n are the lengths of the sequences, and  K, ! are 
the statistical parameters. The P-value thus represents the 
probability that a score greater than or equal to x could have 
been obtained by chance. The scoring scheme SC in the 
PairwiseStatSig function can be extended to use sequence-
pair-specific distanced substitution matrices [6], multiple 
parameter sets [7], and sequence-specific/position-specific 
substitution matrices [8]. A comparitive summary of the 
advances in pairwise statistical significance can be found in 
[9]. 
                                                           
1 The distribution of Smith-Waterman alignment scores for 
the given scoring scheme, sequence lengths, and sequence 
compositions is empirically known to follow an EVD [9][4]. 
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 The bulk of the processing time for the algorithm is 
spent computing alignment scores, with most of the small 
remainder being devoted to the shuffling task (Table 1). 
Clearly, reducing the time required to complete the 
alignment task will net significant improvements to the 
performance of the algorithm as a whole. For this reason, 
we focus our attention on the alignment task. 

Table 1: Breakdown of software execution time2 

Seq. 
Length Align Shuffle Other 

128 98.6% 1.2% 0.2% 
256 99.3% 0.7% 0.0% 
512 99.7% 0.3% 0.0% 

1024 99.8% 0.2% 0.0% 
 

2.1 Smith-Waterman local alignment 
 The Smith-Waterman algorithm is a dynamic 
programming method for identifying the optimal local 
alignment between two sequences, A and B, where 
A=a1a2…an, B=b1b2…bm, A[1…i]=a1a2…ai for i<n, and 
B[1…j]=b1b2…bj for j<m. The dynamic programming sub-
problem is governed by the following equations: 

! 

GA (i, j) =max
GA (i "1, j) + e
H(i "1, j) + o

# 
$ 
% 

                      (2) 

! 

GB (i, j) =max
GB (i, j "1) + e
H(i, j "1) + o

# 
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                      (3) 
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              (4) 

 The algorithm is based on the observation that the 
optimal alignment of A and B can be determined from the 
optimal alignment of substrings of A and B. Specifically, 
the optimal alignment H(n,m) is the maximum of four 
alternatives: (1) the optimal alignment of A[1…n-1] and 
B[1…m-1], plus the similarity between an and bm; (2) the 
optimal alignment of A[1…n-1] and B[1…m], plus the cost 
of adding a gap on A; (3) the optimal alignment of A[1…n] 
and B[1…m-1], plus the cost of adding a gap on B; or (4) 0.  

 In the affine gap model [12], opening a new gap is 
penalized much more heavily than extending an existing 
gap. This favors alignments having fewer long gaps over 
those having many short gaps. Typically, the score 
associated with opening a gap, o, is set somewhere around -
10, while the score for extending a gap, e, is set to about -2. 
The implication of two separate gap penalties is that the 
high cost of opening a gap is amortized over the length of 
the gap. As such, it is generally not known whether the gap 

                                                           
2 For number of shuffles, N, equal to 1000 [5][6][7][8]. 

will be worth creating until it has been extended to some 
length. The dynamic programming algorithm must therefore 
keep track of 3 alignments at all times: the current optimal 
alignment, H, the optimal alignment constrained to end with 
a gap on A, GA, and the optimal alignment constrained to 
end with a gap on B, GB. 

 The Smith-Waterman algorithm outputs the optimal 
local alignment, which is the maximum value of matrix H. 
The associated optimal alignment, if required, can be 
recovered by tracing back through H, starting at the location 
of the maximum value, until a value of 0 is encountered. 
The complexity of the algorithm is O(mn). 

3 Related work 
 There are numerous examples of FPGA-based 
accelerators for local alignment, including those presented 
in [13][14][15][16]. From the operational standpoint, they 
differ based on the type of sequence comparison performed 
(DNA or protein), the supported gap model (linear or 
affine), and the supported sequence length. Protein 
alignments demand more resources than DNA alignments, 
and supporting an affine gap model is more complicated 
than a constant or linear model. The maximum supported 
sequence length also has a significant effect on the resource 
requirements of an implementation. Our implementation 
supports long protein alignments with an affine gap model, 
making it very resource-intensive among FPGA 
implementations. 

 Systolic arrays are overwhelmingly the processing 
paradigm of choice for FPGA implementations of sequence 
alignment algorithms. A systolic array is an interconnected 
network of processing elements, or cells, in which each cell 
takes data in from one or more of its neighbors, performs 
some computation, and passes the results along to other 
neighbors. Systolic arrays map well to FPGAs and are 
useful in situations where data parallelism is abundant and 
data dependencies are regular.  

