
Parallel Algorithms For FPGA Placement *

Malay Haldar, Anshuman Nayak, Alok Choudhary and Prith Banerjee
Center for Parallel and Distributed Computing

Northwestern University
Evanston, IL 60208-3118

{malay, nayak,choudhar,banerjee}@ece.nwu.edu

Fast FPGA CAD tools that produce high quality re-
sults has been one o] the most important research issues
in the FPGA domain. Simulated annealing has been the
method of choice for placement. However, simulated
annealing is a very compute-intensive method. In our
present work we investigate a range of parallelization
strategies to speedup simulated annealing with applica-
tion to placement]or FPGA. We present experimental
results obtained by applying the different parallelization
strategies to the Versatile Place and Route (VPR) Tool,
implemented on an SGI Origin shared memory multi-
processor and an IBM-SP2 distributed memory multi-
processor. The results show the tradeoff between execu-
tion time and quality of result for the different paral-
lelization strategies.

1 I n t r o d u c t i o n

The popularity of Field-Programmable Gate Arrays to
implement digital circuitry has seen significant increase
in recent times. The prime advantages provided by FP-
GAs are their fast manufacturing turnaround time, low
start-up costs and ease of design that involves less fi-
nancial risks [11]. With increasing device densities new
challenges emerge as one-million gate FPGAs become
feasible. One of the concerns in such a scenario is the
compile time for FPGAs that includes synthesis, place-
ment and routing time. The challenge is to reduce the
compile time without compromising on the quality of
solution. The utility of FPGAs suffer from large com-
pile times as design turn around time is crucial. In
fact most users desire the compile time to be as low as
compile time for C programs [12].

Placement time forms a large part of the compile
time. The most popular method for placement is simu-
lated annealing. The Versatile Place and Route (VPR)
tool [13], one of the leading tools in academia uses
simulated annealing for placement and can be used to
place a wide range of FPGA architectures. Simulated
annealing however is time-consuming. For the next

*This resea~rch was supported in part by DARPA under con-
tract DABT-63-97-0035.

generation of CAD tools for FPGAs, fast placement
methods are critical. Parallelization is an appealing
solution for providing fast placements. In our present
work we investigate a range of parallelization techniques
for FPGA placement using simulated annealing. We
modified VPR's placement routines to implement our
parallel simulated annealing techniques. Our modifica-
tions reuse the VPR code and the changes made are
fully compatible to the VPR router. Hence sequen-
tial enhancements to the VPR tool in future can easily
be incorporated in our version with parallel placement.
We present the experimental results and the involving
tradeoffs for each of the parallelization strategies. Our
approach is similar to the parallelization techniques by
Banerjee et al for standard cell placement [2] [1]. To
our knowledge, there has been no previous work in par-
allel placement for FPGAs.

The contributions of the paper are :

* While there have been many previous parallel al-
gorithms for cell placement for ASIC design, our
work is the first on FPGA placement.

* We have taken one of the most widely used pub-
licly available placement tools for FPGAs and par-
allelized it.

. We have evaluated a wide range of parallel algo-
rithms on both shared memory and distributed
memory multiprocessor.

* We have performed detailed experimental evalua-
tion of each algorithm presented using real bench-
marks.

The organization of the paper is as follows. Section 2
describes the placement problem for FPGAs and the
placement algorithm used in VPR. Section 3 describes
the different parallelization strategies implemented and
the results obtained. Section 4 summarizes related work
and Section 5 concludes the paper.

2 T h e P l a c e m e n t P r o b l e m

Figure 1 shows the generic architecture of an FPGA.
The generic structure consists of an array of logic blocks

86

Z

D'

m tm
m m

mm

[] ,m /
Logic Blocks |nte!

i m m []

!m "I []
'm E mini)

Q,, !0 Blocks
:onnect Resources

Figure 1: Generic Architecture of an F P G A

that can be configured to realize simple combinational
or sequential logic. User configurable IO blocks provide
the interface between the external package pins and in-
ternal logic. In addition to logic and IO blocks, there
are interconnect resources which may be configured to
connect logic/IO blocks together. The circuit to be
realized in the F P G A is first decomposed into smaller
sub-circuits tha t can each be mapped into a logic block.
The placement problem is to map these sub-circuits to
the logic blocks of the F P G A so that the placement cost
function is minimized. The placement cost function is
typically designed to produce a compact placement tha t
facilitates routing. The routing problem is to find a pos-
sible way to connect the sub-circuits using the available
interconnect resources.

