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Abstract—High-throughput mass-spectrometry tech-
nology has enabled genome-scale discovery of protein-
protein interactions. Yet, computational inference of pro-
tein interaction networks and their functional modules
from large-scale pull-down data is challenging. Over-
expressed or “sticky” bait is not specific; it generates
numerous false positives. This “curse” of the technique
is also its “blessing”—the sticky bait can pull-down
interacting components of other complexes, thus increase
sensitivity. Finding optimal trade-offs between coverage
and accuracy requires tuning multiple “knobs,” i.e.,
method parameters. Each selection leads to a putative
network, where each network in the set of “perturbed”
networks differs from the others by a few added or
removed edges. Identification of functional modules in
such networks is often based on graph-theoretical meth-
ods such as maximal clique enumeration. Due to the
NP-hard nature of the latter, the number of tunings
to explore is limited. This paper presents an efficient
iterative framework for sensitive and specific detection
of protein complexes from noisy protein interaction data.

Keywords-protein interaction networks; protein com-
plexes; proteomics; systems biology; parallel algorithms;
cliques; databases

I. INTRODUCTION

High-throughput mass-spectrometry (MS) pull-down
technology is becoming popular for revealing protein
complexes and for assigning functions to unknown
proteins. In affinity purification experiments, also re-
ferred as pull-down experiments or affinity isolation
experiments, the bait is first expressed with an affinity
tag. The proteins that interact with these baits, referred
to as preys, are identified due to their binding to a
particular bait protein. These complexes are isolated,

purified, and analyzed by mass spectrometry (MS) or
other methods [10].

Large-scale affinity-based pull-down experiments
have high sensitivity in protein complex identification,
yet they may generate numerous false positive protein-
protein interactions (sometimes more than 50%) [7],
[8]. A high false positive rate results from over-
expression of baits over their natural level [11], which
increases the number of “contaminating” proteins [7]
and, thus, increases false positive protein-protein inter-
actions. Such spurious interactions make identification
of protein complexes by proteomics methods alone
challenging [13].

Aiming at reducing false positive interactions, cur-
rent proteomics methods require rigorous statistical
criteria for revealing specific bait-prey and prey-prey
pairs. Prey-prey interactions are typically ignored be-
cause of the high rate of false positive interactions
among them [7], [9]. This results in decreased coverage
of the identified interactions, or increased false negative
interactions. The trade-off between the coverage (or
sensitivity) and the accuracy (or specificity) is inherent
to almost any computational proteomics method for
protein-protein interactions [7]. By tuning method pa-
rameters, through multiple trial-and-error experiments,
one can change the balance between specificity and
sensitivity, but it is yet difficult, if possible, to signifi-
cantly improve both.

In this paper, we propose a computational framework
that allows for more accurate and efficient identifica-
tion of protein complexes from large-scale MS pull-
down experiments. The improved performance is due
to its following foci. First, we augment relatively
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noisy proteomics pull-down data with genomic-context
information, such as the structure of bacterial operons
and the gene fusion events in eukaryotic genomes.
Observing such “events” concurrently with pull-down
experiments likely signifies the confidence that the
interaction is native. Specifically, it is doubtful that,
by chance, the two proteins in multiple pull-down
experiments will also (a) belong to the same operon
or (b) be found as a single fused chain across some
eukaryotic organisms.

Second, we propose a graph theory–based technique
for discovery of protein complexes in a network of
putative protein-protein interactions derived by both
proteomics and genomics methods above. It initially
enumerates maximal cliques to reveal highly close
relations among three or more proteins. Since cliques
impose the stringent (pairwise) interactivity constraint,
some experimental noise is filtered out. Some of the
native interactions can still be missed due to pre-
defined cut-offs for method parameters and limitations
of computational or experimental methods. This may
result in smaller, but overlapping, cliques. To identify
putative complexes, we introduce an iterative clique
merging procedure based on the overlap among the
cliques. Some overlap will still remain to allow for
proteins to be part of more than one protein complex.
While revealing biologically relevant complexes, this
procedure is computationally-intensive for large net-
works.

