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Fast FPGA CAD tools that produce high quality re- 
sults has been one o] the most important research issues 
in the FPGA domain. Simulated annealing has been the 
method of choice for placement. However, simulated 
annealing is a very compute-intensive method. In our 
present work we investigate a range of parallelization 
strategies to speedup simulated annealing with applica- 
tion to placement ]or FPGA. We present experimental 
results obtained by applying the different parallelization 
strategies to the Versatile Place and Route (VPR)  Tool, 
implemented on an SGI Origin shared memory multi- 
processor and an IBM-SP2 distributed memory multi- 
processor. The results show the tradeoff between execu- 
tion time and quality of result for the different paral- 
lelization strategies. 

1 I n t r o d u c t i o n  

The popularity of Field-Programmable Gate Arrays to 
implement digital circuitry has seen significant increase 
in recent times. The prime advantages provided by FP- 
GAs are their fast manufacturing turnaround time, low 
start-up costs and ease of design that involves less fi- 
nancial risks [11]. With increasing device densities new 
challenges emerge as one-million gate FPGAs become 
feasible. One of the concerns in such a scenario is the 
compile time for FPGAs that includes synthesis, place- 
ment and routing time. The challenge is to reduce the 
compile time without compromising on the quality of 
solution. The utility of FPGAs suffer from large com- 
pile times as design turn around time is crucial. In 
fact most users desire the compile time to be as low as 
compile time for C programs [12]. 

Placement time forms a large part of the compile 
time. The most popular method for placement is simu- 
lated annealing. The Versatile Place and Route (VPR) 
tool [13], one of the leading tools in academia uses 
simulated annealing for placement and can be used to 
place a wide range of FPGA architectures. Simulated 
annealing however is time-consuming. For the next 
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generation of CAD tools for FPGAs, fast placement 
methods are critical. Parallelization is an appealing 
solution for providing fast placements. In our present 
work we investigate a range of parallelization techniques 
for FPGA placement using simulated annealing. We 
modified VPR's placement routines to implement our 
parallel simulated annealing techniques. Our modifica- 
tions reuse the VPR code and the changes made are 
fully compatible to the VPR router. Hence sequen- 
tial enhancements to the VPR tool in future can easily 
be incorporated in our version with parallel placement. 
We present the experimental results and the involving 
tradeoffs for each of the parallelization strategies. Our 
approach is similar to the parallelization techniques by 
Banerjee et al for standard cell placement [2] [1]. To 
our knowledge, there has been no previous work in par- 
allel placement for FPGAs. 

The contributions of the paper are : 

* While there have been many previous parallel al- 
gorithms for cell placement for ASIC design, our 
work is the first on FPGA placement. 

* We have taken one of the most widely used pub- 
licly available placement tools for FPGAs and par- 
allelized it. 

. We have evaluated a wide range of parallel algo- 
rithms on both shared memory and distributed 
memory multiprocessor. 

* We have performed detailed experimental evalua- 
tion of each algorithm presented using real bench- 
marks. 

The organization of the paper is as follows. Section 2 
describes the placement problem for FPGAs and the 
placement algorithm used in VPR. Section 3 describes 
the different parallelization strategies implemented and 
the results obtained. Section 4 summarizes related work 
and Section 5 concludes the paper. 

2 T h e  P l a c e m e n t  P r o b l e m  

Figure 1 shows the generic architecture of an FPGA. 
The generic structure consists of an array of logic blocks 
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Figure 1: Generic Architecture of an F P G A  

that  can be configured to realize simple combinational 
or sequential logic. User configurable IO blocks provide 
the interface between the external  package pins and in- 
ternal logic. In addition to logic and IO blocks, there 
are interconnect  resources which may be configured to 
connect logic/IO blocks together.  The  circuit to be 
realized in the F P G A  is first decomposed into smaller 
sub-circuits tha t  can each be mapped into a logic block. 
The placement problem is to map these sub-circuits to 
the logic blocks of the F P G A  so that  the placement cost 
function is minimized. The placement cost function is 
typically designed to produce a compact  placement tha t  
facilitates routing. The routing problem is to find a pos- 
sible way to connect the sub-circuits using the available 
interconnect resources. 