VP R [13] uses simulated annealing for placement.
The cost function employed is

N~, , , [bbx(n) bby(n)]
cost-- ~ q(n) LC-~) + cav,~(n)J

n = l

The summation is over all the nets. bbz and bby de-
note the horizontal and vertical bounding box for each
net. q(n) is a compensating factor for the discrepancy
between the bounding box wire length model and the
actual wire length needed to connect four or more ter-
minals. Cov,x(n) and Ca,,~(n) are average channel ca-
pacities in the x and y direction over the bounding box
of net n.

The initial tempera ture is calculated in a manner
similar to [14]. VPR uses an innovative annealing
schedule where the new tempera ture is computed from
the old tempera ture as The w = or. Told. 61 is depen-
dent on the fraction of accepted moves (Raeeept) at Told
in a way that lowers the annealing tempera ture slowly
when Ra~c~pt is high and lowers the annealing tempera-
ture quickly in c a s e .Raccept is low. At each t empera tu re
10- (Nbtoek~) 133 moves are evaluated, where Nbto~k, is
the number of blocks (logic + IO). The algori thm also

uses the range limiter concept tha t sets a limit on the
distance between the two blocks that can be swapped
by a move of simulated annealing. At high tempera-
tures the limit is large enabling almost any block to be
swapped with any other. As simulated annealing pro-
ceeds, the limit is decreased, dependent on Raceept. At
lower temperatures , the limit becomes small enabling
only nearby blocks to be swapped.

More details about V P R placement can be found in
[13]. Depending on the size of the circuit, the number
of moves evaluated per tempera ture (10- (Nbloca.~) 133
) can be large. For the benchmarks presented, the av-
erage number of moves is 4.4 x 10 7. Such a large num-
ber of moves evaluation present a significant amount of
computat ion.

3 P a r a l l e l A l g o r i t h m s for P l a c e -
m e n t

3.1 Parallel Moves Approach

M
o
v
e
4 m

m
m

Move 3

} Move 2

m
Move !

Figure 2: Parallel Moves: Moves 1 and 4 can be done
in parallel but not moves 2 and 3

The number of moves evaluated by simulated anneal-
ing at each tempera ture is quite:large. The evaluation
of a move may result in three cases - (i) two blocks are
swapped (ii) a block is moved to a new(empty) position
(iii) the move is rejected. A block refers to either a logic
block or an IO block to be mapped to an appropria te
block of the FPGA. Two moves can be done in parallel
provided they do not move the same block(s). Also,
while moving a block to an empty position in parallel
with other moves, care must be taken so that another
block is not moved to the same empty position (Figure
2). However, ensuring the above two conditions does
not guarantee the results to be equivalent to sequential
execution. Parallel evaluation of moves may incur er-
ror while calculating the cost function as it is dependent
on the bounding box of the nets containing the blocks.
Two moves that move blocks of the same net may eval-
uate the bounding box incorrectly as each one of the

87

moves can not take into account the fact tha t the other
move is changing the bounding box (Figure 3). There
are two approaches one can take - (1) Ignore the error
in cost function (2) Avoid inaccurate computat ion of
bounding boxes by evaluating parallel moves tha t not
only move different blocks, but also blocks tha t belong
to different nets.

[] D [] [] [] D D O [] [3 0 [] []

[] [] [] DD[] [] []
 IDD GDEDC]D E] I ~ . [] [] [~ ~ , . / m o v c L

D I D [] [] ~ 0 D ~ [] [] [] _~hh~

[3 ElI3 D []
. ~ - B - F S - B - - [] [] [i]

morel bbl bb

Figure 3: Error in Bounding Box Calculation: If movel
and move2 are done in parallel, they calculate the
bounding box as b b l and bb2 respectively, whereas the
actual bounding box is bb.

Both approaches effect the quality of result ad-
versely. The first approach has negative effects because
of the error in cost function, which interferes with the
acceptance of moves. The second approach restricts
the moves of simulated annealing and thus evaluates
a smaller search space. We present the results for the
second approach. Even the initial results for the first
approach showed substantial quality degradation.

