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Abstract—The application of complex networks to study
complex phenomena, including the Internet, social networks,
food networks, and others, has seen a growing interest in recent
years. In particular, the use of complex networks and network
theory to analyze the behavior of the climate system is an
emerging topic. This newfound interest is due to the difficulty
of analyzing climate data—this analysis is notoriously difficult
due to the strong spatio-temporal dependencies, multivariate
nature, seasonal behavior, and nonlinear phenomena inherent
in the climate system. Network-based approaches model the
complex long-term dependencies of weather attributes (such as
temperature or air pressure) between locations on the Earth
as a network of relationships and analyze these networks to
gather insights about the emergent behavior of the system as
a whole.

In this paper, we describe our work-in-progress on a
methodology for capturing and characterizing the evolution
of the climate network. We do this by splitting the climate
data into a set of overlapping decadal time windows and
forming a network for each of these datasets representing
the complex interdependencies in the climate system over the
particular decade. We can then use this sequence of networks
to characterize major patterns and anomalies in the data. We
validate our methodology by identifying nontrivial events and
trends in the evolution of the decadal networks and correlating
these with known climatological phenomena.
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I. INTRODUCTION

The application of complex networks to study complex

phenomena, including the Internet, social networks, food

networks, and others, has seen a growing interest in recent

years [1]–[4]. In particular, the use of complex networks

and network theory to analyze the behavior of the climate

system is an emerging topic [4]–[11]. This newfound interest

is due to the difficulty of analyzing climate data—this

analysis is notoriously difficult due to the strong spatio-

temporal dependencies, multivariate nature, seasonal behav-

ior, and nonlinear phenomena inherent in the climate system.

Network-based approaches model the complex long-term

dependencies of weather attributes (such as temperature or

air pressure) between locations on the Earth as a network of

relationships and analyze these networks to gather insights

about the emergent behavior of the system as a whole. This

type of technique might, for example, be used to identify

and evaluate the likelihood of major climate shifts in the

output from various General Circulation Models (GCMs).

One of the limitations of several previous approaches is

that they use all of the available data to construct these

networks of dependencies. While this decision may seem

to be the way to construct the most “accurate” network, it

only allows the construction of a single, static network that

neglects the changing nature of the climate. As such, these

approaches are limited in their ability to detect emerging

trends or large-scale anomalies in the behavior of the climate

system. To the best of our knowledge, only one other

work [10] has tried to model the evolution of the climate

system as a sequence of global-scale climate networks;

however, the results we present here, which are based on

an analysis of the evolving structure of the correlations

in air temperature values, offer a more natural physical

interpretation than the clusters formed based on Euclidean

distance between pairwise correlations of four variables

presented in [10].

In this paper, we describe a technique for modeling

and discovering patterns and anomalies in the decadal-scale

character of the climate system by analyzing a sequence

of complex networks formed by advancing a 10-year time

window along the climate data. We describe our technique

in Section II, present some preliminary observations made

by applying our technique to real climate data in Section III,

and conclude in Section IV.

II. METHODOLOGY

In this section, we describe our technique for analyzing

the temporal structure and evolution of the climate network.

This technique consists of five main steps:

1) Initially, we process the data to reduce the effects of

seasonality in the data. Though the seasonal trends in

the data cannot be eliminated entirely, these patterns

would overwhelm other interesting patterns in the data

without some form of preprocessing to limit their

effects.

2) With this processed data, we create a series of over-

lapping 10-year time windows, advancing by one
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year in between each pair of consecutive windows.

By allowing a significant (9-year) overlap between

consecutive time windows, we hope to see the large-

scale changes in the climate network emerge gradually

rather than appearing as chaotic noise.

3) Using this time-windowed data, we form a climate net-

work for each time window to represent the large-scale

dependencies in the climate patterns between locations

on the Earth, generating a sequence of networks repre-

senting the evolution of the climate system over time.

These networks use a set of latitude/longitude grid

points as their vertices and connect vertices if the two

time series associated with the points are correlated.

4) Next, we apply a clustering algorithm to each time

window in order to group together sets of grid points

within the window that share similar behavior.

5) Finally, we compare the networks representing con-

secutive time periods in order to identify clusters that

appear to be stable, or persist from one time window

to the next.

Once we have identified these stable clusters, we visu-

alize their evolution in order to identify major trends and

anomalies in the climate networks. Our results, presented

in Section III, are the product of a visual analysis of the

progression of these stable clusters.

A. Data

For our analysis, we analyze the monthly mean Sur-

face Air Temperature variable from the NCEP Reanalysis

project [12]. This dataset has a resolution of 2.5◦ latitude

by 2.5◦ longitude, and data is available for every grid point

over a period from January 1948 through December 2010

(63 years), for a time series of 756 monthly values. Data is

recorded for each latitude from 90◦N to 90◦S, but at the two

poles (90◦N and 90◦S), all longitude values represent the

same location, so we only use data from 87.5◦N to 87.5◦S,

for a total of 10,224 grid points (71× 144).

