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Abstract—Parallel netCDF (PnetCDF) is a popular library
used in many scientific applications to store scientific datasets.
It provides high-performance parallel I/O while maintaining
file-format compatibility with Unidata’s netCDF. Array vari-
ables comprise the bulk of the data in a netCDF dataset,
and for accesses to large regions of single array variables,
PnetCDF attains very high performance. However, the current
PnetCDF interface only allows access to one array variable
per call. If an application instead accesses a large number of
small-sized array variables, this interface limitation can cause
significant performance degradation, because high end network
and storage systems deliver much higher performance with
larger request sizes. Moreover, the record variables data is
stored interleaved by record, and the contiguity information is
lost, so the existing MPI-IO collective I/O optimization can not
help. This paper presents a new mechanism for PnetCDF to
combine multiple I/O operations for better I/O performance.
This mechanism can be used in a new function that takes
arguments for reading/writing multiple array variables, al-
lowing application programmers to explicitly access multiple
array variables in a single call. It can also be used in the
implementation of asynchronous I/O functions, so that the
combination is carried out implicitly, without changes to the
application. Our performance results demonstrate significant
improvement using well-known application benchmarks.
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Many large-scale scientific applications are data-intensive,

processing large array data sets, such as climate modeling,

fusion, fluid dynamics, and computational biology. These

applications produce enormous amounts of data and require

effective I/O libraries and fast storage systems in order

to operate effectively. The Network Common Data Format

(netCDF) [1], [2] defines a set of I/O functions for serial file

access and a machine-independent data format to support

the creation, access, and sharing of array-oriented scientific

data. Data stored in netCDF format are described as array

variables with well-defined attributes, such as dimensions,

data types, and annotations. NetCDF has become widely

used by many scientific applications to store data in files,

along with their metadata, and in a portable file format.

In order to handle increasing size of scientific data and

enable efficient use of netCDF files in parallel programs,

parallel netCDF (PnetCDF) provides a set of application

programming interfaces for concurrent file access [3]. Its

implementation is built on top of MPI-IO [4] and hence can

take advantage of MPI’s portability and already-optimized

I/O features to achieve high performance. However, as with

the serial netCDF interface, the variable ID is one input

parameter in the I/O opertion functions of current PnetCDF

library. The PnetCDF application interface only allows read-

ing or writing one array variable at a time. There are two

kinds of array variables in netCDF, namely record and non-

record array variables. The dimensionalities of a non-record

variable are fixed and a record variable is not. The most

significant dimension of a record variable can be increased.

In a netCDF file (as shown in Figure 1 [3]), a non-record

variable is stored in a contiguous file space and record array

variables are stored interleaved with each other at the end of

file. If applications have a large number of small-sized array

variables, reading or writing one variable at a time could

result in poor I/O performance, due to the under-utilized

network bandwidth. Record variables are interleaved and

the contiguity information is lost, so accessing one record

array variable has a poor performance due to noncontiguous

accesses.

This paper presents a new mechanism for combining I/O

operations of multiple array variables in PnetCDF for better

I/O performance. It can be used to define new I/O functions

that explicitly ask for a list of arguments of multiple I/O

buffers and corresponding variable IDs. It can also be used

implicitly in applications using the asynchronous PnetCDF

write operations without modification of the existing ap-

plication program. The implementation involves defining

a new combined MPI file view for array variables’ file

layout as well as a combined MPI derived datatype for

the I/O buffers. We describe the challenge of multiple file

views combination, as MPI-IO semantics require that the

displacements of a file view to be used in the collective I/O

must be in monotonically non-decreasing order. We adopt

different I/O schemes for non-record array variables and

records in order to fulfill MPI-IO’s requirements.

The rest of this paper is organized as follows. Section 2

provides the relevant background for this work. Section 3

our mechanism for combining I/O operations for multiple

array variables in PnetCDF. Section 4 describes the results

of our experiments. Section 5 concludes the paper.
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Figure 1. NetCDF file structure

I. RELATED WORK

Before we discuss our new mechanism and enhancements

to PnetCDF, we cover the related work and background of

this work, namely MPI-IO, HDF5 and PnetCDF.