VP R  [13] uses simulated annealing for placement.  
The cost function employed is 

N~, , ,  [ bbx(n) bby(n) ] 
cost-- ~ q(n) LC-~) + cav,~(n)J 

n = l  

The summation is over all the  nets. bbz and bby de- 
note the horizontal and vertical bounding box for each 
net. q(n) is a compensating factor for the discrepancy 
between the bounding box wire length model and the 
actual wire length needed to connect  four or more ter- 
minals. Cov,x(n) and Ca,,~(n) are average channel ca- 
pacities in the x and y direction over the bounding box 
of net n. 

The  initial tempera ture  is calculated in a manner  
similar to [14]. VPR uses an innovative annealing 
schedule where the new tempera ture  is computed from 
the old tempera ture  as The w = or. Told. 61 is depen- 
dent on the fraction of accepted moves (Raeeept) at Told 
in a way that  lowers the annealing tempera ture  slowly 
when Ra~c~pt is high and lowers the annealing tempera-  
ture quickly in c a s e  .Raccept is low. At each t empera tu re  
10- (Nbtoek~) 133 moves are evaluated, where Nbto~k, is 
the number  of blocks ( logic + IO). The  algori thm also 

uses the range limiter concept tha t  sets a limit on the 
distance between the two blocks that  can be swapped 
by a move of simulated annealing. At high tempera-  
tures the limit is large enabling almost any block to be 
swapped with any other.  As simulated annealing pro- 
ceeds, the limit is decreased, dependent  on Raceept. At 
lower temperatures ,  the limit becomes small enabling 
only nearby blocks to be swapped. 

More details about  V P R  placement can be found in 
[13]. Depending on the size of the circuit, the number 
of moves evaluated per tempera ture  ( 10- (Nbloca.~) 133 
) can be large. For the benchmarks presented, the av- 
erage number of moves is 4.4 x 10 7. Such a large num- 
ber of moves evaluation present a significant amount  of 
computat ion.  

3 P a r a l l e l  A l g o r i t h m s  for P l a c e -  
m e n t  

3.1 Parallel Moves Approach 
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Figure 2: Parallel Moves: Moves 1 and 4 can be done 
in parallel but  not moves 2 and 3 

The number of moves evaluated by simulated anneal- 
ing at each tempera ture  is quite:large. The evaluation 
of a move may result in three cases - (i) two blocks are 
swapped (ii) a block is moved to a new(empty) position 
(iii) the move is rejected. A block refers to either a logic 
block or an IO block to be mapped to an appropria te  
block of the FPGA.  Two moves can be done in parallel 
provided they do not move the same block(s). Also, 
while moving a block to an empty position in parallel 
with other  moves, care must be taken so that  another  
block is not moved to the same empty position (Figure 
2). However, ensuring the above two conditions does 
not guarantee the results to be equivalent to sequential 
execution. Parallel evaluation of moves may incur er- 
ror while calculating the cost function as it is dependent  
on the bounding box of the nets containing the blocks. 
Two moves that  move blocks of the same net may eval- 
uate the bounding box incorrectly as each one of the 
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moves can not take into account the fact tha t  the other 
move is changing the bounding box (Figure 3). There 
are two approaches one can take - (1) Ignore the error 
in cost function (2) Avoid inaccurate computat ion of 
bounding boxes by evaluating parallel moves tha t  not 
only move different blocks, but also blocks tha t  belong 
to different nets. 
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Figure 3: Error  in Bounding Box Calculation: If movel  
and move2 are done in parallel, they calculate the 
bounding box as b b l  and bb2 respectively, whereas the 
actual bounding box is bb. 

Both approaches effect the quality of result ad- 
versely. The  first approach has negative effects because 
of the error in cost function, which interferes with the 
acceptance of moves. The  second approach restricts 
the moves of simulated annealing and thus evaluates 
a smaller search space. We present the results for the 
second approach.  Even the initial results for the first 
approach showed substantial quality degradation.  

