
Efficient Pairwise Statistical Significance Estimation using
FPGAs

Abstract - In this paper, we present a fast pairwise
statistical significance estimator using a Field
Programmable Gate Array (FPGA) coprocessor. The
running time of the pairwise statistical significance
estimation routine is dominated by the hundreds of local
alignments it must compute. By offloading the alignment
task to an accelerator designed to concurrently process
multiple independent alignments, we are able to increase
the end-to-end performance of the algorithm by more than
200x over a baseline software implementation. Our
proposed accelerator outperforms optimized, multicore
software implementations and other FPGA implementations
for pairwise statistical significance estimations.

Keywords: Pairwise statistical significance, FPGA

1 Introduction
 Estimating the statistical significance of a pairwise
local alignment is an important problem in bioinformatics
[1][2][3][4], and is a crucial step in many sequence
comparison based applications in bioinformatics requiring
homology detection. Statistical significance represents the
likelihood that the similarity between two given sequences
could have arisen by chance alone. In recent years, pairwise
statistical significance [5][6][7][8] has been shown to be a
promising alternative to database statistical significance
(statistical significance reported by database search
programs like BLAST, FASTA, etc.) for the purpose of
identifying homologs. However, current implementations of
the variants of pairwise statistical significance estimation
are too slow to be useful in many large scale applications,
such as database search, because the algorithm performs
hundreds of alignments during the processing of a single
sequence pair. The demonstrated significant improvement
in retrieval accuracy using pairwise statistical significance
strongly motivates the use of high performance computing
techniques to speed-up the pairwise statistical significance
estimation procedure.

 In this paper, we use a large FPGA to accelerate the
computationally intensive sequence alignment task
performed during the pairwise statistical significance
estimation procedure. An FPGA is a hardware device that
can be configured at run-time to implement an arbitrary
digital circuit. It excels in situations where simple
operations, such as comparisons, logical operations and
integer arithmetic, are performed on data streams. The
regular data dependencies, abundant parallelism, and

straightforward integer arithmetic of the alignment task
make it suitable for implementation on an FPGA. We
customize our implementation based on specific features of
the pairwise statistical significance estimation procedure,
which allows us to achieve significantly better performance
than we would with a generic local alignment
implementation.

 The remainder of this paper is organized as follows.
We provide an overview of the pairwise statistical
significance algorithm in Section 2. Related work in the
area of biological sequence alignment acceleration is
summarized in Section 3. In Section 4 we present our
architecture for accelerating the pairwise statistical
significance algorithm. Section 5 discusses the performance
results of our implementation.

2 Algorithm overview
 Consider the pairwise statistical significance as
described in [5] to be obtainable by the following function:

PairwiseStatSig(Seq1, Seq2, SC, N)

where Seq1 and Seq2 are the two sequences, SC is the
scoring scheme (substitution matrix, gap penalties), and N
is the number of shuffles. The PairwiseStatSig function first
generates a score distribution by aligning Seq1 with N
shuffled versions of Seq2, and subsequently fits an Extreme
Value Distribution (EVD)1 using censored-maximum-
likelihood to get the statistical parameters K and !. Finally,
it reports the pairwise statistical significance of the
alignment score of Seq1 and Seq2 (say x) in terms of the P-
value by calculating the following probability:

!

P(S " x) =1# e#Kmne
#$x (1)

where m, n are the lengths of the sequences, and K, ! are
the statistical parameters. The P-value thus represents the
probability that a score greater than or equal to x could have
been obtained by chance. The scoring scheme SC in the
PairwiseStatSig function can be extended to use sequence-
pair-specific distanced substitution matrices [6], multiple
parameter sets [7], and sequence-specific/position-specific
substitution matrices [8]. A comparitive summary of the
advances in pairwise statistical significance can be found in
[9].

1 The distribution of Smith-Waterman alignment scores for
the given scoring scheme, sequence lengths, and sequence
compositions is empirically known to follow an EVD [9][4].

Daniel Honbo, Ankit Agrawal, and Alok Choudhary
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA

 The bulk of the processing time for the algorithm is
spent computing alignment scores, with most of the small
remainder being devoted to the shuffling task (Table 1).
Clearly, reducing the time required to complete the
alignment task will net significant improvements to the
performance of the algorithm as a whole. For this reason,
we focus our attention on the alignment task.