A. MPI I/O

The majority of large-scale scientific parallel applications

are written using the message passing model and the Mes-

sage Passing Interface (MPI) [5]. MPI-IO is an important

feature of the MPI-2 standard [4], which allows multiple

processes of a parallel program to access data in a shared file

simultaneously. MPI-IO inherits two important MPI features:

MPI communicators defining a set of processes for group

operations, and MPI derived datatypes describing complex

memory layouts. A communicator specifies the processes

that participate in a collective operation for both inter-

process communication and file I/O. When opening a file,

the MPI communicator is a required argument to indicate

the group of processes accessing the file. MPI collective I/O

functions also require all processes in the communicator to

participate. Such an explicit coordination allows a collective

I/O implementation to exchange access information among

all processes and reorganize I/O requests for better perfor-

mance. Independent I/O functions, in contrast, require no

coordination but make any collaborative optimization very

difficult.

A success story of using process collaboration to im-

prove shared-file I/O performance is two-phase I/O [6].

This collective I/O optimization assumes that file systems

handle large contiguous requests much better than small non-

contiguous ones. Two-phase I/O first calculates the aggregate

access region, a contiguous file region starting from the

minimal access offset among the requesting processes and

ending at the maximal offset among the processes. The

aggregate access region is then divided into non-overlapping,

contiguous sub-regions denoted as file domains, and each file

domain is assigned to a unique process. A process makes

read/write calls on behalf of all processes for the requests

located in its file domain. The two-phase I/O is adopted

by ROMIO, a popular MPI-IO implementation developed at

Argonne National Laboratory [7].

In addition to the two-phase I/O, many collaboration

strategies have been proposed and demonstrated their suc-

cess, including disk-directed I/O [8], server-directed I/O [9],

persistent file domain [10], active buffering [11], and col-

laborative caching [12]. Many of these optimizations are

implemented under the MPI-IO interface, meaning that

libaries using MPI-IO can benefit from these optimizations

without any additional coding effort.

B. HDF5

Hierarchical Data Format (HDF) is a file format and

software, developed at NCSA, for storing, retrieving, ana-

lyzing, visualizing, and converting scientific data. The most

popular versions of HDF are HDF4 [13] and HDF5 [14].

Both versions store multidimensional arrays together with

ancillary data in portable, self-describing file formats. HDF4

was designed with serial data access in mind, much like the

current netCDF interface. HDF5 is a major revision in which

its API is completely redesigned and now includes parallel

I/O access, much like the current pnetCDF.

HDF5 can store large numbers of large data objects,

such as multidimensional arrays, tables, and computational

meshes, and these can be mixed together in any way that

suits a particular application. HDF5 supports cross platform

portability of the interface and corresponding file format,

as well as ease of access for scientists and software de-

velopers. The main conceptual building blocks of HDF5

are the “dataset” and the “group”. An HDF5 dataset is a

multidimensional array of elements of a specified datatype.

Datatypes can be atomic (integers, floats, and others) or

compound. A compound datatype is similar to a struct in

C or a common block in FORTRAN. It is a collection of

one or more atomic types or small arrays of such types.

However, compound datatype must be fixed total size and

fixed variable number. This is a limit in applications.

C. Parallel netCDF

Dataset storage, exchange, and access play a critical

role in scientific applications. For such purposes, netCDF

serves as a software library and self-describing machine-

independent data format that support the creation, access,

and sharing of array-oriented scientific data. NetCDF stores

data in an array-oriented dataset which contains dimen-

sions, array variables, and attributes. As illustrated in Figure



1, a netCDF file is divided into three parts: file header,

non-record array variables and record array variables. The

netCDF file header stores metadata, such as array dimen-

sions, names and sizes of dimensions, data types, and

character strings for annotations. The dimension metadata

are used to define the shapes and attributes of array variables.

Non-record array variables must be defined with fixed sizes

for all dimensions. Record array variables allow the most

significant dimension to be defined as ”unlimited”. All

record array variables are expected to grow together along

that dimension. Non-record variable arrays are stored in

the first section, followed by the second section for record

variable arrays. For variable-sized record arrays, netCDF

first defines a record of an array as a subarray comprising

all fixed dimensions and the records of all arrays are stored

interleaved in the arrays’ defined order.