Third, we further improve the efficiency of the
entire end-to-end pipeline by proposing a parallel
index-based algorithm for the enumeration of maximal
cliques in “perturbed” networks. Our assumption is
that an iterative tuning procedure generates a set of
“perturbed” networks; each differs from the others by a
few added or removed protein interactions. Tuning may
involve assigning different cut-offs to method param-
eters or engaging various genomic-context. Since the
“backbone” structure of the network likely remains the
same across the “perturbed” networks, the question is
whether the cliques discovered during the first iteration
could be indexed and re-used for answering queries
about the changes in the cliques structure in response
to perturbations. We achieve effective parallelization
by developing novel theory to decompose the problem
into independent operations and dividing index access
among the processors.

Finally, we apply the proposed framework to

discover genome-scale protein complexes from
high-throughput affinity isolation experiments with
Rhodopseudomonas palustris bacteria grown under
photoheterotrophic conditions. Most identified
complexes showed high functional homogeneity
indicating their biological relevance; they represent
a set of comprehensive biological processes in R.
palustris under studied conditions and reveal novel
functions of the organism.

II. METHOD

Though we have developed a complete end-to-end
pipeline for the identification of protein complexes (see
details in [19]), this work primarily focuses on the
computational problem of updating the maximal clique
enumeration in response to a perturbation. We briefly
describe the other steps in this pipeline below.

A. Iterative end-to-end pipeline for discovery of pro-
tein complexes

The main steps of the proposed framework (Figure
1) include: (1) building protein affinity network by
fusing putative specifically interacting prey-prey and
bait-prey pairs from proteomics-based and genomic-
context filtering, (2) discovering protein complexes in
the putative protein affinity network utilizing parallel
graph-theoretical algorithms, and (3) tuning the identi-
fied protein complexes by employing parallel database-
assisted graph-theoretical algorithms.

B. Fusing pull-down and genomics information to
build networks

1) Predicting bait-prey and prey-prey interactions
from pull-down data: We estimate the probability (p-
score) of bait-prey binding by capturing background
(non-specific) binding behaviors for the bait and the
prey. For the prey background, the bait-prey spectrum
counts are normalized by their average among all
baits. The frequency with which the prey is found
at a particular spectrum is plotted against the spec-
trum count. This plot represents the prey background
binding behavior. A similar plot is obtained for each
bait. For an observed bait-prey pair, the area under
the prey background distribution curve to the right
of the observed spectrum estimates the probability of
observing by chance a spectrum count larger than the
reported spectrum for the pair. The bait background
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Figure 1: Iterative end-to-end framework for identification of protein complexes.

probability is similarly calculated using the bait back-
ground distribution curve. The product of the prey and
bait background probabilities represents the p-score for
a bait-prey binding event with the observed count.

For predicting a prey-prey interaction, we assume
that two preys in the same protein complex are likely
to be pulled down by baits together. Thus, we compare
purification profiles of all prey pairs and select those
that have high similarities in their profiles. A purifi-
cation profile of a prey is a 0-1 vector given all baits
in the experiments as its dimensions. The similarity
of purification profiles of two preys is computed by
correlating their vectors. The Jaccard, cosine and Dice
scores are compared to quantify the prey-prey binding
affinity in the experiment. Optimal thresholds for the p-
score and purification profile similarity score are found
by evaluating the prey-prey pairs against the Validation
Table of known interactions. We eliminate pairs that do
not meet the thresholds. We compute precision, recall,
and F1-measure using the remaining pairs against the
validation data. Evaluation iterates until optimal values
are found.

2) Predicting protein-protein interactions from
genomic-context: We consider the following genomic-
context criteria to augment the bait-prey and prey-prey
interactions from pull-downs: Bait-prey operon, Prey-
prey operon, Rosetta Stone, and Gene neighborhood.
For Bait-prey operon, a bait-prey pair is specifically
interacting if it is transcribed from the same operon.
For Prey-prey operon, a prey-prey pair is specifically
interacting if it is transcribed from the same operon
and is pulled down by the same bait. For Gene
neighborhood and Rosetta Stone a bait-prey or prey-
prey pair is specifically interacting if the encoding
genes belong to a conserved operon or fused with

certain probability. The probability metrics are taken
from the Prolinks database. An important criterion for
the prey-prey pair was a co-purification of the preys
with two or more different baits.