Computa t ion of correct bounding boxes can be done
in two ways - (i) Generate and evaluate moves tha t
move blocks belonging to different nets. (ii) Evaluate
all moves, but accept only those moves that move blocks
belonging to different nets. The second approach has
the drawback tha t the percentage of moves accepted
would be low when compared to sequential simulated
annealing, provided same number of moves are evalu-
ated. While this problem can be solved by evaluating
more moves per tempera ture in the parallel version, it is
not clear exact ly how many more moves should be eval-
uated. Hence we take the first approach. The s t ra tegy
was implemented for a shared memory machine as the
parallelism at moves level is quite fine-grained and is
shown in Figure 4. In our design, given N processors,
one processor (P 0) generates moves tha t move blocks
belonging to different nets. Other processors evaluate
these moves in parallel and either accept or reject them.
The generation and evaluation of moves is overlapped
to save time, i.e, P0 generates moves for step n + 1,

begin Parallel Moves SA
if (my_rank == 0){

do an initial random placement

find initial temperature
generate n -- 1 independent moves }

while(t > end-temperature){

for(ntmlSer of moves per temperature){

if(my_rank==O)

generate n -- 1 independent moves
else

evaluate move number my_rank generated
in the previous step}

update temperature}

end Parallel Moves SA

Figure 4: Parallel Placement Algorithm using Parallel
Moves

while other processors evaluate moves for step n.

3.1.1 Experimental Results

The parallel moves approach was implemented on an
SGI Origin shared memory multiprocessor. Figure 5
and 6 show the variation of execution t ime and cost
with number of processors, respectively. As seen, the
parallel implementat ions show negative speedups. This
is due to the fact the overhead of synchronization out-
weighs the advantages of parallelization. The cost is
also affected significantly for the des and bigkey bench-
marks.

3.2 A r e a B a s e d P a r t i t i o n i n g

The problem in the previous approach was tha t the
moves were very restricted. In our next approach we t ry
to alleviate this problem by part i t ioning the area of the
F P G A and assigning the par t i t ioned areas to different
processors. Each processor is free to move blocks within
its own area. This helps us in two ways -

• There is much less synchronization involved as
compared to the previous approach. In the pre-
vious approach, the generation of moves by P0 and
evaluation of moves by P1 1 has to be synchro-
nized. In our current approach, each processor can
carry out simulated annealing on the area it owns
and the point of synchronization is flexible.

• The moves evaluated are much less restricted than
the previous approach. In our current approach,
the moves evaluated by a processor on its area are
done sequentially, and hence the restrictions tha t
arise in the previous approach do not affect us here.

88

Note that for nets tha t span two or more part i t ioned
areas, we may still incur error in computat ion of bound-
ing box (Figure 7).

P0
O O O O O O DO
O O O O O O OO
ODE]ODD OO

[] [[] o'-~o [] - - 9

b b o [[] [] milS] []
o[oo~o o@
[] [~ - E 3 E ~ - - m

o[55 fo5
oooooo/ oo
E30 O O O [3 \ O O

P 2 bb"

PI
OOOO
OOOO
0[300
Oo ooo

OOO
OOOO

OOO
, OOO
OO[OO

OOO
OOOO
P3

Figure 7: Error in Bounding Box for Area Based Part i-
tioning: For nets tha t span across partit ion, bounding
boxes may be computed erroneously as the move made
by other processors are not communicated immediately.

This is because two or more processors may move
blocks of the same net simultaneously. However, we
expect this error to be small as compared to the error
ignoring approach mentioned in the previous section.
This is because in the current approach errors occur
only for those nets tha t span two or more part i t ioned
areas. Moreover, with falling tempera ture the distance
covered by moves are reduced and most of the moves
are expected to happen between nearby blocks.

Finally, after periodic intervals (typically after each
temperature) , all the processors update their da ta
structures to reflect the current placements of the
blocks and the bounding boxes of the nets. Thus, each
processor gets to know of the moves done by other pro-
cessors at the end of a temperature . This information
can be made more recent to each processor at the ex-
pense of more synchronization.

In area based parti t ioning, a processor can move
a block within its area only. Therefore the move-
ment of a block is confined to the part i t ioned area of
FPGA it current ly belongs. To allow blocks to move
all over the FPGA, the parti t ioning of area m u s t be
changed. Moreover, the sequence of different parti t ion-
ing schemes should ensure tha t a block placed in any
arbitrary location has the freedom to move to any other
arbi trary location in the FPGA. We adopt the follow-
ing two part i t ioning schemes. We alternate between the
two schemes for successive tempera ture (Figure 8). An
overview of the parallel algori thm is shown in Figure 9.