Computa t ion  of correct bounding boxes can be done 
in two ways - (i) Generate  and evaluate moves tha t  
move blocks belonging to different nets. (ii) Evaluate  
all moves, but  accept only those moves that  move blocks 
belonging to different nets. The second approach has 
the drawback tha t  the percentage of moves accepted 
would be low when compared to sequential simulated 
annealing, provided same number of moves are evalu- 
ated. While this problem can be solved by evaluating 
more moves per tempera ture  in the parallel version, it is 
not clear exact ly how many more moves should be eval- 
uated. Hence we take the first approach. The  s t ra tegy 
was implemented for a shared memory machine as the 
parallelism at moves level is quite fine-grained and is 
shown in Figure 4. In our design, given N processors, 
one processor ( P 0 )  generates moves tha t  move blocks 
belonging to different nets. Other  processors evaluate 
these moves in parallel and either accept or reject them. 
The generation and evaluation of moves is overlapped 
to save time, i.e, P0 generates moves for step n + 1, 

begin Parallel Moves SA 
if ( my_rank == 0){ 

do an initial random placement 

find initial temperature 
generate n -- 1 independent moves } 

while( t > end-temperature ){ 

for( ntmlSer of moves per temperature ){ 

if(my_rank==O) 

generate n -- 1 independent moves 
else 

evaluate move number my_rank generated 
in the previous step} 

update temperature} 

end Parallel Moves SA 

Figure 4: Parallel Placement  Algorithm using Parallel 
Moves 

while other  processors evaluate moves for step n. 

3.1.1 Experimental Results 

The parallel moves approach was implemented on an 
SGI Origin shared memory  multiprocessor. Figure 5 
and 6 show the variation of execution t ime and cost 
with number of processors, respectively. As seen, the 
parallel implementat ions show negative speedups. This 
is due to the fact the overhead of synchronization out- 
weighs the advantages of parallelization. The cost is 
also affected significantly for the des and bigkey bench- 
marks. 

3.2 A r e a  B a s e d  P a r t i t i o n i n g  

The  problem in the previous approach was tha t  the 
moves were very restricted. In our  next  approach we t ry  
to alleviate this problem by part i t ioning the area of the 
F P G A  and assigning the par t i t ioned areas to different 
processors. Each processor is free to move blocks within 
its own area. This helps us in two ways - 

• There  is much less synchronization involved as 
compared to the previous approach. In the pre- 
vious approach,  the generation of moves by P0 and 
evaluation of moves by P1 . . . . . . .  1 has to be synchro- 
nized. In our current  approach,  each processor can 
carry out  simulated annealing on the area it owns 
and the point of synchronization is flexible. 

• The moves evaluated are much less restricted than  
the previous approach. In our current  approach, 
the moves evaluated by a processor on its area are 
done sequentially, and hence the restrictions tha t  
arise in the previous approach do not affect us here. 
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Note that  for nets tha t  span two or more part i t ioned 
areas, we may still incur error in computat ion of bound- 
ing box (Figure 7). 
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Figure 7: Error  in Bounding Box for Area Based Part i-  
tioning: For nets tha t  span across partit ion, bounding 
boxes may be computed erroneously as the move made 
by other processors are not communicated immediately. 

This is because two or more processors may move 
blocks of the same net simultaneously. However, we 
expect this error to be small as compared to the error 
ignoring approach mentioned in the previous section. 
This is because in the current  approach errors occur 
only for those nets tha t  span two or more part i t ioned 
areas. Moreover, with falling tempera ture  the distance 
covered by moves are reduced and most of the moves 
are expected to happen between nearby blocks. 

Finally, after periodic intervals ( typically after each 
temperature) ,  all the processors update  their  da ta  
structures to reflect the current placements of the 
blocks and the bounding boxes of the nets. Thus, each 
processor gets to know of the moves done by other  pro- 
cessors at the end of a temperature .  This information 
can be made more recent to each processor at the ex- 
pense of more synchronization. 

In area based parti t ioning, a processor can move 
a block within its area only. Therefore the move- 
ment of a block is confined to the part i t ioned area of 
FPGA it current ly belongs. To allow blocks to move 
all over the FPGA,  the parti t ioning of area m u s t  be 
changed. Moreover, the sequence of different parti t ion- 
ing schemes should ensure tha t  a block placed in any 
arbitrary location has the freedom to move to any other  
arbi trary location in the FPGA.  We adopt the follow- 
ing two part i t ioning schemes. We alternate between the 
two schemes for successive tempera ture  (Figure 8). An 
overview of the parallel algori thm is shown in Figure 9. 