The netCDF API is originally designed for serial data

access, and it does not define semantics for concurrent

access, particularly concurrent writing to a netCDF dataset.

PnetCDF has been developed to support parallel I/O op-

erations and large file size (greater than 4 GB). Some of

its I/O functions take an additional argument for an MPI

communicator to indicate the processes participating the

shared-file I/O operations, but are otherwise very similar to

the serial netCDF API. Internally, PnetCDF constructs MPI

derived datatypes from each process’s requests to a subarray

and defines the process’s file view. Any MPI file hints

supplied by the user, often used for performance tuning, are

passed to the underlying MPI-IO library, so PnetCDF can

fully take advantage of all I/O optimizations available in the

MPI-IO layer.

In PnetCDF a file is opened, operated, and closed by

the participating processes in an MPI communication group.

Internally, the header is read/written only by a single process,

although a copy is cached in local memory on each process.

Header modifications are made in ”define mode”, the mode

used to describe the contents of a netCDF file. The root

process fetches the file header, broadcasts it to all processes

when opening a file, and writes the file header at the end

of the define mode if any modifications occur in the header.

The define mode functions, attribute functions, and inquiry

functions all work on the local copy of the file header. All

define mode and attribute functions are made collectively

and require all the processes to provide the same arguments

when adding, removing, or changing definitions so the local

copies of the file header are guaranteed to be the same across

all processes from the time the file is collectively opened

until it is closed.

The APIs provide users with the ability to use MPI derived

datatypes to describe noncontiguous memory regions for the

I/O buffers, meaning that users do not need to copy data into

a contiguous buffer prior to making a PnetCDF call. The data

partitioning of a variable and the corresponding file regions

in a process is internally converted to an MPI file view.

The file views are calculated from the variable’s metadata

(shape, size, offset, etc.) and the arguments of starts, counts,

strides, and datatype provided by the user. These file views

are passed to MPI-IO calls to allow noncontiguous regions

in the netCDF file to be accessed with a single call. Below

are two example collective functions for writing a variable:

ncmpi_put_vara_int_all(file_id,
var_id, start[],
count[], buffer)

ncmpi_put_vara_all(file_id, var_id,
start[], count[], buffer,
bufcount, buftype)

II. DESIGN AND IMPLEMENTATION

Data files in the netCDF file formats are called self-

describing files because the data and metadata are packaged

together in the same file. PnetCDF provides two categories

I/O functions: header I/O and parallel data I/O. Since the

majority of time spent accessing a netCDF file is in data

access, the data I/O must be efficient. PnetCDF provides the

implementation of parallel I/O for array data above MPI-IO.

PnetCDF library offers a number of advantages. For parallel

access, particularly for collective access, each process has a

different file view. All processes in combination can make a

single MPI-IO request to transfer large contiguous data as a

whole, thereby preserving useful semantic information that

would otherwise be lost if the transfer were expressed as per

process noncontiguous requests. However, the record array

variables are stored interleaved by record, and the contiguity

information is lost, so the existing MPI-IO collective I/O

optimization may not help. In such cases, more optimiza-

tion information from users can be beneficial, such as the

number, order, and record indices of the record variables

they will access consecutively. With such information we

can collect multiple I/O requests over a number of record

variables and optimize the file I/O over a large pool of

data transfers, thereby producing more contiguous and larger

transfers.

Current PnetCDF does not provide functionality for read

or write multiple array variables in a single call. Data Access

Functions of PnetCDF provide the ability to read/write vari-

able data in one of the five access methods: single element,

whole array, subarray, subsampled array (strided subarray)

and mapped strided subarray. Programs must access one

variable at a time. As this limitation may hamper the I/O

performance for accessing a large number of small-sized

array variables. We propose a new mechanism to combine

multiple requests into a single request. Two important im-

plementation issues are to create a combined buffer datatype

for multiple write buffers and, similarly, a combined file

datatype for the array variables in the file. The combined

buffer datatype and file datatype will be used in a single

MPI collective I/O call. Since record and non-record array

variables are stored in different ways, the construction for
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Figure 2. Combining derived datatypes for non-record array variables

the new combined MPI derived datatypes must treat these

two kinds of array variables differently. This functionality

is implemented in a subroutine that takes inputs from the

variable metadata and user buffers to prepare the combined

arguments for a single collective I/O call.