Horizontal Partition

PO PI Pn-I

PI
Alternate

Ve.ical Pamtion

Figure 8: Part i t ioning schemes for Area Based Patti=
tioning

b e g i n A r e a P a r t i t i o n e d SA

if (my_rank == O) {
do an initial random placement

find initial temperature

choose a partition(horizontal/vertical) }

while(t > end-temperature){

for(number of moves per temperature)
generate and evaluate moves in own area

update data-structures of all processors

change partition

update temperature}

end Area Partitioned SA

Figure 9: Parallel Placement algorithm using Area
Based Part i t ioning

3.2.1 E x p e r i m e n t a l Resul ts

The area based part i t ioning approach was implemented
on an SGI Origin. Figure 10 and 11 show the vari-
ation of execution time and cost with number of pro-
cessors, respectively. The t iming results show marked
improvement when compared to the parallel moves ap-
proach. The speedups are due to less synchronization
requirements. However, the speedups are not linear.
The positive thing is tha t the cost does not degrade
with increasing processors.

3.3 Synchronous Markov Chains

The shortcomings of the approaches in the previous two
sections is that they fail to maintain the quality of the
solution. Also the quality is quite unpredictable. This
is due to two reasons - (i) restricted moves (ii) error in
cost function. In area based partit ioning, we made the
moves less restricted by assigning parts of the F P G A
to individual processors and giving them the freedom
to move blocks within their area. However, the error in
cost function affected the quality of results negatively.
As our next step, we remove the restriction on moves
altogether by assigning the whole F P G A to each pro-
cessor. Each processor carries out simulated annealing

89

on the whole FPGA, starting with a different random
seed. To avoid concurrent updates to data structures,
each processor does simulated annealing on a local copy
of the FPGA (Figure 12). At periodic intervals, the
results from all the processors are combined. The result
of the processors can be combined in different ways -

• Take the best placement of each net and combine
them together to form the new combined place-
ment. In case of conflicts, find a new placement
for the conflicting nets iteratively.

* Among all the processors, take the best placement
obtained by a processor as the new combined place-
ment.

begin Synchronous Marker Chain SA
generate initial random placement
find initial temperature

initialize counter to 0

while(t > end_temperature){
increment counter
for(number of moves per temperature)

generate and evaluate moves

if(counter% update_frequency == 0){
best~ank= rank of the processor
with best placement

i f (my_.rank ==best_rank)
broadcast placement to a l l other
processors}}

end Synchronous Markov Chain SA

P0 P 1 P2] P3

I I Simulated Annealing

Cost computation and
communication
Placement combination
and result broadcast

Figure 12: Synchronous Markov Chains

The first approach of combining best configurations
of individual nets is non trivial and may consume sig-
nificant computation time (even when net placements
are non conflicting). The second approach is very ef-
ficient in terms of computation time, and as we found
from experimental results, does quite well in terms of
preserving the quality of solution. If we consider simu-
lated annealing as a search path where moves are pro-
posed and either accepted or rejected depending on a
particular cost evaluation and a random seed. Each
search path can be viewed as a Marker Chain. Our
current approach then essentially implements parallel
Markov Chains. Our approach is similar to that pre-
sented in [2]. To achieve speedup we reduce the number

Figure 13: Parallel Placement Algorithm based on Syn-
chronous Markov Chains

of moves evaluated at each temperature by ~ N, where N
is the number of processors. Note that we could have
reduced the number of moves being evaluated at each
temperature by an arbitrary factor, thus obtaining any
desired speedup. Of course, an arbitrary reduction in
the number of moves will degrade the quality of result.
The quality of result also depends on the periodicity
with which the results of the different processors are
combined. The number of moves after which the re-
sults of the processors are combined is referred to as
update_frequency. An overview of the parallel algorithm
is shown in Figure 13.

3 . 3 . 1 E x p e r i m e n t a l R e s u l t s

The synchronous Markov chain approach was imple-
mented on an IBM-SP2 distributed memory multipro-
cessor. Figures 14 and 15 show the variation of execu-
tion time and cost with number of processors, respec-
tively. The timing graph shows near linear speedups.
This is due to the fact that synchronization is mini-
mal. Also due to the nature of the problem, the load
is quite evenly distributed. There is a gradual decrease
in the quality of solution with increasing processors,
except for des which shows a substantial degradation.
des also shows significant degradation for the parallel
moves approach which suggests that the benchmark is
very sensitive to any alteration from traditional simu-
lated annealing.