C. Discovering protein complexes in the protein affin-
ity network

Altogether, the protein pairs identified by pull-down
and genomic-context methods represent a protein affin-
ity network. We consider that a maximal clique in the
network corresponds to a subset of interacting proteins
in a complex. To reveal the structure of protein com-
plexes, we apply our efficient parallel implementation
of the maximal clique enumeration (MCE) algorithm
by Bron and Kerbosch [1], presented in [15]. Many
of the identified cliques overlap. To identify a set of
putative complexes, we merge similar cliques based
on the meet/min coefficient, defined as the ratio of
the number of common proteins in both cliques to
the minimum size of the two cliques. Our clique
merging iterates by merging the two cliques with the
highest coefficient (if the fraction of overlap is above
the merging threshold, 0.6). We replace both cliques
with the combined one. The iteration stops when no
change in the clique sets between two consecutive
runs is observed. The final cliques are putative protein
complexes.

The main alternative for finding strongly related
groups within a network are polynomial-time cluster-
ing heuristics, such as UVCLUSTER [25], Molecular
Complex Detection (MCODE) [23], and Markov Clus-
tering (MCL) [22]. However, clique-based techniques
hold several advantages over such techniques. By mak-
ing use of the clique enumeration of the network, nodes
can be assigned to multiple, overlapping clusters. This
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property is especially desirable in the context of protein
affinity networks, as a single protein may exhibit
multiple functions [27], [19]. In addition, clique-based
techniques are less sensitive to noise in the networks
[24] and identify more biologically-relevant protein
complexes (for example, cliques show more than 10%
higher functional homogeneity than heuristic clusters
in [19]). While the worse-case complexity for clique-
based techniques is quite high (a graph of n vertices
may have up to 3n/3 maximal cliques [26]), actual
performance on biological networks is fast, due to the
sparsity of connections in the networks.

D. Efficient parallel MCE for “perturbed” networks

We describe a parallel algorithm for enumerating
maximal cliques in perturbed graphs. A serial version
of the algorithm has already been published in [16],
[17], but we summarize our previous results here.

The algorithm handles two different types of pertur-
bations, edge removal and edge addition. These per-
turbations correspond to raising or lowering an edge-
weight threshold applied to a protein affinity network.

III. PARALLEL EDGE REMOVAL ALGORITHM

A. Serial algorithm

In this section, we will briefly recapitulate the rel-
evant theoretical results from our earlier work [16],
[17] for updating the set of maximal cliques of a graph
when some number of edges are being removed from
the graph. We refer to the graph before the perturbation
as G, and we use Gnew to denote the graph after the
perturbation. Similarly, we use C and Cnew to denote
the set of maximal cliques of G and Gnew, respec-
tively. The objective of the perturbation algorithm is
to enumerate the “difference sets” C+ = Cnew \ C and
C− = C \ Cnew so that Cnew may be determined from
C.

If no edges are being added to the graph, then any
maximal clique of G that is also a clique in Gnew must
be maximal in Gnew. From this observation, we can see
that the cliques of C− will be exactly the cliques of G
that do not contain an edge being removed. Conversely,
the cliques of C+ will be the subgraphs of the cliques
in C− that form maximal cliques in Gnew.

Theorem 1: If a set of edges E− is being removed
from G, then
C− = {S ∈ C | S contains an edge being removed}
and

C+ = {T | T is a complete subgraph of some S ∈
C− that is maximal in Gnew}.

To enumerate the cliques of C−, we simply need to
retrieve the set of maximal cliques of G that contain
an edge being removed. In order to retrieve this set
efficiently, we pre-calculate and index the cliques of C
that contain each edge of G, associating each clique
of C with a clique ID and associating each edge of
G with the IDs of cliques that contain the edge. We
retrieve the set of clique IDs associated with each edge
being removed and combine these sets, eliminating the
“duplicate” clique IDs that contain more than one edge
being removed.

To enumerate the cliques of C+, we employ a
recursive procedure to divide each formerly maximal
clique of G, as these subgraphs are likely to be missing
relatively few edges. At each step of the procedure, we
choose a single vertex, v, that is incident to at least one
edge being removed and form two subgraphs that may
be further divided. The first subgraph is formed by
removing v from the current subgraph, and the other
is formed by removing the vertices not adjacent to
v in Gnew. Effectively, these two subgraphs serve to
eliminate all of the “non-edges” that are incident on v
at each iteration, eventually resulting in fully connected
subgraphs.