A. Connecting to Applications
This functionality can potentially be adopted by appli-

cations in two ways: (1) explicitly using a new PnetCDF

function that allow users to provide lists of array variables

and I/O buffers as the arguments; and (2) implicitly using

this functionality by making multiple asynchronous I/O

operations that accumulate read/write requests for multiple

array variables.
For the explicit approach, new calls are provided:

int ncmpi_put_mvara_all(int file_id,
int nvars,
int varid_list[],
const MPI_Offset *start_list[],
const MPI_Offset *count_list[],
const void **buf_list,
int *bufcount_list,
MPI_Datatype *datatype_list).

int ncmpi_get_mvara_all(int file_id,
int nvars,
int varid_list[],
const MPI_Offset *start_list[],
const MPI_Offset *count_list[],
const void **buf_list,
int *bufcount_list,
MPI_Datatype *datatype_list).

In the implicit approach, when an asynchronous write re-

quest is posted, the arguments parameters are simply stored.

During the wait call, normally used to test for completion

of asynchronous I/O completion, the saved arguments are

used to produce the combined file views and datatypes, and

the I/O is performed. The implicit approach benefits the

applications without modifying their source codes; a new

PnetCDF hint is simply used to enable this feature. For the

implicit approach, a write example is as follows.

MPI_Info_set(info,

"multi-variable I/O",
"enable");

ncmpi_create(... info);
...
ncmpi_iput_vara(ncid,

varid1, buf, bufcount,
datatype, ncmpi_request);

...
ncmpi_iput_vara(ncid,

varid2, buf, bufcount,
datatype, ncmpi_request);

...
ncmpi_iput_vara(ncid,

varidm, buf, bufcount,
datatype, ncmpi_request);

...
ncmpi_wait();
...

When the applications call ncmpi iput vara all() func-

tion, the input parameters infomation only are stored

into ncmpi request struct and nothing is done. When

ncmpi wait all() is called, the program performs the write

operation.

3. Create datatype for each variable

2. Get variables metadata (shape, size, offset, etc.) 

1. Input start[], count[], stride[] datatype arguments provided by users 

5.Setup fileview, each process has a different file view

6.Create buffer datatype for each variable’s buffer

7.Construct a filetype from multiple non−record variables buffer datatype

4.Construct a filetype from multiple non−record variables datatype

8.Call MPI_FILE_Write_all() or MPI_FILE_Write_AT_all() functions

Figure 3. Procedure for writing combined non-record array variables

B. Implementation for Non-Record array variables

All non-record array variables are stored contiguously

starting after the file header and header padding. When

reading/writing a variable, each process defines an MPI file

view to specify the file locations it is accessing to. In our

new system, the file views for multiple array variables are

concatenated into a new file view, using an MPI derived



datatype constructor, MPI Type hindexed(). Each process

first calculates from its I/O request a list of offsets and

lengths for each variable. Since non-record array variables

are stored in a contiguous space in the file, the lists of

offset-length pairs will be combined in the same order as

the array variables are defined; this may require combining

in a different order than originally specified by the user. The

combination process is depicted in Figure 2. The memory

buffers are combined in an identical manner and their

absolute memory addresses are used to construct the new

buffer derived datatype. The newly created file datatype is

used in MPI File set view() to define the file view and

the buffer datatype are used in MPI File write all() for the

write buffers and MPI File read all() for the read buffers.

The write procedure is shown in Figure 3.

C. Implementation for Record array variables

Record array variables are stored in an interleaved manner

at the end of the so that they can grow along the unlimited

dimension. The datatype combination procedure for non-

record array variables cannot be directly used for record

array variables, because MPI-IO requires that the offsets of

a file view be monotonically non-decreasing [4]. Because

the record array variables are stored interleaved, simply

concatenating the individual variable’s file views will violate

the MPI-IO requirement. For instance, the file view for the

first record variable consists of non-contiguous regions that

interleaved with all other record array variables.