Table 1: Breakdown of software execution time2

Seq.
Length Align Shuffle Other

128 98.6% 1.2% 0.2%
256 99.3% 0.7% 0.0%
512 99.7% 0.3% 0.0%

1024 99.8% 0.2% 0.0%

2.1 Smith-Waterman local alignment
 The Smith-Waterman algorithm is a dynamic
programming method for identifying the optimal local
alignment between two sequences, A and B, where
A=a1a2…an, B=b1b2…bm, A[1…i]=a1a2…ai for i<n, and
B[1…j]=b1b2…bj for j<m. The dynamic programming sub-
problem is governed by the following equations:

!

GA (i, j) =max
GA (i "1, j) + e
H(i "1, j) + o

$
%

 (2)

!

GB (i, j) =max
GB (i, j "1) + e
H(i, j "1) + o

$
%

 (3)

!

H(i, j) =max

H(i "1, j "1) + d(ai,b j)
Ga (i, j)
Gb (i, j)
0

$
% %

&
%
%

 (4)

 The algorithm is based on the observation that the
optimal alignment of A and B can be determined from the
optimal alignment of substrings of A and B. Specifically,
the optimal alignment H(n,m) is the maximum of four
alternatives: (1) the optimal alignment of A[1…n-1] and
B[1…m-1], plus the similarity between an and bm; (2) the
optimal alignment of A[1…n-1] and B[1…m], plus the cost
of adding a gap on A; (3) the optimal alignment of A[1…n]
and B[1…m-1], plus the cost of adding a gap on B; or (4) 0.

 In the affine gap model [12], opening a new gap is
penalized much more heavily than extending an existing
gap. This favors alignments having fewer long gaps over
those having many short gaps. Typically, the score
associated with opening a gap, o, is set somewhere around -
10, while the score for extending a gap, e, is set to about -2.
The implication of two separate gap penalties is that the
high cost of opening a gap is amortized over the length of
the gap. As such, it is generally not known whether the gap

2 For number of shuffles, N, equal to 1000 [5][6][7][8].

will be worth creating until it has been extended to some
length. The dynamic programming algorithm must therefore
keep track of 3 alignments at all times: the current optimal
alignment, H, the optimal alignment constrained to end with
a gap on A, GA, and the optimal alignment constrained to
end with a gap on B, GB.

 The Smith-Waterman algorithm outputs the optimal
local alignment, which is the maximum value of matrix H.
The associated optimal alignment, if required, can be
recovered by tracing back through H, starting at the location
of the maximum value, until a value of 0 is encountered.
The complexity of the algorithm is O(mn).

3 Related work
 There are numerous examples of FPGA-based
accelerators for local alignment, including those presented
in [13][14][15][16]. From the operational standpoint, they
differ based on the type of sequence comparison performed
(DNA or protein), the supported gap model (linear or
affine), and the supported sequence length. Protein
alignments demand more resources than DNA alignments,
and supporting an affine gap model is more complicated
than a constant or linear model. The maximum supported
sequence length also has a significant effect on the resource
requirements of an implementation. Our implementation
supports long protein alignments with an affine gap model,
making it very resource-intensive among FPGA
implementations.

 Systolic arrays are overwhelmingly the processing
paradigm of choice for FPGA implementations of sequence
alignment algorithms. A systolic array is an interconnected
network of processing elements, or cells, in which each cell
takes data in from one or more of its neighbors, performs
some computation, and passes the results along to other
neighbors. Systolic arrays map well to FPGAs and are
useful in situations where data parallelism is abundant and
data dependencies are regular.

 Typically, linear arrays are used to process a single
alignment at a time. Each cell holds on to a specific element
of A, while B streams through the array. While the
theoretical peak performance of linear systolic arrays is
often impressive, performance tends to be poor for short
sequences due to low utilization of processing elements.
This, in addition to data transfer overhead, is the reason
why FPGA implementations commonly report a large
discrepancy between the actual performance for short
sequences and the theoretical performance of the array as a
whole. In [15], various methods involving runtime
reconfiguration are proposed to adapt the array to the length
of the input query, in order to address the problem of low
utilization for long arrays. Our implementation, by contrast,
takes advantage of the task parallelism inherent in the
pairwise statistical significance estimation procedure and
uses straightforward architectural methods to minimize

transfer overhead and improve array utilization with a
single FPGA configuration.