To ensure that the subgraphs we generate for C+ are
maximal, we maintain arrays containing the vertices
outside of the current subgraph adjacent to some vertex
of the subgraph, as well as the number of subgraph
vertices to which each of these counter vertices are
not adjacent in Gnew. As vertices are removed from
the clique, the connectivity of the counter vertices
is updated, and the algorithm backtracks if the non-
adjacency value for a counter vertex becomes zero. A
clique is maximal if and only if there is no vertex of
the graph adjacent to every vertex of the clique—if a
counter vertex becomes adjacent to all of the vertices
of our subgraph, we may stop the recursive division,
as no further subgraph will be a maximal clique. We
continue the division procedure until we have found all
complete subgraphs of cliques in C− that are maximal
in Gnew.

B. Parallel work division

We parallelize execution along the retrieval and
processing of the cliques of C−, using clique IDs as the
units of work. The main advantage of using clique IDs
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is that, clique IDs are lightweight and easily passed be-
tween processors. This level of parallelism is somewhat
coarse, though. While clique IDs likely correspond to
relatively small workloads, a single clique ID could
potentially generate a huge search space, resulting in
a large chunk of work that could not be split across
processors.

For our implementation, we chose to use a producer-
consumer model to distribute the work among the
processors. In the producer-consumer model, a single
processor is responsible for accessing the edge index
to retrieve the set of clique IDs for cliques that contain
an edge being removed from the graph. After the
producer has retrieved these clique IDs and placed
them on a queue, it begins distributing these clique
IDs to the consumers, or processing clique IDs if all
of the consumers already have work.

All processors other than the producer are referred
to as consumers. Each consumer iteratively requests a
block of work from the producer and then processed
the clique IDs it receives. For our implementation, we
chose to distribute work in blocks of 32 clique IDs. A
consumer continues to request work until the producer
responds that it has no work left, at which point the
consumer stops.

The primary advantage of the producer-consumer
model is its simplicity and similarity to the serial code.
Additionally, it requires no explicit load balancing, as
the consumers simply request work from the producer
until all of the work has been completed. One disad-
vantage of this approach is that the producer is the only
processor that looks up the set of clique IDs containing
an edge being removed, serializing this phase of the
algorithm. However, in our experiments, the time spent
in this phase was quite low (less than 0.01 seconds),
so this strategy was quite effective.

C. Pruning duplicate subgraphs

After retrieving the set of cliques containing an edge
being removed, the edge removal algorithm recursively
subdivides the retrieved cliques in order to find the
novel maximal cliques introduced by the edge removal.
To improve the efficiency of this division procedure,
we wish to avoid applying the recursive procedure
multiple times to subgraphs that are contained in more
than one clique of C. In order to eliminate these
duplicate subgraphs without requiring any communi-
cation between processors, we introduce novel theory

based on lexicographic ordering. Essentially, we allow
a subgraph to be produced only by the clique of C−
that is lexicographically first among those cliques of
C− that are supergraphs.

Definition 1: We define some lexicographic ordering
among the vertices, i.e., V (G) = {v1, v2, . . . , vn}. A
subgraph S lexicographically precedes subgraph T iff
there exists some vi ∈ S \ T such that i < j for all

vj ∈ T \ S. We denote this relationship as S
L
< T .

Note that this definition differs from the usual lex-
icographic ordering in that a supergraph of a graph
would precede the graph it contains; however, as the
perturbation algorithm does not compare subgraphs
that contain one another, this definition is sufficient for
our purposes. We now present a technical result that
will allow us to recognize whether a subgraph is being
produced from its lexicographically first supergraph in
C−.

Theorem 2: Let C be a clique of C−, and let
S ⊂ C be a maximal subgraph of C produced by
the recursive procedure. Let R = C \ S, and let
vi be the lexicographically first counter vertex that
is adjacent to every vertex of C in G (but not in
Gnew). C is the lexicographically first clique of C−
that contains subgraph S if and only if some vertex of
Ri = {vk ∈ R | k < vi} is nonadjacent to vi in G.

Proof: We first prove the negation of the claim.
Suppose that every vertex of Ri is adjacent to vi.
Consider the subgraph X = S ∪ Ri ∪ {vi}. S ∪ Ri

is a subset of C, so all vertices in Ri and S must be
adjacent in G, and vi is adjacent to all of S and Ri

in G by supposition. Thus, X must form a clique in
G. Further, X precedes C lexicographically, as every
vertex of C \ X is lexicographically after vi by the
construction of Ri. Thus, some supergraph of X forms
a maximal clique in C− that lexicographically precedes
C.