B. Data preprocessing

While the analysis of air temperature data can yield

valuable insights into the behavior of the climate system as

a whole, such insights are difficult to detect in the raw data

due to the presence of very strong seasonal effects. Thus, to

unmask more interesting patterns and anomalies, we need

to process the data to reduce the effects of this seasonality.

To reduce the effects of seasonality on the Reanalysis

data, we calculate monthly anomaly series values, or the

amount that a particular month deviates from the average

behavior of the temperature for that variable. To calculate

these anomaly series values, we divide the 756-month data

values at each grid point into twelve 63-month time series,

one corresponding to each month of the year. For each of

these monthly time series, we subtract the mean and divide

by the standard deviation in order to remove the annual

trends and normalize before recombining the data into the

full 63-year anomaly time series.

Having limited the effects of seasonality in the data

through the calculation of this anomaly time series, we

divide the data into overlapping ten-year time windows,

advancing the time window by one year until we reach the

end of our data. By allowing a significant (9-year) overlap

between successive time windows, the large-scale changes

in the climate system should emerge gradually enough to

allow us to separate longer-term patterns and trends from

noise in the data.

C. Forming the network

For each of these time windows, we wish to create a

network representing the significant dependencies between

the various regions of the globe. We form this network by

calculating the absolute value of the Pearson correlation

coefficient between every pair of edges and applying a

threshold (cutoff) value so that each edge that meets or

exceeds this cutoff will represent a strong positive or nega-

tive linear dependency between the grid points that the edge

connects. We also apply a distance threshold to reduce the

effects of spatial autocorrelation in the data, or the tendency

of co-located grid points to display very similar behavior.

Even though the climate system exhibits nonlinear phe-

nomena, such as matter and energy transfer, we use the linear

Pearson correlation coefficient rather than a measure like

mutual information that can capture nonlinear dependencies,

as it has already been reported in literature [13] that the local

and mesoscopic properties of the networks generated using

these two measures are extremely similar.

Figure 1. Distribution of the absolute value of the all-pair correlation
values for all latitude/longitude grid points over the entire 63-year dataset.
In this work, we use the 99th percentile correlation value (0.6307) as a
cutoff value when forming the decadal climate networks.

Further, in order to ensure consistency between the edges

in multiple time windows, we selected a single correlation

threshold that we applied to each time window based on

the distribution of the absolute value of the correlation
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Figure 2. Summary of the number of edges (a) and clusters (b) identified in the constructed decadal climate networks. The horizontal axis in both graphs
denotes the first year of the decade.

coefficient across all pairs of grid points using the full,

63-year time series. This distribution appears in Figure 1.

The threshold value we chose was the 99th percentile of the

pairwise correlation values, 0.6307.

Finally, to reduce the effects of spatial autocorrelation in

the data, we pruned the edges in each of the networks that

represented correlations between points that were less than

500 km apart. This 500 km threshold was chosen to be large

enough to eliminate edges between adjacent grid points at

the equator, but small enough so as not to eliminate all of the

significant correlations associated with grid points near the

poles. The distance between grid points was approximated

as the length of a geodesic on a sphere of radius 6371 km,

using the formula

d = 6371 cos−1(cos(θ1 − θ2) cos(ϕ1) cos(ϕ2) + sin(ϕ1) sin(ϕ2)),

where (θ1, ϕ1) are the latitude and longitude, respectively,

of the first grid point, in radians, and (θ2, ϕ2) are the latitude

and longitude of the second. While this technique does not

eliminate the effects of spatial autocorrelation in the data (as

can be seen from our results in Section III), it does help to

uncover more interesting long range effects in the data.

D. Extracting the large-scale structure of the network

For each of these networks, we wish to capture some

features that capture the overall structure of the time-

dependent networks in such a way that we can identify

the patterns and track the anomalies and emerging trends.

To this end, we adopt a methodology based on clustering

the networks and detecting the clusters that exhibit stability

between consecutive time windows.

To cluster the networks, we applied the CNM clustering

algorithm [14], an efficient modularity-based clustering al-

gorithm implemented in the Small-world Network Analysis

and Partitioning (SNAP) software package [15]. We chose

CNM for its efficiency, its ready availability, and its use

of modularity as an optimization criterion. In future work,

we may investigate the applicability of other clustering

algorithms to the climate network.

We say that clusters in consecutive time windows are

related if they share an average of at least 80% of their

members. More formally, clusters c1 and c2 are related iff

1

2

( |c1 ∩ c2|
|c1| +

|c1 ∩ c2|
|c2|

)
≥ 0.8,

where |c1| is the number of grid points in cluster c1, |c2| is

the number of grid points in c2, and |c1 ∩ c2| is the number

of grid points in common between clusters c1 and c2. We

chose a threshold of 0.8 because a threshold larger than

0.75 ensures that each cluster can only be associated with

one cluster in each of its adjacent time windows. (If one

cluster were associated with two clusters in a single adjacent

time window, the smaller of the two clusters could have an

overlap of up to 50% with the original, leading to an average

overlap of at most 75%.)