Horizontal Partition 

PO PI Pn-I 

PI 
Alternate 

Ve.ical Pamtion 

Figure 8: Part i t ioning schemes for Area Based Patti= 
tioning 

b e g i n  A r e a  P a r t i t i o n e d  SA 

if ( my_rank == O) { 
do an  initial random placement 

find initial temperature 

choose a partition(horizontal/vertical) } 

while( t > end-temperature ){  

for( number of moves per temperature ) 
generate and evaluate moves in own area 

update data-structures of all processors 

change partition 

update temperature} 

end Area Partitioned SA 

Figure 9: Parallel Placement  algorithm using Area 
Based Part i t ioning 

3.2.1 E x p e r i m e n t a l  Resul ts  

The  area based part i t ioning approach was implemented 
on an SGI Origin. Figure 10 and 11 show the vari- 
ation of execution time and cost with number of pro- 
cessors, respectively. The t iming results show marked 
improvement when compared to the parallel moves ap- 
proach. The speedups are due to less synchronization 
requirements. However, the speedups are not linear. 
The  positive thing is tha t  the cost does not degrade 
with increasing processors. 

3.3 Synchronous Markov Chains 

The  shortcomings of the approaches in the previous two 
sections is that  they fail to maintain the quality of the 
solution. Also the quality is quite unpredictable. This 
is due to two reasons - (i) restricted moves (ii) error in 
cost function. In area based partit ioning, we made the 
moves less restricted by assigning parts  of the F P G A  
to individual processors and giving them the freedom 
to move blocks within their  area. However, the error in 
cost function affected the quality of results negatively. 
As our next step, we remove the restriction on moves 
altogether by assigning the whole F P G A  to each pro- 
cessor. Each processor carries out  simulated annealing 
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on the whole FPGA, starting with a different random 
seed. To avoid concurrent updates to data structures, 
each processor does simulated annealing on a local copy 
of the FPGA (Figure 12). At periodic intervals, the 
results from all the processors are combined. The result 
of the processors can be combined in different ways - 

• Take the best placement of each net and combine 
them together to form the new combined place- 
ment. In case of conflicts, find a new placement 
for the conflicting nets iteratively. 

* Among all the processors, take the best placement 
obtained by a processor as the new combined place- 
ment. 

begin Synchronous Marker Chain SA 
generate initial random placement 
find initial temperature 

initialize counter to 0 

while( t > end_temperature ){ 
increment counter 
for( number of moves per temperature ) 

generate and evaluate moves 

if( counter% update_frequency == 0){ 
best~ank= rank of the processor  
with best  placement 

i f (  my_.rank ==best_rank) 
broadcast placement to a l l  other 
processors}} 

end Synchronous Markov Chain SA 

P0 P 1 P2] P3 

I I Simulated Annealing 

Cost computation and 
communication 
Placement combination 
and result broadcast 

Figure 12: Synchronous Markov Chains 

The first approach of combining best configurations 
of individual nets is non trivial and may consume sig- 
nificant computation time ( even when net placements 
are non conflicting). The second approach is very ef- 
ficient in terms of computation time, and as we found 
from experimental results, does quite well in terms of 
preserving the quality of solution. If we consider simu- 
lated annealing as a search path where moves are pro- 
posed and either accepted or rejected depending on a 
particular cost evaluation and a random seed. Each 
search path can be viewed as a Marker Chain. Our 
current approach then essentially implements parallel 
Markov Chains. Our approach is similar to that pre- 
sented in [2]. To achieve speedup we reduce the number 

Figure 13: Parallel Placement Algorithm based on Syn- 
chronous Markov Chains 

of moves evaluated at each temperature by ~ N, where N 
is the number of processors. Note that  we could have 
reduced the number of moves being evaluated at each 
temperature by an arbitrary factor, thus obtaining any 
desired speedup. Of course, an arbitrary reduction in 
the number of moves will degrade the quality of result. 
The quality of result also depends on the periodicity 
with which the results of the different processors are 
combined. The number of moves after which the re- 
sults of the processors are combined is referred to as 
update_frequency. An overview of the parallel algorithm 
is shown in Figure 13. 

3 . 3 . 1  E x p e r i m e n t a l  R e s u l t s  

The synchronous Markov chain approach was imple- 
mented on an IBM-SP2 distributed memory multipro- 
cessor. Figures 14 and 15 show the variation of execu- 
tion time and cost with number of processors, respec- 
tively. The timing graph shows near linear speedups. 
This is due to the fact that synchronization is mini- 
mal. Also due to the nature of the problem, the load 
is quite evenly distributed. There is a gradual decrease 
in the quality of solution with increasing processors, 
except for des which shows a substantial degradation. 
des also shows significant degradation for the parallel 
moves approach which suggests that the benchmark is 
very sensitive to any alteration from traditional simu- 
lated annealing. 