 Typically, linear arrays are used to process a single 
alignment at a time. Each cell holds on to a specific element 
of A, while B streams through the array. While the 
theoretical peak performance of linear systolic arrays is 
often impressive, performance tends to be poor for short 
sequences due to low utilization of processing elements. 
This, in addition to data transfer overhead, is the reason 
why FPGA implementations commonly report a large 
discrepancy between the actual performance for short 
sequences and the theoretical performance of the array as a 
whole. In [15], various methods involving runtime 
reconfiguration are proposed to adapt the array to the length 
of the input query, in order to address the problem of low 
utilization for long arrays. Our implementation, by contrast, 
takes advantage of the task parallelism inherent in the 
pairwise statistical significance estimation procedure and 
uses straightforward architectural methods to minimize 



transfer overhead and improve array utilization with a 
single FPGA configuration.  

 Recent advances in the programmability of Graphics 
Processing Units (GPUs) have also given rise to high-
performance local alignment implementations [17][18]. 
GPU implementations map individual alignment tasks to 
lightweight GPU threads or thread blocks, and process a 
large number of tasks concurrently. The GPU typically 
needs thousands of active threads in order to distribute the 
computation across its many processing elements and hide 
memory access latency. The implementation in [17], for 
example, indicates that 28,800 threads are optimal for 
performance. These implementations thus perform well for 
applications like database searches, where a very large 
number of alignments are performed for a single query. 
Pairwise statistical significance estimations, by contrast, 
require a comparatively small number of alignments.  

 A few highly optimized software alignment 
algorithms using Streaming Single Instruction Multiple 
Data Extensions (SSE) have also been proposed. SSE is a 
set of extensions to the x86 architecture that enable the 
processor to perform an operation on multiple data elements 
simultaneously. Using SSE extensions can yield sizeable 
performance benefits for software routines exhibiting 
abundant data parallelism. SSE implementations of local 
alignment algorithms, such as the ones described in 
[19][20][21], leverage SSE to simultaneously update 
multiple cells in the similarity matrix. 

 The performance gains of SSE implementations are 
due in large part to a compact representation of scores. 
Since the value of any element in H stays smaller than 255 
throughout many alignment tasks, representing scores as 
bytes usually poses no problem. When an overflow is 
detected for an alignment using byte representations, the 
query is re-executed with 2-byte representations of scores. 
In this way, the processor is able to simultaneously perform 
either 16 operations when scores are represented as bytes, 
or 8 operations when scores are represented as 2 bytes. The 
efficiency gains from smaller score representations far 
offset the penalty of reprocessing a small number of the 
alignments. Further performance benefits can be achieved 
by splitting the alignment tasks among multiple cores or 
multiple processors. 

4 Implementation 
 The alignment task for pairwise statistical significance 
estimations has a very important feature: a fairly large 
number of shuffles, or random permutations, of one 
sequence, Seq2, are aligned to a common sequence, Seq1. 
Because we are interested in the total time required to 
compute all of these alignments, we are presented with two 
opportunities for acceleration: computing each alignment 
faster by exploiting data parallelism, or processing multiple 
alignments simultaneously, taking advantage of task 
parallelism.  

 The lengths of Seq1 and Seq2 are typically in the 
neighborhood of a few hundred characters, and for 
sequences this short, long systolic arrays tend to exhibit 
poor performance due to low utilization. To address this 
problem, we propose a flexible accelerator, shown in Figure 
1, capable of behaving as a long array for long sequences or 
multiple shorter arrays for shorter sequences. This 
flexibility increases the performance of the accelerator for 
short sequences without sacrificing performance for the 
long sequences that may occasionally need to be processed. 
By providing architectural support for dynamic allocation 
of systolic cells, our flexible accelerator provides excellent 
actual throughput for a wide range of sequence lengths with 
a single FPGA bitstream configuration. 

4.1 Pipelined systolic cell 
 A linear systolic array, which is the foundation of our 
implementation, accelerates the computation of a single 
alignment by exploiting data parallelism. We begin with a 
basic systolic cell similar to those described in [15][16]. 
Each cell is capable of calculating H(i,j) for a fixed i at 
every main clock cycle. 