Recall that in the netCDF terminology the collection of

variable values that are stored contiguously for a record

variable is called a record. Because these records capture

all data from n-1 dimensions of the variable, they can be

quite large. Our approach is to write one record for all

the array variables as a single I/O operation. We’ll call

a group of records with the same index across a set of

array variables a record collection. As shown in Figure 4(a),

the collection of all array variables’ first record is located

at the beginning of the file’s record variable section. It is

followed by the collection of all array variables’ second

record, and so on. We construct a derived datatype for each

record collection to set up the file view, and we repeat

this process for every record collection accessed by the

user. Since the records are organized in the order of array

variables defined, the monotonic non-decreasing requirement

will be abided. Further, these I/O operations exhibit very

good spatial locality, because the data items in each call are

located near one another in the netCDF file.

In order to write one record at a time, a process’s buffer

datatype must be decomposed into smaller buffers the size

of a record of that variable. The construction of new buffer

datatypes is depicted in Figure 4(b). Again, the absolute

memory addresses of write buffers are used to construct the

new buffer derived datatypes. The number of new combined

buffer datatypes is equal to the number of records. By using

MPI derived datatypes for setting the file views and buffer

memory layouts, data can be directly written from the user

buffers, without allocating intermediate buffers for packing

or unpacking the write data.

III. EXPERIMENT RESULTS

Our experiments were run on two parallel machines: Mer-

cury at the National Center for Supercomputing Applications

and Franklin at Lawrence Berkeley National Laboratory.

Mercury is an IA-64 Linux cluster and has 887 nodes,

where each node contains two Intel 1.3/1.5 GHz Itanium

II processors sharing 4 GB of memory. Mercury is running

a SuSE Linux operating system and employs a Myrinet

network. The parallel file system on Mercury is an IBM

GPFS [15] configured in the Network Shared Disk server

model with 54 I/O servers and 512 KB file stripe size.

Franklin is a 9660-node SuSE Linux cluster where each

compute node consists of a 2.3 GHz single socket, quad-

core AMD Opteron processor with a theoretical peak per-

formance of 9.2 GFlop/sec per core. Each compute node has

8 GBytes of memory. The parallel file system is Lustre [16]

with 80 I/O servers (OSTs). Lustre allows users to customize

the striping configuration of a directory and all new files

created in that directory inherit the striping configuration.

In our experiment, we configure our directory to store all

output files with 1024 KB stripe size, 64 I/O servers, and

the start server to be randomly chosen by the file system.

For performance evaluation, we use an I/O benchmark

named coll-perf from the ROMIO test suite, modified to use

PnetCDF, and the I/O kernel from the FLASH application.

The bandwidth numbers were obtained by dividing the

aggregate I/O amount by the total run time measured from

the beginning of file open until after file close, a conservative

value.

A. ROMIO Collective I/O Test

The ROMIO’s coll-perf.c has been ported to PnetCDF

for testing purpose. Its data partitioning pattern is commonly

used by scientific applications. In our modified version, users

are provided options to select multiple non-record or record

array variables. Each variable is three-dimensional block-

distributed array. The partitioning of each variable is accom-

plished through the assignment of a number of processes

on each Cartesian dimension. The three-dimensional array

has been split into blocks on each process. An example

of data partitioning pattern on 64 processes is illustrated

in Figure 5(a). The subarray size in each process is kept

constant, independent from the number of processes used,

and hence the total I/O amount is proportional to the

number of processes. In our experiments, each subarray is a

32 × 32 × 32 integers. We evaluate the reading and writing

performance with 10 and 20 array variables separately. The

buffer datatypes are all contiguous in memory.
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Figure 5. (a) Data partitioning pattern in the ROMIO collective I/O test.
A three-dimensional array is partitioned among 64 processes in a block-
block-block fashion. (b) I/O pattern of the FLASH I/O benchmark.

Our measurements are performed using from 8 to 512

processes on Mercury and from 8 to 2048 processes on

Franklin. Figures 6 and 7 show the performance results

of multiple non-record and record array variables with and

without our I/O combining scheme. The performance of the

I/O combining scheme is better than the per-variable I/O

approach. In addition, the more array variables, the wider

the performance gap.