3.4 A s y n c h r o n o u s M a r k e r C h a i n s

Our final approach is conceptually similar to the pre-
vious approach. In our present approach we improve
upon the synchronization requirement of the approach

90

in the previous section. Our approach is similar to
the approach presented in [5] [2]. In the previ-
ous approach, the synchronization requirement was
quite strong, as each processor had to complete a
pre-determined number of i terations before the results
could be combined. The combination of result involves
determining the best placement and distr ibuting it to
all the processors. In our current approach, instead of
combining the results of the processors synchronously,
we make the combination asynchronous. A server main-
t i n s the best cost and placement. At periodic inter-
vals, processors query the server. If their current place-
ment is bet ter than the server's best placement, they
export their placement to the server. Otherwise they
import the server's placement. Thus the synchroniza-
tion across all the processors is removed. There are two
design choices regarding the server. The server may
also carry out simulated annealing or may just service
queries. The tradeoff is between more work done by
assigning work to the server or servicing the queries
faster, thereby giving more t ime to the other proces-
sors to work. For a very small number of processors,
the server may also do simulated annealing. But in a
scalable design, the server is bet ter off servicing queries
only. In our design the server services queries only (Fig-
ure 16). An overview of the algorithm is given in Figure
17.

• 1 PO P2 P3

------_~. ~

• N N

Send cost
Receive cost and send
decision (send / rece ive)
Receive decision

',::::',::: Receive Placement
Send Placement

Figure 16: Asynchronous Markov Chains

begin Asynchronous Markov Chain SA
if(my_rank == 0){

initialize best_cost to infinity
initialize best_placement to null

while(other processors so annealing){

receive cost from processor P
if(cost of P < best~ost){

best_cost= cost of P
best_placement=receive placement from P}

else{

send best_cost to P
send best_placement to P}}}

else{
generate initial random placement

find initial temperature

initialize counter to 0

while(t > end_temperature){

increment counter
for(number of moves per temperature)

generate and evaluate moves

if(counter%update_frequency == O){
send P0 current cost
send/receive placement from Po}})

end Asynchronous Markov Chain SA

Figure 17: Parallel Placement Algorithm based on
Asynchronous Markov Chains

3 .4 .1 E x p e r i m e n t a l R e s u l t s

The asynchronous Markov chains approach was imple-
mented on an IBM-SP2. Figure 18 and 19 show
the variation of execution t ime and cost with num-
ber of processors, respectively. The characteristics of
the curves are similar to the synchronous Markov chain
implementation. The speedups are more close to linear
and the cost degradat ion is much more gradual.

4 R e l a t e d W o r k

Several approaches to parallelize simulated annealing
have been proposed in the domain of cell placement
and can be broadly classified into two categories :

. Move Acceleration In this approach the evaluation
of individual moves is parallelized by doing the dif-
ferent tasks involved in evaluating a move in par-
allel. The available parallelism in this approach is
limited and implementat ion is restricted to shared
memory model.

. Parallel Moves In this approach multiple moves are
evaluated concurrently. The concurrent evaluation
of moves may suffer from inaccurate evaluation of
the cost function. A range of alternatives have

91

been proposed to counter the inaccuracy in cost
function evaluation. These alternatives again can
be classified into two categories -

(a)

(b)

Avoiding Error These methods involve gener-
ating and evaluating moves that do not in-
teract so that there may be inaccuracy in
the evaluated cross function. Deciding which
moves are not interacting, however is not triv-
ial.

Tolerate Error These methods ignore the er-
ror in cost function evaluation for parts of the
annealing. Errors are corrected after certain
moves by synchronizing with other processors.
A large spectrum of algorithms exist that dif-
fer in the way the problem is part i t ioned and
the frequency and mechanism of synchroniza-
tion.

Kravitz and Rutenbar [9] report a speedup of 2 on
4 processors for the move acceleration approach and a
speedup of 3.5 on 4 processor for the avoiding error ap-
proach on a shared memory multiprocessor. Banerjee,
Jones and Sargent [3] present a variety of parti t ioning
methods for the parallel moves approach on a hyper-
cube. They obtained a speedup of 12 for 16 processors.
Several other works on parallelizing simulated anneal-
ing have been reported for different applications and
on different architectures. Casot to et al. [10] achieved
speedup of 6 on 8 processors for placement of macro-
cells on a shared memory multiprocessor. Rose et al.
[8] propose a hybrid algorithm of min-cut algorithm
and simulated annealing that achieve a speedup of 4
on 5 processors. Sun and Sechen [6] show near linear
speedups for the parallel moves approach on a network
of workstations. Banerjee, Kim, Ramkumar , Parkes
and Chandy [1] present a range of algorithms based
on parallel simulated annealing for s tandard cell place-
ment.