 Recent advances in the programmability of Graphics
Processing Units (GPUs) have also given rise to high-
performance local alignment implementations [17][18].
GPU implementations map individual alignment tasks to
lightweight GPU threads or thread blocks, and process a
large number of tasks concurrently. The GPU typically
needs thousands of active threads in order to distribute the
computation across its many processing elements and hide
memory access latency. The implementation in [17], for
example, indicates that 28,800 threads are optimal for
performance. These implementations thus perform well for
applications like database searches, where a very large
number of alignments are performed for a single query.
Pairwise statistical significance estimations, by contrast,
require a comparatively small number of alignments.

 A few highly optimized software alignment
algorithms using Streaming Single Instruction Multiple
Data Extensions (SSE) have also been proposed. SSE is a
set of extensions to the x86 architecture that enable the
processor to perform an operation on multiple data elements
simultaneously. Using SSE extensions can yield sizeable
performance benefits for software routines exhibiting
abundant data parallelism. SSE implementations of local
alignment algorithms, such as the ones described in
[19][20][21], leverage SSE to simultaneously update
multiple cells in the similarity matrix.

 The performance gains of SSE implementations are
due in large part to a compact representation of scores.
Since the value of any element in H stays smaller than 255
throughout many alignment tasks, representing scores as
bytes usually poses no problem. When an overflow is
detected for an alignment using byte representations, the
query is re-executed with 2-byte representations of scores.
In this way, the processor is able to simultaneously perform
either 16 operations when scores are represented as bytes,
or 8 operations when scores are represented as 2 bytes. The
efficiency gains from smaller score representations far
offset the penalty of reprocessing a small number of the
alignments. Further performance benefits can be achieved
by splitting the alignment tasks among multiple cores or
multiple processors.

4 Implementation
 The alignment task for pairwise statistical significance
estimations has a very important feature: a fairly large
number of shuffles, or random permutations, of one
sequence, Seq2, are aligned to a common sequence, Seq1.
Because we are interested in the total time required to
compute all of these alignments, we are presented with two
opportunities for acceleration: computing each alignment
faster by exploiting data parallelism, or processing multiple
alignments simultaneously, taking advantage of task
parallelism.

 The lengths of Seq1 and Seq2 are typically in the
neighborhood of a few hundred characters, and for
sequences this short, long systolic arrays tend to exhibit
poor performance due to low utilization. To address this
problem, we propose a flexible accelerator, shown in Figure
1, capable of behaving as a long array for long sequences or
multiple shorter arrays for shorter sequences. This
flexibility increases the performance of the accelerator for
short sequences without sacrificing performance for the
long sequences that may occasionally need to be processed.
By providing architectural support for dynamic allocation
of systolic cells, our flexible accelerator provides excellent
actual throughput for a wide range of sequence lengths with
a single FPGA bitstream configuration.

4.1 Pipelined systolic cell
 A linear systolic array, which is the foundation of our
implementation, accelerates the computation of a single
alignment by exploiting data parallelism. We begin with a
basic systolic cell similar to those described in [15][16].
Each cell is capable of calculating H(i,j) for a fixed i at
every main clock cycle.

 Pipelining the systolic cell, as shown in Figure 2,
improves operating frequency by breaking up its critical
path, and also provides the potential for an increase in
throughput. The resulting data hazard on H, introduced
because it now takes two cycles for the value of H to be
updated, can be avoided by concurrently processing pairs of
permutations, interleaving them as they are passed into the

Figure 1: Accelerator Top View

A rray n

J2

A rray 1

A rray 2

I1

I2

Rd Ctrl B Rd Ctrl A

...

Jn

Input Buffers

W r Ctrl
Output

Multi-pass Buffer

K2

K n

H T Read Interface

H T W rite Interface

FIFO 1

.

.

.

Push
Ctrl

Pop
Ctrl

AB1B0

FIFO 2

FIFO n

Cell
1

Cell
2

Cell
m

...

Cell
1

Cell
2

Cell
m

...

Cell
1

Cell
2

Cell
m

...

a
H ,Ga,M
b

a
H ,Ga,M

b

a
H ,Ga,M
b

a
H ,Ga,M
b

a
H ,Ga,M

b

a
H ,Ga,M

b

cells. In this situation, we are using the pipelined systolic
cell to take advantage of task parallelism.