Suppose that there is some clique C ′ ∈ C− such that

C ′ ⊃ S and C ′
L
< C. Let C ′ be the lexicographically

first such clique. By Definition 1, this means that there
is some vk ∈ C ′\C such that k < j for all vj ∈ C\C ′.
Note that, as C ′ is a clique in G, vk is adjacent to every
vertex of S in G. Also, k must be the lexicographically
first such vertex—if there were some vj adjacent to all
of S in G such that j < k, S∪{vj} would be a clique
of G that contains S and lexicographically precedes
C ′ (as would the clique of C− that contains S ∪{vj}).

515511511



Since C ′
L
< C, no vertex of C \ C ′ may precede vk.

As such, every vertex of Ri must be contained in C ′

and thus be adjacent to vi in G.
To make use of this result in the algorithm, we

maintain R, the set of vertices removed from the
original clique of C−, in a lexicographically sorted
array. In addition, for each counter vertex, we maintain
arrays not only for the number of subgraph vertices that
are nonadjacent in Gnew (as in the serial algorithm),
but also for the number of vertices nonadjacent in
G. When a counter vertex vi becomes adjacent to all
vertices of the subgraph in G, we check whether vi
lexicographically precedes the lexicographically first
vertex of R. If so, we iterate through R until we find
a vertex lexicographically later than vi (indicating that
the original clique is the lexicographically first) or a
vertex nonadjacent to vi, at which point we would
backtrack.

D. Parallelizing index accesses

One of the key ways in which we achieve efficient
calculation of the cliques in the perturbed graphs is by
using various indices to speed up retrieving the cliques
of the original (unperturbed) graph. However, in a
typical large-scale parallel system, disk accesses are
relatively expensive and unlikely to scale, as all of the
users on the system may share a single distributed file
system. As such, disk accesses need to be minimized
and replaced with memory accesses where possible,
since memory is local to each processor and is able
to scale. Thus, we adopt a strategy of reading in the
entire index when possible, or a large segment of the
index when the index is too large to fit into memory.

IV. PARALLEL EDGE ADDITION ALGORITHM

A. Serial algorithm

We approach the problem of adding edges to a graph
as the inverse of the edge removal problem. Specif-
ically, if edges are being added to G to form Gnew,
we consider the perturbation caused by removing those
same edges from Gnew to form G. From Section III-A,
the set of maximal cliques being removed from Gnew

by the reverse perturbation (which is exactly C+,
the set of cliques being added to G by the original
perturbation) will be the cliques of Cnew that contain
an edge being “removed from Gnew.” Further, the set
of maximal cliques being added to Gnew by the reverse
perturbation (which is exactly C−) will be the complete

subgraphs of the cliques in the previous set that form
maximal cliques in G.

Unlike the removal case, though, we have not in-
dexed the cliques of Gnew by the edges they contain
(as we are trying to calculate the cliques of G−). Thus,
to calculate the set of cliques in Gnew that contain one
of the added edges, we employ a variation of the Bron-
Kerbosch (BK) clique enumeration [1]. To calculate
the cliques containing edge (u, v), we initialize the
compsub array used by BK to contain u and v as
the clique set, the common neighbors of u and v that
succeed u and v lexicographically as the candidate set,
and the common neighbors of u and v that precede u
and v lexicographically as the not set.

Once we have calculated the set C+, we apply the
recursive removal procedure described earlier to the
cliques of C+ to calculate C−. However, unlike the
edge removal case, we can check the maximality of
the resulting subgraphs by looking up the cliques in
an index that maps clique hash values to the IDs of
maximal cliques of G that correspond to those hash
values. As such, we only need to keep track of counter
vertices adjacent to the clique in Gnew but not in G,
so that we can still eliminate duplicate subgraphs as
described in Section III-C.