5 C o n c l u s i o n

Our work in this paper is the first one to evaluate par-
allel placement algorithms for the F P G A placement ap-
plication. We have investigated a range of parallel sim-
ulated annealing algorithms for F P G A placement. The
parallel moves approach does not seem very promising
due to loss of speedup tight by synchronization require-
ments and degradation in quality of result because of re-
stricted moves. The second approach of area based par-
ti t ioning provides better speedups and quality of solu-
tion. The speedup obtained is mainly due to reduction
in synchronization. In the same direction the Marker

chains approach reduces the synchronization require-
ment significantly and we observe near linear speedup.
Markov chains also prove promising in terms of quality
of result.

R e f e r e n c e s
[1] J. A. Chandy, S. Kim, B. Ramkumar, S. Parkes and P.

Banerjee. An Evaluation of Parallel Simulated Annealing
Strategies with Applications to Standard Cell Placement.
In IEEE Trans. on Computer Aided Design, Vo1.16, April
1997, pp.398-410.

[2] J. A. Chandy and P. Banerjee. Parallel Simulated Annealing
Strategies for VLSI Cell Placement. In Prec. 9th Interna-
tional Conference on VLSI Design, Bangalore - India, Jan.
1996.

[3] P. Banerjee, M. H. Jones and J. S. Sargent. Parallel sim-
ulated annealing algorithms for standard cell placement on
hypercube multiprocessors. In IEEE Trans. on Parallel and
Distributed Systems, Vol.1, Jan. 1990, pp.91-106.

[4] S. Kim, J. A. Chandy, S. Parkes, B. Ramkumar and P.
Banerjee. ProperPLACE: A portable parallel algorithm for
cell placement. In Prec. of International Parallel Processing
Symposium, Cancun - Mexico, Apr.1994, pp.932-941.

[5] S. Y. Lee and K. G. Lee. Asynchronous communication of
multiple Markov Chains in parallel Simulated Annealing. In
Proc. International Conference on Parallel Processing,Aug.
1992,Vol.III,pp. 169-176.

[6] W. J. Sun and C. Sechen. A loosely coupled parallel al-
gorithm for standard cell placement. In Digest of papers,
International Conference on Computer Aided Design,San
Jose,Nov. 1994~pp.137-144.

[7] C. Sechen and K. W. Lee. An improved simulated anneal-
ing algorithm for row-based placement. In Digest of papers,
International Conference on Computer Aided Design,Santa
Clara,Nov. 1987:pp.478-481.

[8] J. S. Rose, W. M. Snelgrove and Z. G. Vranesic. Parallel cell
placement algorithms with quality equivalent to simulated
annealing. In IEEE Trans. Computer Aided Design, Vol.7,
Mar. 1988, pp.387-396.

[9] S. A. Kravitz and R. A. Rutenbar. Placement by simulated
annealing on a multiprocessor.ln IEEE Trans. Computer
Aided Design,Vol.CAD-6,July 1987,pp.534-549.

[10] A. Casotto, F. Romeo and A. Sangiovanni-Vincentelli.
A parallel simulated annealing algorithm for the place-
ment of macro-cells. In IEEE Trans. Computer Aided
Design,Vol.CAD-6,Sept. 1987,pp.838-847.

[11] S. Brown and J. Rose. FPGA and CPLD Architectures: A
Tutorial. In IEEE Design and Test of Computers, Vol.12,
Summer 1996, pp.42-57.

[12] J. Rose and D. Hill. Architectural and Physical Design
Challenges for One-Million Gate FPGAs and Beyond. In
FPGA'97, ACM Syrup. on FPGAs, Feb. 1997, pp.129-132.

[13] V. Betz and J. Rose. VPR: A New Packing, Placement
and Routing Tool for FPGA Research. In 7th International
Workshop on Field-Programmable Logic, Londan, August
1997, pp. 213-222.

(14] M. Huang, F. Romeo and A. Sangiovanni-Vincenteili. An
Efficient General Cooling Schedule for Simulated Annealing.
In ICCAD , 1986,pp.381-384.