 Connecting a series of systolic cells back-to-back
creates a basic linear systolic array. To process an
alignment with such an array, the common sequence is
shifted into the tail end of the array through cell input a_in.
A pair of permutations is then streamed through the head of
the array through cell input b_in. The maximum alignment
score seen by each cell shifts out of the tail end of the array
through the output M_out. The score of the alignment is the
maximum value seen on the M_out port at the tail end of
the array.

 The similarity matrix d is implemented by the LUT
component in Figure 2. The LUT is a block RAM
component initialized with the values of the desired matrix.
We use the general compression scheme presented in [16]
to reduce block RAM utilization. For our target device
family, the inputs to the block RAM are always registered.
We also register the output to balance the critical path of the
cell.

4.2 Flexible array support
 Instead of creating a single very long systolic array,
our implementation creates n smaller arrays, or processing
blocks, where n is a power of 2. At run-time, the processing
blocks can be configured as n independent arrays, as a
single large array, or some configuration in between the two
extremes. The configuration is accomplished by
multiplexing the inputs to the head and tail cells in each
processing block. The select signals of these multiplexers
are tied to a software-accessible register and are written
before the input data is dispatched to the accelerator.

 When the processing blocks are configured as
independent arrays, multiple pairs of permutations, which
we collectively refer to as permutation blocks, are
processed concurrently. By allowing multiple array
configurations, we are providing an opportunity to trade
task parallelism for data parallelism. Instead of permanently
devoting all of the systolic cells to the scoring of a single
alignment, we provide the option of distributing the
available resources to concurrently score multiple
alignments. This is an important feature for shorter
sequences, where using a single long array often results in
low utilization due to the natural filling and draining of the
systolic array, and also to mismatches between the length of
the common sequence and the number of systolic cells in
each array.

 To support the dynamic array configuration, the multi-
pass buffer, which holds intermediate data between passes
over Seq2, the read controllers, which direct the input
sequences into the array, and the output write controller,
which collects the output alignment scores, adapt their
behavior based on the current array configuration.

4.3 Processing overview
 Now that we have described the major components of
the accelerator, we can step through the operation of the
accelerator as a whole. First, the pairwise statistical
significance estimation routine running on the CPU
configures the accelerator by writing the length of the
common sequence, the length of each permutation, the
penalty for opening a gap, the penalty for extending a gap,
the desired configuration of processing blocks, and the
number of permutations. The software transfers the contents
of the common sequence into buffer A of the accelerator,
followed by the first permutation block into buffer B0 of
the accelerator.

 When the transfer of the first permutation block has
completed, the software directs a transfer of the next
permutation block into B1 while the accelerator processes
the contents of B0. The software and the accelerator trade
buffers when they are both done with their respective tasks,
and perform their tasks again on the new buffers. This
process continues until all permutation blocks have been
dispatched the FPGA.

 At this point, the software waits until the output write
controller signals the end of processing, and transfers the
output alignment scores from the output buffer of the
accelerator to the CPU’s memory space.

5 Results
 Our test system is an XtremeData XD1000
Development system [22]. It is a Sun ULTRA 40
workstation in which one of the two processor sockets is
occupied by an Altera Stratix II EP2S180 FPGA [23]. The
other socket in the system holds an AMD Opteron 248

Figure 2: Pipelined Systolic Cell

M ax

M ax

M ax

M ax
M ax

L U T

load_a_in

b_in

H_in

b_next_in

G a_in

G_open_in

M_in

a_out

o_out

e_out

o_in

e_in

a_in

b_out

G a_out

H_out

M_out

load_a_out

b_next_out

+

-

-

-

G _open_out

processor, which controls 4 GB of the total 8 GB DDR
SDRAM on the system. The OS on the development system
is Fedora Linux.

 The FPGA implementation was compiled using the
Quartus II software suite, version 9.1. 256 total systolic
cells fit on the device, split into 8 processing blocks. The
design uses 92,528 LUTs, 77,288 registers, and 8.0 million
BRAM bits. It operates at 125 MHz and supports sequence
lengths up to 65,535. The processing blocks can be
configured as 1, 2, 4, or 8 independent arrays. The selection
of 8 as the maximum number of independent arrays was
made to provide a variety of potential configurations
without adversely affecting cell count and performance on
the target device. The substitution matrices implement the
BLOSUM62 matrix.