B. Parallel edge addition algorithm

In order to parallelize the edge addition algorithm,
we adapt the parallel BK implementation described in
[15] to the problem of finding cliques in Gnew that
contain an edge being added. As before, we can modify
the initial workload of the BK algorithm in order to
enumerate only those maximal cliques containing the
added edges. We distribute the set of added edges (and
thus the corresponding initial candidate list structures)
among the processors in a Round-Robin fashion. The
load balancing strategy is performed on two levels—
local and remote work sharing. Local work sharing
occurs when one thread on a processor runs out of
work, at which time it checks the other threads’ work
stacks (in some randomized order) to see if another
thread on the same processor has additional work.
Remote work sharing is handled similarly, in that
when all threads on a shared-memory processor have
exhausted their work stacks, that processor polls the
other processors to see if another processor still has
work in its work stack. Again, polling is performed in
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a random order so as to avoid having a single processor
inundated with work requests.

Once a processor or thread has located some work
that it can steal, the target thread or process transfers
a single candidate list structure from the bottom of
its work stack to each thread requesting work. The
rationale behind this load balancing strategy is that a
single candidate list structure may represent a wildly
variable amount of work, and those candidate list
structures that were generated earliest (and therefore
reside on the bottom of the work stack) are the most
likely to represent a large amount of work.

As with the edge removal case, we treat the recursive
removal operation on the resulting cliques of C+ as
an indivisible unit of work, as the perturbation being
applied to the graph—and hence the typical individual
subgraph division operation—is assumed to be small.
Duplicate subgraph pruning is performed as described
in Section IV-A, and the hash value index is read into
memory. For all of the graphs that we tested, this
index was able to be read into memory in its entirety;
however, for larger graphs, it may be necessary to split
the index and read in only a section of the index at
a time into memory. In this event, it may be more
effective to distribute the index among the processors
and pass the potential cliques of C− to the processor
that possesses the appropriate section of the hash value
index.

V. RESULTS

A. Scalability of parallel perturbed MCE

To test the scalability of the edge removal algo-
rithm, we first use a protein-protein interaction net-
work derived by Zhang et al. [19]. This network was
constructed by applying a threshold of 1.5 to the
Purification Enrichment scores [21] calculated using
experimental data published by Gavin et al. [2]. The
network contains 2,436 vertices, which represent vari-
ous proteins in the yeast Saccharomyces cerevisiae, and
15,795 edges, which represent likely interactions be-
tween the proteins. The graph contains 19,243 maximal
cliques of size three or larger, which represent potential
protein complexes. For this experiment, we generated
a 20% removal perturbation in which 3,159 edges of
the graph were randomly selected to be removed, with
an equal probability for each edge to be selected.

Our experiments were performed on the Jaguar sys-
tem at ORNL; the results appear in Figure 2. Speedup

Figure 2: Enumeration time speedup for parallel edge
addition.

was calculated for the time spent in the main work
phase of the algorithm, in which the algorithm retrieves
the vertices of a given clique, performs the recursive
removal procedure, and balances the processor work-
loads, and this speedup is plotted against ideal (linear)
speedup. As you can see in the figure, scaling for the
edge removal algorithm was quite good, with a speedup
of 13.2 at 16 processors.

Using the index access and load balancing strategies
outlined in Sections III-D and IV-B, we performed
several experiments to test the scalability of the edge
addition algorithm. For this experiment, we use a
much larger graph derived from the Medline database
[20] described in [18]. We chose to use this dataset
because of its large size (2.6 million vertices), sparsity
(1.9 million total edges), and weighted nature. By
applying edge weight thresholds of 0.85 and 0.80 to
the Medline data, we are able to generate graphs of
713,000 and 987,000 edges, respectively, resulting in
an edge addition perturbation of about 38.5% on the
smaller graph. This perturbation adds 73,623 maximal
cliques to the 70,926 cliques of 0.85-weight graph and
removes 34,745, for a total of 109,804 maximal cliques
in the 0.80-weight graph.

The timing results for this perturbation appear in
Table I. All times are given in seconds and represent
the longest duration that a single processor spent on
the given task. The timing results are broken down
as follows. Init time represents the amount of time
taken by the algorithm in allocating memory for the
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algorithm data structures and reading the graph and
indices into memory. Root time represents the amount
of time taken by the algorithm in generating the initial
set of candidate list structures for the modified BK
algorithm. Main time represents the combined amount
of time required to run the BK algorithm to detect the
set of cliques in C+ as well as performing the recursive
removal procedure, index lookups required to calculate
C−, and load balancing. Idle time represents the time
spent by a processor that has finished its workload and
has no other work to steal.

Table I: Scalability for edge weight–induced perturba-
tion on the Medline graph.