92

1400.0 -

1200.0

1000,0

z 800.0
¢

~0.0

400.0 ,"'

200,0 -

Parallel Non-interacting Moves

alu4
apex2
apex4

- - - bigkey
des

0.0
1 2 3 5

processo~

1.8

1.6

1,4

~ 1.2

1.0
I

Parallel Non.Interacting Moves

Yxl
apex~
bigk~

_ d e s ~ =

2 " 3 4 5

proetessors

Figure 5: Variation of execution time
for Parallel Moves algorithm on an
SGI shared memory multiprocessor.
Time shown for 1 processor corre-
sponds to the serial algorithm.

Figure 6: Variation of Normalized
Placement Cost for Parallel Moves al-
gorithm on an SGI shared memory
multiprocessor. Cost shown for 1 pro-
cessor corresponds to the serial algo-
rithm.

500,0

Area Based Partioning

alu4
apex?..
apex4

....... ex~p
misex3

400.0 - .

,7.
z

3. 300.0- ' .

'~ 200.0- " -

100.0 - .

i
0.0 1 2 3 4 '5

processors

Area Based Partitioning

1.30

125 -

i 1.20-

= 1.15-

~ 1.10- ./

1.05 - "i"

1 .00 '

-.._

ahJ4
a,pex2
~ex4

- - - exSp
rnisex3

r T
4 G 6 1 2 3

processors

Figure 10: Variation of execution
time for Area based Partitioning algo-
rithm on an SGI shared memory mul-
tiprocessor. Time shown for 1 pro-
cessor corresponds to the serial algo-
rithm.

Figure 11: Variation of Normalized
Placement Cost for Area based Par-
titioning algorithm on as SGI shared
memory multiprocessor. Cost shown
for 1 processor corresponds to the se-
rial algorithm.

9 3

Synchronous Markov Chain Model Synchronous Markov Chain Model

1400,0 -

1200,0 -

1000.0 -

800.0 ~
.-,....

. ' - ,

600.O-

400.0 -

200.0 -

0.0 1

alu4
bigkey
des
diffeq
rnisex3

L

2 3 4 5 6

processor~

1.8

1.6

1.4

alu4
b~key
des

. . . . d~eq '-
rniseX3

G 1.2

r

1,0 1 2 3 4

pro¢~o~

Figure 14: Variation of execution
time for Synchronous Markov Chains
algorithm on an IBM-SP2 distributed
memory multiprocessor. Time shown
for 1 processor corresponds to the se-
rial algorithm•

Figure 15: Variation of Normal-
ized Placement Cost for Synchronous
Markov Chains algorithm on an IBM-
SP2 distributed memory multiproces-
sor. Cost shown for 1 processor cor-
responds to the serial algorithm.

Asynchronous Markov Chain Model

1400.0 -

1200.0 -

1000.0 =- ~' ".

800.0 :

600,0-

4o0,0 -

200,0-

alu4
apex2
bigkey

• des
difleq

t
\ ,

~- < L : -..

i

0.01 2 3 4 '5

p r o c e s s o ~

1.60

1 . 4 0 -

, g

1 .20 -

t

lOO
1

Asynchronous Markov Chain Model

alu4 /
ape~2
bigkey

_ v des
• diffeq

/

/

/

/

J
/

i i

2 3 4 5 6
processors

Figure 18: Variation of execu-
tion time for Asynchronous Markov
Chains algorithm on as IBM-SP2
distributed memory multiprocessor.
Time shown for 1 processor corre-
spond to the serial algorithm.

Pen~iss ion to m a k e digital or hard copies o f all or part or'this work ll)r
personal or classroom use is granted without t'ce provided that copies
are not made or distributed li"w profit or commercia l advantage and that
copies bear this notice and the full citation on the first page. To copy

Figure 19: Variation of Normal-
ized Placement Cost for Synchronous
Markov Chains algorithm on as IBM-
SP2 distributed memory multiproces-
sor. Cost shown for 1 processor cor-
respond to the serial algorithm.

of l~crwisc, to repub l i sh , Io pos! on servers o r Io rcd is~r ibu lc [o]isL~.

requires prior specif ic permission and,'or a tL'c.
GLSVLS[2000 Evanston Illinois USA
Copyright ACM 2000 1-58113-251-4/00/04...S5.00

9 4