 A common metric of performance in this problem
domain is a Cell Update Per Second (CUPS). A cell update
refers to the process of updating H(i,j) for a particular i and
j. Since our implementation is comprised of 256 cells, each
of which is capable of performing one cell update per clock
cycle, its peak performance is 32 billion CUPS (GCUPS).

 To verify the functional correctness of the accelerator,
we compared the scores generated by the accelerator to the
scores generated by the software-only alignment task using
the same common sequence and sequence of permutation
blocks. Since the Smith-Waterman algorithm has a unique
solution for given inputs, it is guaranteed that the quality of
results for the pairwise statistical significance estimation
will be unaffected by the use of this accelerator.

5.1 Accelerator performance
 Figure 3 plots the comparative performance of our
flexible accelerator. The numbers represent performance in
GCUPS for the alignment of a common sequence Seq1
against 1000 permutations of an equal-length sequence
Seq2. The task of permuting Seq2 is excluded from this
analysis.

 The line labeled “FPGA Flexible Array” plots the
performance of our flexible accelerator. The processing
blocks are configured as 8 arrays for sequences of length
less than 4096, 4 arrays for sequences of length less than
8192, 2 arrays for sequences of length less than 16384, and
1 array otherwise. In other words, we use maximum number
of arrays possible for the input length.

 The line labeled “Software Baseline” plots the
performance of a sequential, scalar implementation of the
Smith-Waterman algorithm for protein sequences with
support for affine gaps. The runs were conducted on the
XD1000 development system. This implementation
achieves at most 155 million CUPS (MCUPS).

 The line labeled “Software FastFlow” measures the
performance of the implementation presented in [21] on a
test system equipped with an Intel Core 2 Quad Q6600
processor. To our knowledge, this is the fastest software

implementation available as of this writing, and is even
capable of outperforming a GPU-based implementation
[18] for full database searches.

 Direct comparisons between FPGA implementations
are difficult for a few reasons. First off, targeting DNA
sequences instead of protein sequences results in a simpler
cell design with much lower BRAM requirements. The
choice of gap model also has a substantial effect on the
complexity of the systolic cell design, with the affine gap
model requiring a more complicated cell than a constant or
linear gap model. Comparing GCUPS ratings from
implementations such as the ones in [13] and [14], which
operate on DNA and implement constant gap support, are
therefore not telling.

 Additionally, reducing the maximum supported score
decreases the resource utilization of the systolic cell. This is
because the width of the data values being operated on
determines the resources needed to implement each addition
and max operation, as well as the cell's register count. Since
the systolic cells collectively account for the vast majority
of resources used by the accelerator, decreasing their
resource utilization allows for more cells on the device and
higher peak performance. On top of all this, the resources
available on the target FPGA, as well as the operating
frequency allowed by the FPGA, are huge determining
factors of the accelerator's performance.

 Qualitatively, compared to the linear array presented
in [15], our flexible array supports longer query sequences
and achieves better peak performance, albeit with a larger
FPGA. The supported query (common sequence) length for
our implementation is also not constrained by the number of
systolic cells, so our implementation does not require
runtime reconfiguration for varying query lengths.

 The implementation presented in [16] provides a good
quantitative comparison to our flexible array. Like our
accelerator, it handles protein sequences and supports the
affine gap model. It also handles similar sequence lengths
(65536). The cell design is highly optimized, and, most

Figure 3: Accelerator Performance for 1000 Alignments

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

$%
'"

%#
("

#$
%"

$!
%)
"

%!
)'
"

)!
*(
"

'$
*%
"

$(
&'
)"

&%
+(
'"

Pe
rf

or
m

an
ce

 (G
C

U
PS

)

Sequence Length

Software Baseline

FPGA Linear Array

Software Fastflow

FPGA Flexible Array

importantly, it targets the same FPGA and host platform
that we do, allowing an evaluation of the design and not the
FPGA capacity and platform overhead. The line labeled
“FPGA linear” plots the performance of this
implementation based on reported results. These
extrapolated numbers assume that computing N alignments
would take N times as long as computing a single
alignment. It should be noted that this is most likely a
pessimistic assumption, since configuration registers and
the common sequence should only need to be transferred to
the accelerator for the first alignment. As a result, the
performance for very short queries may be underestimated
to some extent.

 The performance results indicate that our flexible
array offers significant performance advantages over
software and single linear systolic arrays. The single linear
array fails to outperform the FastFlow implementation for
sequences under length 4096 in this case, while our flexible
array is significantly faster over the entire input space, and
achieves 84% of its peak throughput for sequences as short
as 256 residues.