3.4  A s y n c h r o n o u s  M a r k e r  C h a i n s  

Our final approach is conceptually similar to the pre- 
vious approach. In our present approach we improve 
upon the synchronization requirement of the approach 
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in the previous section. Our approach is similar to 
the approach presented in [5] [2]. In the previ- 
ous approach, the synchronization requirement was 
quite strong, as each processor had to complete a 
pre-determined number  of i terations before the results 
could be combined. The  combination of result involves 
determining the best placement and distr ibuting it to 
all the processors. In our current approach,  instead of 
combining the results of the processors synchronously, 
we make the combination asynchronous. A server main- 
t i n s  the best cost and placement.  At periodic inter- 
vals, processors query the server. If their  current  place- 
ment is bet ter  than the server's best placement,  they 
export  their placement to the server. Otherwise they 
import  the server's placement. Thus the synchroniza- 
tion across all the processors is removed. There  are two 
design choices regarding the server. The  server may 
also carry out  simulated annealing or may just  service 
queries. The tradeoff is between more work done by 
assigning work to the server or servicing the queries 
faster, thereby giving more t ime to the other  proces- 
sors to work. For a very small number  of processors, 
the server may also do simulated annealing. But  in a 
scalable design, the server is bet ter  off servicing queries 
only. In our design the server services queries only (Fig- 
ure 16). An overview of the algorithm is given in Figure 
17. 

• 1 PO P2 P3  

------_~. ~ 

• N N  

Send cost 
Receive cost and send 
decision ( send / rece ive)  
Receive decision 

',::::',::: Receive Placement  
Send Placement  

Figure 16: Asynchronous Markov Chains 

begin Asynchronous Markov Chain SA 
if( my_rank == 0){ 

initialize best_cost to infinity 
initialize best_placement to null 

while( other processors so annealing){ 

receive cost from processor P 
if( cost of P < best~ost){ 

best_cost= cost of P 
best_placement=receive placement from P} 

else{ 

send best_cost to  P 
send best_placement to  P}}} 

else{ 
generate initial random placement 

find initial temperature 

initialize counter to 0 

while( t > end_temperature ){ 

increment counter 
for( number of moves per temperature ) 

generate and evaluate moves 

if( counter%update_frequency == O){ 
send P0 current cost 
send/receive placement from Po}}) 

end Asynchronous Markov Chain SA 

Figure 17: Parallel Placement Algorithm based on 
Asynchronous Markov Chains 

3 .4 .1  E x p e r i m e n t a l  R e s u l t s  

The asynchronous Markov chains approach was imple- 
mented on an IBM-SP2. Figure 18 and 19 show 
the variation of execution t ime and cost with num- 
ber of processors, respectively. The characteristics of 
the curves are similar to the synchronous Markov chain 
implementation.  The  speedups are more close to linear 
and the cost degradat ion is much more gradual. 

4 R e l a t e d  W o r k  

Several approaches to parallelize simulated annealing 
have been proposed in the domain of cell placement 
and can be broadly classified into two categories : 

. Move Acceleration In this approach the evaluation 
of individual moves is parallelized by doing the dif- 
ferent tasks involved in evaluating a move in par- 
allel. The  available parallelism in this approach is 
limited and implementat ion is restricted to shared 
memory model. 

. Parallel Moves In this approach multiple moves are 
evaluated concurrently. The  concurrent  evaluation 
of moves may suffer from inaccurate evaluation of 
the cost function. A range of alternatives have 
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been proposed to counter the inaccuracy in cost 
function evaluation. These alternatives again can 
be classified into two categories - 

(a) 

(b) 

Avoiding  Error  These methods involve gener- 
ating and evaluating moves that  do not in- 
teract so that  there may be inaccuracy in 
the evaluated cross function. Deciding which 
moves are not interacting, however is not triv- 
ial. 

Tolerate Error  These methods ignore the er- 
ror in cost function evaluation for parts  of the 
annealing. Errors are corrected after certain 
moves by synchronizing with other  processors. 
A large spectrum of algorithms exist that  dif- 
fer in the way the problem is part i t ioned and 
the frequency and mechanism of synchroniza- 
tion. 