 Pipelining the systolic cell, as shown in Figure 2, 
improves operating frequency by breaking up its critical 
path, and also provides the potential for an increase in 
throughput. The resulting data hazard on H, introduced 
because it now takes two cycles for the value of H to be 
updated, can be avoided by concurrently processing pairs of 
permutations, interleaving them as they are passed into the 

Figure 1: Accelerator Top View 
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cells. In this situation, we are using the pipelined systolic 
cell to take advantage of task parallelism. 

 Connecting a series of systolic cells back-to-back 
creates a basic linear systolic array. To process an 
alignment with such an array, the common sequence is 
shifted into the tail end of the array through cell input a_in. 
A pair of permutations is then streamed through the head of 
the array through cell input b_in. The maximum alignment 
score seen by each cell shifts out of the tail end of the array 
through the output M_out. The score of the alignment is the 
maximum value seen on the M_out port at the tail end of 
the array. 

 The similarity matrix d is implemented by the LUT 
component in Figure 2. The LUT is a block RAM 
component initialized with the values of the desired matrix. 
We use the general compression scheme presented in [16] 
to reduce block RAM utilization. For our target device 
family, the inputs to the block RAM are always registered. 
We also register the output to balance the critical path of the 
cell. 

4.2 Flexible array support 
 Instead of creating a single very long systolic array, 
our implementation creates n smaller arrays, or processing 
blocks, where n is a power of 2. At run-time, the processing 
blocks can be configured as n independent arrays, as a 
single large array, or some configuration in between the two 
extremes. The configuration is accomplished by 
multiplexing the inputs to the head and tail cells in each 
processing block. The select signals of these multiplexers 
are tied to a software-accessible register and are written 
before the input data is dispatched to the accelerator. 

 When the processing blocks are configured as 
independent arrays, multiple pairs of permutations, which 
we collectively refer to as permutation blocks, are 
processed concurrently. By allowing multiple array 
configurations, we are providing an opportunity to trade 
task parallelism for data parallelism. Instead of permanently 
devoting all of the systolic cells to the scoring of a single 
alignment, we provide the option of distributing the 
available resources to concurrently score multiple 
alignments. This is an important feature for shorter 
sequences, where using a single long array often results in 
low utilization due to the natural filling and draining of the 
systolic array, and also to mismatches between the length of 
the common sequence and the number of systolic cells in 
each array. 

 To support the dynamic array configuration, the multi-
pass buffer, which holds intermediate data between passes 
over Seq2, the read controllers, which direct the input 
sequences into the array, and the output write controller, 
which collects the output alignment scores, adapt their 
behavior based on the current array configuration. 

4.3 Processing overview 
 Now that we have described the major components of 
the accelerator, we can step through the operation of the 
accelerator as a whole. First, the pairwise statistical 
significance estimation routine running on the CPU 
configures the accelerator by writing the length of the 
common sequence, the length of each permutation, the 
penalty for opening a gap, the penalty for extending a gap, 
the desired configuration of processing blocks, and the 
number of permutations. The software transfers the contents 
of the common sequence into buffer A of the accelerator, 
followed by the first permutation block into buffer B0 of 
the accelerator. 

 When the transfer of the first permutation block has 
completed, the software directs a transfer of the next 
permutation block into B1 while the accelerator processes 
the contents of B0. The software and the accelerator trade 
buffers when they are both done with their respective tasks, 
and perform their tasks again on the new buffers. This 
process continues until all permutation blocks have been 
dispatched the FPGA.  

 At this point, the software waits until the output write 
controller signals the end of processing, and transfers the 
output alignment scores from the output buffer of the 
accelerator to the CPU’s memory space. 

5  Results 
 Our test system is an XtremeData XD1000 
Development system [22]. It is a Sun ULTRA 40 
workstation in which one of the two processor sockets is 
occupied by an Altera Stratix II EP2S180 FPGA [23]. The 
other socket in the system holds an AMD Opteron 248 

Figure 2: Pipelined Systolic Cell 
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processor, which controls 4 GB of the total 8 GB DDR 
SDRAM on the system. The OS on the development system 
is Fedora Linux. 

 The FPGA implementation was compiled using the 
Quartus II software suite, version 9.1. 256 total systolic 
cells fit on the device, split into 8 processing blocks. The 
design uses 92,528 LUTs, 77,288 registers, and 8.0 million 
BRAM bits. It operates at 125 MHz and supports sequence 
lengths up to 65,535. The processing blocks can be 
configured as 1, 2, 4, or 8 independent arrays. The selection 
of 8 as the maximum number of independent arrays was 
made to provide a variety of potential configurations 
without adversely affecting cell count and performance on 
the target device. The substitution matrices implement the 
BLOSUM62 matrix. 