 For our flexible array, the primary performance limiter
for short sequences is the large contribution of data transfer
overhead. The data cannot be supplied to the FPGA fast
enough when sequences are very short. Also, the overhead
associated with configuring the accelerator, transferring
inputs and results, and managing the state of the accelerator
amount to a higher percentage of total execution time when
the sequences are short.

 Increasing the number of permutations, N, beyond
1000, will have no negative effect on the average
throughput of our flexible array. The time required to
dispatch and compute 2N permutations is twice the time
required to compute N permutations. But the costs of
initializing the FPGA for computation, dispatching the first
permutation block to the FPGA, and reading the results
back from the FPGA, are amortized over twice the
computation time. Decreasing N, inversely, results in
overhead being amortized over fewer cycles and causes a
drop in average throughput.

5.2 Application speedup
 Table 2 displays the end-to-end speedup for the
pairwise statistical significance estimation algorithm over a
sequential, scalar software implementation. For these tests,
the processing blocks were again set as multiple
independent arrays.

 In general, the results indicate substantial speedups.
Shorter sequences see lower speedups because the speedup
for the alignment task is limited by data transfer overhead,
and because the unaccelerated shuffling task accounts for a
higher percentage of the overall execution time.

Table 2: End-to-end Speedup

Sequence
Length

Software
Time (s)

Accelerated
Time (s) Speedup

128 .113 .00456 24.8
256 .441 .00859 51.4
512 1.74 .0167 104

1024 6.12 .0344 201
2048 27.6 .136 204
4096 110 .538 205
8192 450 2.15 209

16384 1,860 8.59 216

6 Conclusions and future work
 In this paper, we have described an efficient pairwise
statistical significance estimator using an FPGA
coprocessor. Our flexible systolic array is capable of
selectively trading off task-level parallelism for data
parallelism, providing high throughputs for short sequences
without sacrificing performance for long sequences. The
configuration of the array can be adjusted at run-time by
simply writing a register value to the FPGA, and does not
require the FPGA to be reconfigured at runtime. We have
demonstrated measured performance as high as 32 GCUPS
for the accelerator, and have shown resulting end-to-end
speedups over 200x.

 This implementation can be readily applied to small
database searches, for which pairwise statistical
significance has been shown to give significantly better
results than popular database search programs like BLAST,
PSI-BLAST, and SSEARCH. Alternatively, it can be used
to refine the results returned by these tools.

 Also, the general task of query database searches, as is
done with tools like FASTA and SSEARCH, is similar in
nature to the alignment task of the pairwise statistical
significance estimation procedure, in that both require the
alignment of a common sequence against many other
sequences. The parallelization methods implemented here
can be applied toward database searches by concurrently
processing database sequences of similar lengths against the
common query sequence. Doing so should provide similar
performance benefits for short sequences.

 Our current FPGA implementation is designed to
work for standard Smith-Waterman local alignment with
affine gap penalties, and standard substitution matrices.
Future work includes extending the design to incorporate
more biologically relevant features in the pairwise statistical
significance estimation procedure, such as the use of
multiple parameter sets, and sequence- and position-specific
substitution matrices.

 We are also investigating methods for improving our
accelerator. For example, the arithmetic units in the
processing elements can be replaced by connected pairs of
arithmetic units in order to handle either two independent

operations with a small range of values, or a single
operation at a larger range. This would have a minimal
impact on resource utilization because it only requires a few
multiplexers. Much like existing SSE implementations, all
permutations would be run through the coprocessor at the
lower range, and any failing alignments would be rerun at
full range. Since the scores generated during the alignment
task of the pairwise statistical significance estimation
routine are typically very small, very few alignments would
need to be reprocessed.

 Finally, we are working on moving the shuffling task
onto the FPGA, in order to reduce transfer overhead and
accelerate the shuffling process itself. This should improve
the end-to-end speedup of the pairwise statistical
significance estimation routine.

7 References
[1] Waterman, M.S., Vingron, M.: Rapid and Accurate
Estimates of Statistical Significance for Sequence Database
Searches. PNAS, USA 91(11) (1994) 4625-4628.