Procs Init Root Main Idle
1 0.876 0.000 1.459 0.000
2 0.951 0.000 0.773 0.005
4 1.197 0.000 0.489 0.002
8 1.381 0.000 0.249 0.007

In Table I, the Init phase plays a significant role in
the overall runtime of the algorithm and does not scale
with the addition of more processors. However, the
Main phase of the algorithm scales reasonably well,
for a speedup of 5.86 at 8 processors, and the time
spent by idling processors is minimal. Also, it is clear
that the time spent in the Main phase of the algorithm is
too short to permit a full scalability study. As such, we
evaluate the scalability of the edge addition algorithm
to larger processor counts by using the Medline data
to generate larger workloads. In order to increase the
problem size evenly, we formed successively larger
graphs made up of independent components identical
to original graph, linearly increasing the number of
vertices, edges, perturbation size, maximal cliques,
and resultant index data. We term these independent
components “copies,” and we increased the number of
copies in our graph from 1 to 6 as we increased the
number of processors from 1 to 64. We only present
results as to the scalability of the Main time—the Root
and Idle phases last less than 0.07 seconds in all cases,
and the Init time, which consists of reading in the
graph and index data from the disk, does not scale
and eventually dominates the algorithm runtime. The
results for our experiments appear in Figure 3.

Interestingly, despite the relatively large perturbation
size, the edge addition algorithm is far faster than
enumerating the maximal cliques of the perturbed
graph using BK, particularly, as the size of the graph

Figure 3: Normalized speedup versus number of pro-
cessors.

(number of copies) is increased. We do not present full
results here, but as a point of reference, enumerating
the maximal cliques of the four-copy Medline graph
took over 20 minutes using 128 processors on Jaguar,
with more than 99% of that time being spent in the
initial workload generation (Root) phase (compared to
around 8 seconds on 4 processors for the edge addition
algorithm).

From Figure 3, we see that the Main time for the
perturbed edge algorithm scaled almost perfectly as
the size of the graph (number of copies) increased.
Speedups were calculated as (t1 ∗ nc)/tc,p, where t1
is the Main time for calculating the perturbation on
one copy of the graph using a single processor, nc

is the number of copies of the graph, and tc,p is the
Main time for calculating the perturbation on c copies
using p processors. Main time represents the combined
amount of time required to run the BK algorithm to
detect the set of cliques in C+ as well as performing the
recursive removal procedure, index lookups required
to calculate C−, and load balancing. The scalability of
the Main time is within two-thirds of ideal, though this
may be due to the short times involved—the Main time
for 6 copies of the graph was only 0.216 seconds. As
the memory requirements for the algorithm increase
with the number of copies, we were unable to test
our algorithm for graphs larger than 6 copies, or 15.6
million vertices and 11.4 million edges.
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B. Effects of duplicate subgraph pruning

To illustrate the effectiveness of our theoretical
results on duplicate subgraph pruning described in
Section III-C, we evaluate the edge removal code with
and without the code that detects duplicate subgraphs
enabled. This experiment is performed on the same
20% perturbation of the Gavin et al. protein-protein
interaction data [2] and is performed on the ORNL
Jaguar system. For this experiment, we used a sin-
gle processor, as well as in-memory index accessing
strategy. The results of this experiment, in Table II,
show that duplicate cliques can potentially represent a
majority of the algorithm output if not properly pruned.
Here, we report the number of (potentially duplicate)
cliques of C+ identified by the algorithm as well as
timing results using the in-memory index access and
producer-consumer strategies on a single processor.
As the duplicate pruning results are only relevant
during the recursive removal phase of the algorithm,
we include here only the time spent in the Main phase
of the algorithm, which encompasses clique retrieval,
recursive removal, and load balancing. The amount of
time spent during the other phases of the algorithm
was consistent between the two runs. Unsurprisingly,
algorithm runtime was improved dramatically by the
application of this theory. Moreover, the algorithm
results without duplicate pruning would require further
processing to produce an enumeration of maximal
cliques without duplicates.

Table II: Effects of duplicate pruning on algorithm
performance.