 A common metric of performance in this problem 
domain is a Cell Update Per Second (CUPS). A cell update 
refers to the process of updating H(i,j) for a particular i and 
j. Since our implementation is comprised of 256 cells, each 
of which is capable of performing one cell update per clock 
cycle, its peak performance is 32 billion CUPS (GCUPS). 

 To verify the functional correctness of the accelerator, 
we compared the scores generated by the accelerator to the 
scores generated by the software-only alignment task using 
the same common sequence and sequence of permutation 
blocks. Since the Smith-Waterman algorithm has a unique 
solution for given inputs, it is guaranteed that the quality of 
results for the pairwise statistical significance estimation 
will be unaffected by the use of this accelerator. 

5.1 Accelerator performance 
 Figure 3 plots the comparative performance of our 
flexible accelerator. The numbers represent performance in 
GCUPS for the alignment of a common sequence Seq1 
against 1000 permutations of an equal-length sequence 
Seq2. The task of permuting Seq2 is excluded from this 
analysis. 

 The line labeled “FPGA Flexible Array” plots the 
performance of our flexible accelerator. The processing 
blocks are configured as 8 arrays for sequences of length 
less than 4096, 4 arrays for sequences of length less than 
8192, 2 arrays for sequences of length less than 16384, and 
1 array otherwise. In other words, we use maximum number 
of arrays possible for the input length. 

 The line labeled “Software Baseline” plots the 
performance of a sequential, scalar implementation of the 
Smith-Waterman algorithm for protein sequences with 
support for affine gaps. The runs were conducted on the 
XD1000 development system. This implementation 
achieves at most 155 million CUPS (MCUPS). 

 The line labeled “Software FastFlow” measures the 
performance of the implementation presented in [21] on a 
test system equipped with an Intel Core 2 Quad Q6600 
processor. To our knowledge, this is the fastest software 

implementation available as of this writing, and is even 
capable of outperforming a GPU-based implementation 
[18] for full database searches. 

 Direct comparisons between FPGA implementations 
are difficult for a few reasons. First off, targeting DNA 
sequences instead of protein sequences results in a simpler 
cell design with much lower BRAM requirements. The 
choice of gap model also has a substantial effect on the 
complexity of the systolic cell design, with the affine gap 
model requiring a more complicated cell than a constant or 
linear gap model. Comparing GCUPS ratings from 
implementations such as the ones in [13] and [14], which 
operate on DNA and implement constant gap support, are 
therefore not telling.  

 Additionally, reducing the maximum supported score 
decreases the resource utilization of the systolic cell. This is 
because the width of the data values being operated on 
determines the resources needed to implement each addition 
and max operation, as well as the cell's register count. Since 
the systolic cells collectively account for the vast majority 
of resources used by the accelerator, decreasing their 
resource utilization allows for more cells on the device and 
higher peak performance. On top of all this, the resources 
available on the target FPGA, as well as the operating 
frequency allowed by the FPGA, are huge determining 
factors of the accelerator's performance. 

 Qualitatively, compared to the linear array presented 
in [15], our flexible array supports longer query sequences 
and achieves better peak performance, albeit with a larger 
FPGA. The supported query (common sequence) length for 
our implementation is also not constrained by the number of 
systolic cells, so our implementation does not require 
runtime reconfiguration for varying query lengths. 

 The implementation presented in [16] provides a good 
quantitative comparison to our flexible array. Like our 
accelerator, it handles protein sequences and supports the 
affine gap model. It also handles similar sequence lengths 
(65536). The cell design is highly optimized, and, most 

Figure 3: Accelerator Performance for 1000 Alignments 
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importantly, it targets the same FPGA and host platform 
that we do, allowing an evaluation of the design and not the 
FPGA capacity and platform overhead. The line labeled 
“FPGA linear” plots the performance of this 
implementation based on reported results. These 
extrapolated numbers assume that computing N alignments 
would take N times as long as computing a single 
alignment. It should be noted that this is most likely a 
pessimistic assumption, since configuration registers and 
the common sequence should only need to be transferred to 
the accelerator for the first alignment. As a result, the 
performance for very short queries may be underestimated 
to some extent. 