III. RESULTS AND DISCUSSION

For the purpose of this work, we present some observa-

tions of the resulting network sequence and correlate these

observations with known climatological phenomena. Using

the methodology described in Section II, we visualized the

resulting sequence of network clusters using R [16], an open

source statistical software package. Unless otherwise noted,

all of the clustering results we present in this section repre-

sent the stable clusters identified by our methodology, with

instable clusters and singleton clusters appearing gray. Full

results of our technique applied to surface air temperature

data, including both the stable clusters and the full network

clustering, can be viewed at http://cucis.ece.northwestern.

edu/projects/Expeditions/climkd11 results.html.

First, we present some basic statistics of the time-sensitive

climate networks that we constructed. Figure 2 gives a

summary of how the number of clusters and the number of

edges in the networks changes over time. Visually inspecting

the trends in the total number of edges indicates a signal

reminiscent of a low frequency phenomenon dominated by

interdecadal variability, with maxima during the time win-

dows 1949–1958, 1971–1980, and 1993–2002 and minima
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(c) (d)

(e) (f)

Figure 3. Illustration of the evolution of a stable cluster linking the surface air temperature in the Nino-3 region with the Indian Ocean during the
period 1963–1983. The cluster, which first appears during the time window 1963–1972 (b), is not apparent in the time window 1962–1971 (a). The cluster
becomes unstable in the time windows 1966–1975 (c) and 1971–1980 (d), though the teleconnection between the Nino-3 region and the Indian Ocean is
still evident in 1971–1980. The cluster makes its final appearance in 1974–1983 (e, f). In figures (c) and (d), the various colors represent the grid points
assigned to each of clusters identified in the time-dependent networks, regardless of cluster stability, and gray represents grid points not assigned to a
cluster. The other images show only the stable clusters in color and depict unstable clusters in gray.

during 1959–1968 and 1977–1986. As might be expected,

the number of clusters in the graph follows an inverse pattern

with respect to the number of edges in the networks. While

the period between the absolute maximum and minimum at

1971–1980 and 1977–1986 represents the steepest decline

in the number of significant correlations, though, the largest

number of clusters occurred in 1958–1967, one year before

a local minimum in the number of edges, and the smallest
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coincided with a local maximum in 1993–2002. These

twin patterns suggest a possible link to a modulation of

a planetary-scale climatic pattern. This type of pattern has

been previously observed in the literature [6].

We now turn our attention to the sequence of stable

clusters identified by our methodology in Section II. One

notable feature of these clusters is that the vast majority

are geographically contiguous, despite being formed from

networks that have no inherent geographical information.

Though this feature is almost certainly a product of the

spatial autocorrelation in the data, these contiguous clusters

correspond well to our intuition that climate zones enclose

closed shapes.

Another notable feature of the resulting networks is a

persistent teleconnection between the Nino-3 region of the

Pacific Ocean and the Indian Ocean that first appeared in

the 1963–1972 decade and lasted until 1974–1983, with

two brief destabilizations in 1966–1975 and 1971–1980 (see

Figure 3). This teleconnection is a known feature of the El

Niño phenomenon [17], and the year 1972 corresponds to a

peak in El Niño activity [18].

One other feature of the data feature of the data is a

shift in how the clusters divide the African continent. In

the time windows prior to 1953–1962, the clusters divided

northern Africa from central Africa between 17.5◦N and

20◦N; however, after the decade 1962–1971, this division

was moved further south, appearing consistently around

5◦N to 10◦N. In between these time periods, a separate

cluster emerged, covering the area between 10◦N–17.5◦N

and 15◦W–32.5◦E appeared from 1956–1965 until 1961–

1970, excepting the window 1960–1969 (see Figure 4). This

zone covers the Sahel region in Africa, the zone immediately

south of the Sahara desert. The Sahel region went through a

period of strong rainfall in the 1950’s, but it experienced a

major drought starting in 1968 and has undergone significant

period of desertification in the intervening years [19], [20].

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In summary, we have presented a methodology to tackle

the challenging problem of identifying the patterns, trends,

and anomalies in the evolution of the climate system, and

we have validated our methodology by using it to iden-

tify interesting, nontrivial features of the resulting climate

networks that correspond to known climatological features

and events. Potential future directions of this work include

the extension of our methodology to multiple variables;

the evaluation of different processing methods, such as the

different clustering or seasonal adjustment techniques; the

development of techniques to automatically detect motifs

or anomalies in the evolving climate networks; and the

application of these techniques to improve existing climate

models or improve forecasting.

(a)

(b)

(c)

Figure 4. Illustration of the shift of the Sahel region in Africa from being
clustered with central/southern Africa (a) to being its own stable cluster (b)
to being clustered with northern Africa (c). In these figures, each of the
solid colors represent grid points assigned to the same cluster, with gray
representing unstable clusters or grid points not assigned to a cluster.
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