Duplicate pruning? |C+| Main enumeration time
Without 228373 25.681
With 33941 6.830

C. Genome-scale reconstruction of R. palustris protein
complexes

We applied our framework to identify protein com-
plexes from pull-down experiments with 186 unique
proteins as baits and 1,184 unique proteins as preys
in Rhodopseudomonas palustris bacterium. The Val-
idation Table, including 205 genes clustered into 64
known complexes, was manually created based on the
annotation of genes in the R. palustris genome from
GenBank (2006). After tuning multiple “knobs,” for

the pull-down step, we ended up using the p-score
and Jaccard’s score with the threshold of 0.3 and
0.67, respectively. For the genomic-context step, we
used the predicted transcription units from BioCyc, the
predicted gene fusion events and conserved operons
from Prolinks. The thresholds for probability were
3.5E-14 and 0.2 for Gene neighborhood and Rosetta
Stone, respectively. Both steps identified 1020 specific
protein-protein interactions, with only 6% from the
pull-down step. This set produced 59 isolated modules,
33 complexes, and 3 networks. A module is defined
as an isolated set of interacting proteins. A complex
is a subset of at least three interacting proteins in
the module; all proteins in the subset are supposed
to physically interact with each other. A module is a
network if it includes more than one complex.

Many identified complexes represent important cel-
lular functions and provide insight into new metabolic
capabilities of this versatile bacterium. Most complexes
belong to the three large protein networks. The first
network is comprised of one large complex of in-
teracting subunits of ABC transporters and 5 smaller
complexes including multi-subunit enzymes tryptophan
synthase and acyl-CoA dehydrogenase. Acyl-CoA de-
hydrogenase complex in the network is represented by
an electron transfer flavoprotein alpha-subunit (etfA)
and by two proteins (RPA1612, RPA4798) annotated as
putative acyl-CoA dehydrogenase. Acyl-CoA dehydro-
genase in R. palustris has been shown to be transcribed
from a gene in the pimFABCDE operon, along with
other enzymes involved in the beta-oxidation of dicar-
boxylic acids [3]. An interesting observation can be
made about the interaction of the acyl-CoA dehydro-
genase complex with the complex that we annotated as
representing the electron transport to nitrogenase. The
latter is comprised of an electron transfer flavoprotein
etfA, 3 electron transfer flavoprotein fixA, fixB, fixC,
and possible electron transfer flavoprotein dehydroge-
nases transcribed from RPA1037. In some diazotrophic
bacteria a set of proteins transcribed form the fixABCX
operon forms a membrane protein complex that plays
a central role in electron transfer to nitrogenase [4].
The identified complex provides a similar metabolic
route to reduction of nitrogenase in R. palustris. Thus,
acyl-CoA dehydrogenase complex and the complex of
electron transfer to nitrogenase may link beta oxidation
of dicarboxylic acids to nitrogenase activity in R.
palustris metabolism.
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The second network has 10 complexes. Two relate
to fatty acid biosynthesis. Complex 1 relates to the
cobalamin synthesis complex (CobB, CobD, CobO,
CobQ2) through the lipoic acid synthetase (lipA2).
The other annotated complexes in the second network
include the Calvin cycle related complex (CbbA CbbF,
CbbP, CbbM, CbbT1), succinyl-CoA synthetase com-
plex (SucA, SucB, SucC, SucD, SdhA, DldH), and a
chaperone complex (DnaK, DnaJ, recN and possible
grpE). A centerpiece of the third network is a ribo-
somal complex. Four other complexes include RNA
polymerase complex, two complexes of ATP synthase,
ATP sulfurylase complex and cell division related
complex. The individual complexes, which are not
part of a network, mainly include enzymes comprising
several subunits, such as NADH-ubiquinone dehydro-
genase, nitrogenase, carbon-monoxide dehydrogenase,
bacteriochlorophyllide reductase, and chaperonin.

VI. CONCLUSION

In spite of low specificity of bait-prey and prey-prey
interactions in pull-down data, the proposed framework
captured the composition of known complexes and
predicted the composition for several unknown ones.
Most predicted complexes are biologically meaningful
and represent a comprehensible set of cellular func-
tions in R. palustris. The complexes provide insight
into function of uncharacterized proteins, metabolic
capabilities, and even specific mechanisms underly-
ing these capabilities. The framework requires the
enumeration of maximal cliques in protein affinity
networks. The proposed parallel, scalable algorithm
enables the efficient enumeration of maximal cliques
in response to changes in the genome-scale network.
These computational advancements allow for recon-
struction of genome-scale protein interaction networks
and the efficient tuning of parameters while finding the
optimal networks.
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