Kravitz and Rutenbar  [9] report  a speedup of 2 on 
4 processors for the move acceleration approach and a 
speedup of 3.5 on 4 processor for the avoiding error ap- 
proach on a shared memory multiprocessor. Banerjee, 
Jones and Sargent [3] present a variety of parti t ioning 
methods for the parallel moves approach on a hyper- 
cube. They obtained a speedup of 12 for 16 processors. 
Several other works on parallelizing simulated anneal- 
ing have been reported for different applications and 
on different architectures. Casot to et al. [10] achieved 
speedup of 6 on 8 processors for placement of macro- 
cells on a shared memory multiprocessor. Rose et al. 
[8] propose a hybrid algorithm of min-cut algorithm 
and simulated annealing that  achieve a speedup of 4 
on 5 processors. Sun and Sechen [6] show near linear 
speedups for the parallel moves approach on a network 
of workstations. Banerjee, Kim, Ramkumar ,  Parkes 
and Chandy  [1] present a range of algorithms based 
on parallel simulated annealing for s tandard  cell place- 
ment. 

5 C o n c l u s i o n  

Our work in this paper is the first one to evaluate par- 
allel placement algorithms for the F P G A  placement ap- 
plication. We have investigated a range of parallel sim- 
ulated annealing algorithms for F P G A  placement. The 
parallel moves approach does not seem very promising 
due to loss of speedup tight by synchronization require- 
ments and degradation in quality of result because of re- 
stricted moves. The second approach of area based par- 
ti t ioning provides better speedups and quality of solu- 
tion. The speedup obtained is mainly due to reduction 
in synchronization. In the same direction the Marker  

chains approach reduces the synchronization require- 
ment significantly and we observe near linear speedup. 
Markov chains also prove promising in terms of quality 
of result. 
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Figure 5: Variation of execution time 
for Parallel Moves algorithm on an 
SGI shared memory multiprocessor. 
Time shown for 1 processor corre- 
sponds to the serial algorithm. 

Figure 6: Variation of Normalized 
Placement Cost for Parallel Moves al- 
gorithm on an SGI shared memory 
multiprocessor. Cost shown for 1 pro- 
cessor corresponds to the serial algo- 
rithm. 

500,0 

Area Based Partioning 

alu4 
apex?.. 
apex4 

....... ex~p 
misex3 

400.0 - . 

,7. 
z 

3. 300.0-  ' .  

'~ 200.0-  " - 

100.0 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i 
0.0 1 2 3 4 '5 

processors 

Area Based Partitioning 

1.30 

125 - 

i 1.20- 

= 1.15- 

~ 1.10- ./ 

1.05 - "i" 

1 .00 '  

-.._ 

ahJ4 
a,pex2 
~ex4  

- - -  exSp 
rnisex3 

r T 
4 G 6 1 2 3 

processors 

Figure 10: Variation of execution 
time for Area based Partitioning algo- 
rithm on an SGI shared memory mul- 
tiprocessor. Time shown for 1 pro- 
cessor corresponds to the serial algo- 
rithm. 

Figure 11: Variation of Normalized 
Placement Cost for Area based Par- 
titioning algorithm on as SGI shared 
memory multiprocessor. Cost shown 
for 1 processor corresponds to the se- 
rial algorithm. 
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Figure 14: Variation of execution 
time for Synchronous Markov Chains 
algorithm on an IBM-SP2 distributed 
memory multiprocessor. Time shown 
for 1 processor corresponds to the se- 
rial algorithm• 

Figure 15: Variation of Normal- 
ized Placement Cost for Synchronous 
Markov Chains algorithm on an IBM- 
SP2 distributed memory multiproces- 
sor. Cost shown for 1 processor cor- 
responds to the serial algorithm. 
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Figure 18: Variation of execu- 
tion time for Asynchronous Markov 
Chains algorithm on as IBM-SP2 
distributed memory multiprocessor. 
Time shown for 1 processor corre- 
spond to the serial algorithm. 
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Figure 19: Variation of Normal- 
ized Placement Cost for Synchronous 
Markov Chains algorithm on as IBM- 
SP2 distributed memory multiproces- 
sor. Cost shown for 1 processor cor- 
respond to the serial algorithm. 
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