 The performance results indicate that our flexible 
array offers significant performance advantages over 
software and single linear systolic arrays. The single linear 
array fails to outperform the FastFlow implementation for 
sequences under length 4096 in this case, while our flexible 
array is significantly faster over the entire input space, and 
achieves 84% of its peak throughput for sequences as short 
as 256 residues. 

 For our flexible array, the primary performance limiter 
for short sequences is the large contribution of data transfer 
overhead. The data cannot be supplied to the FPGA fast 
enough when sequences are very short. Also, the overhead 
associated with configuring the accelerator, transferring 
inputs and results, and managing the state of the accelerator 
amount to a higher percentage of total execution time when 
the sequences are short.  

 Increasing the number of permutations, N, beyond 
1000, will have no negative effect on the average 
throughput of our flexible array. The time required to 
dispatch and compute 2N permutations is twice the time 
required to compute N permutations. But the costs of 
initializing the FPGA for computation, dispatching the first 
permutation block to the FPGA, and reading the results 
back from the FPGA, are amortized over twice the 
computation time. Decreasing N, inversely, results in 
overhead being amortized over fewer cycles and causes a 
drop in average throughput. 

5.2 Application speedup 
 Table 2 displays the end-to-end speedup for the 
pairwise statistical significance estimation algorithm over a 
sequential, scalar software implementation. For these tests, 
the processing blocks were again set as multiple 
independent arrays. 

 In general, the results indicate substantial speedups. 
Shorter sequences see lower speedups because the speedup 
for the alignment task is limited by data transfer overhead, 
and because the unaccelerated shuffling task accounts for a 
higher percentage of the overall execution time. 

Table 2: End-to-end Speedup 

Sequence 
Length 

Software 
Time (s) 

Accelerated 
Time (s) Speedup 

128 .113 .00456 24.8 
256 .441 .00859 51.4 
512 1.74 .0167 104 

1024 6.12 .0344 201 
2048 27.6 .136 204 
4096 110 .538 205 
8192 450 2.15 209 

16384 1,860 8.59 216 
 

6 Conclusions and future work 
 In this paper, we have described an efficient pairwise 
statistical significance estimator using an FPGA 
coprocessor. Our flexible systolic array is capable of 
selectively trading off task-level parallelism for data 
parallelism, providing high throughputs for short sequences 
without sacrificing performance for long sequences. The 
configuration of the array can be adjusted at run-time by 
simply writing a register value to the FPGA, and does not 
require the FPGA to be reconfigured at runtime. We have 
demonstrated measured performance as high as 32 GCUPS 
for the accelerator, and have shown resulting end-to-end 
speedups over 200x.  

 This implementation can be readily applied to small 
database searches, for which pairwise statistical 
significance has been shown to give significantly better 
results than popular database search programs like BLAST, 
PSI-BLAST, and SSEARCH. Alternatively, it can be used 
to refine the results returned by these tools. 

 Also, the general task of query database searches, as is 
done with tools like FASTA and SSEARCH, is similar in 
nature to the alignment task of the pairwise statistical 
significance estimation procedure, in that both require the 
alignment of a common sequence against many other 
sequences. The parallelization methods implemented here 
can be applied toward database searches by concurrently 
processing database sequences of similar lengths against the 
common query sequence. Doing so should provide similar 
performance benefits for short sequences. 

 Our current FPGA implementation is designed to 
work for standard Smith-Waterman local alignment with 
affine gap penalties, and standard substitution matrices. 
Future work includes extending the design to incorporate 
more biologically relevant features in the pairwise statistical 
significance estimation procedure, such as the use of 
multiple parameter sets, and sequence- and position-specific 
substitution matrices. 

 We are also investigating methods for improving our 
accelerator. For example, the arithmetic units in the 
processing elements can be replaced by connected pairs of 
arithmetic units in order to handle either two independent 



operations with a small range of values, or a single 
operation at a larger range. This would have a minimal 
impact on resource utilization because it only requires a few 
multiplexers. Much like existing SSE implementations, all 
permutations would be run through the coprocessor at the 
lower range, and any failing alignments would be rerun at 
full range. Since the scores generated during the alignment 
task of the pairwise statistical significance estimation 
routine are typically very small, very few alignments would 
need to be reprocessed. 

 Finally, we are working on moving the shuffling task 
onto the FPGA, in order to reduce transfer overhead and 
accelerate the shuffling process itself. This should improve 
the end-to-end speedup of the pairwise statistical 
significance estimation routine. 
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