[2] Altschul, S.F., Gish, W.: Local Alignment Statistics.
Methods in Enzymology 266 (1996) 460-80

[3] Pearson, W.R.: Empirical Statistical Estimates for
Sequence Similarity Searches. JMB 276 (1998) 71-84

[4] Mott, R.: Accurate Formula for P-values of Gapped
Local Sequence and Profile Alignments. JMB 300 (2000)
649-659

[5] Agrawal, A., Brendel, V.P., Huang, X.: Pairwise
Statistical Significance and Empirical Determination of
Effective Gap Opening Penalties for Protein Local
Sequence Alignment. IJCBDD 1(4) (2008) 347-367

[6] Agrawal, A., Huang, X.: Pairwise statistical
significance of local sequence alignment using substitution
matrices with sequence-pair-specific distance. In: Proc.
ICIT. (2008) 94-99

[7] Agrawal, A., Huang, X.: Pairwise Statistical
Significance of Local Sequence Alignment Using Multiple
Parameter Sets and Empirical Justification of Parameter Set
Change Penalty. BMC Bioinformatics 10(Suppl 3) (2009)
S1

[8] Agrawal, A., Huang, X.: Pairwise statistical
significance of local sequence alignment using sequence-
specific and position-specific substitution matrices.
IEEE/ACM TCBB (2009) 25 Sept. 2009.

[9] Agrawal, A., Choudhary, A., Huang, X. 2010.
Sequence-Specific Sequence Comparison Using Pairwise
Statistical Significance. In Software Tools and Algorithms
for Biological Systems,Springer (in book series, Advances
in Experimental Medicine and Biology, AEMB), 2010, in
press).

[10] Karlin, S., Altschul, S.F.: Methods for Assessing the
Statistical Significance of Molecular Sequence Features by
Using General Scoring Schemes. Proceedings of the
National Academy of Sciences, USA 87(6) (1990) 2264-
2268

[11] Smith, T.F., Waterman, M.S. 1981. Identification of
common molecular subsequences. Journal of Molecular
Biology 147, 195-197.

[12] Gotoh, O. 1982. An improved algorithm for matching
biological sequences. Journal of Molecular Biology 162,
705-708.

[13] Hoang, D.T. 1993. Searching genetic databases on
Splash 2. In IEEE Workshop on FPGAs for Custom
Computing Machines, 185-191.

[14] Yu, C.W., Kwong, K.H., Lee, K.H., Leong, P.W.H.
2003. A Smith-Waterman systolic cell. In Proc. 13th Int.
Workshop on Field Programmable Logic and Applications,
375-384.

[15] Oliver, T.F., Maskell, D.L. 2006. Reconfigurable
architectures for bio-sequence database scanning on
FPGAs. IEEE Trans. Circuit Syst. II, 52:851:855.

[16] Zhang, P., Tan, G., Gao, G. R. 2007. Implementation
of the Smith-Waterman algorithm on a reconfigurable
supercomputing platform. In Proc. 1st intl HPRCTA '07.
ACM, New York, NY, 39-48.

[17] Manavski, S, Valle, G. 2008. CUDA compatible GPU
cards as efficient hardware accelerators for Smith-
Waterman sequence alignment. BMC Bioinformatics, Vol
9, Suppl 2, S10.

[18] Liu Y, Maskell DL, Schmidt B. 2009. CUDASW++:
optimizing Smith-Waterman sequence database searches for
CUDA-enabled graphics processing units. BMC Res Notes,
2:73.

[19] Farrar, M. 2007. Striped Smith--Waterman speeds
database searches six times over other SIMD
implementations. Bioinformatics 23, 2 (Jan. 2007), 156-
161.

[20] Szalkowski A, Ledergerber C, Krähenbühl P,
Dessimoz C. 2008. SWPS3 - fast multi-threaded vectorized
Smith-Waterman for IBM Cell/B.E. and x86/SSE2. BMC
Res. Notes, 1:107.

[21] Aldinucci, M, Meneghin, M, Torquati, M. 2009.
Efficient Smith-Waterman on multi-core with FastFlow. To
appear in: Proc. of Intl. Euromicro PDP 2010.

[22] XtremeData Inc. XD1000 development system.
http://old.xtremedatainc.com/index.php?option=com_conte
nt&view=article&id=109&Itemid=170.

[23] Altera Corp. Stratix II device family.
http://www.altera.com/products/devices/stratix-
fpgas/stratix-ii/stratix-ii-index.jsp.