The timings for file open and write operations are also

broken out in Figures 6 and 7. File open time increases

dramatically with the number of processes, and at a moderate

number of processes open time consumes a serious fraction

of execution time. For example, the open time for writing

10 non-record array variables on Mercury in the 512-process

case is 4.191437 second, hiding much of the multi-variable

write approach’s benefit (0.46285 sec) over the original

per-variable write approach (2.083309 sec) and the multi-

variable read approach’s benefit (0.198982 sec) over the

original per-variable read approach (0.295532 sec) . The

open time alone causes the large write bandwidth dip on

Mercury. Similar degradation also appears on Franklin.

In the ROMIO MPI-IO implementation used on both of

these systems, by default only one process from a compute

node will be picked as an I/O aggregator. Aggregators are a

subset of the MPI processes that act as I/O proxies for the

rest of the processes. Hence, half of the MPI processes are

I/O aggregators on Mercury, and a quarter of processes are

aggregators on Franklin. In the 512-process case on Franklin,

the number of aggregators is 128, twice the number of the
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Figure 6. Performance results of ROMIO collective I/O test for non-record
array variables
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Figure 7. Performance results of ROMIO collective I/O test for record
array variables



I/O servers used in our experiments. Contention on the I/O

servers slows down the I/O performance on the 512-process

case. Its performance becomes even worse than the 256-

process case. Similar degradation also appears on Mercury.

Previous research has identified MPI-IO optimizations that

can improve performance in these scenarios for both of these

file systems [17], and our optimizations in the PnetCDF

library are complementary to this prior work.

The performance gap is even more significant for record

array variables (Figure 7). I/O bandwidths for the per-

variable write approach drop as compared to the non-

record variable case, while the multi-variable write approach

remains about the same bandwidth. As the record array

variables are stored interleaved in file, the per-variable write

approach of writing data causes many small interleaved

accesses, which leads to much worse performance. This

characteristic is highlighted by the fact that multi-variable

I/O approach results in lower performance for the per-

variable write approach on both test systems, in contrast to

the higher performance obtained for the multi-variable I/O

approach.

As the size of the array variables increases, more data

is available to the per-variable write and multi-variable

write calls during writes. We would expect the benefit of

our optimization to decrease for non-record array variables

because of this increase in the per-variable call performance.

Table 1 explores the performance of our optimization for

larger. In the 32×32×32 case, the total variable size is 671

MBytes, and in the 50×50×50 case, the total variable size

is 2.56 GBytes. We see that our optimization continues to

provide a significant performance increase: 63.53% faster for

32×32×32 sub-regions and 27.37% faster for 50×50×50
sub-regions for non-record array variables. The same sitution

is appeared as well during reads.

B. FLASH I/O Benchmark

The FLASH I/O benchmark suite [18] is the I/O kernel

of a block-structured adaptive mesh hydrodynamics code

that solves the compressible Euler equations on a block

structured adaptive mesh and incorporates the necessary

physics to describe the environment, including the equation

of state, reaction network, and diffusion [19]. The compu-

tational domain is divided into blocks that are distributed

across a number of MPI processes. A block is a three-

dimensional array with an additional 4 elements as guard

cells in each dimension on both sides to hold information

from its neighbors. There are 24 data array variables per

array element, and about 80 blocks on each MPI process.

A variation in block numbers per MPI process is used to

generate a slightly unbalanced I/O load. Since the number

of blocks is fixed for each process, an increase in the number

of processes linearly increases the aggregate I/O amount as

well. A PnetCDF version of FLASH I/O is used in our

experiments, modified to use asynchronous PnetCDF calls.

Lustre−write

Lustre−write

GPFS−write

GPFS−write
B

an
dw

id
th

 in
 M

B
/s

ec
W

rit
e 

tim
e 

in
 s

ec
on

d

Lustre−write GPFS−write

O
pe

n 
tim

e/
ru

n 
tim

e(
%

)

Number of processes Number of processes

Number of processesNumber of processes

Number of processes Number of processes

 0

 5

 10

 15

 20

 25

 30

 35

 40

8 16 32 64 128 256 512 1024 2048

 0

 50

 100

 150

 200

 250

 300

8 16 32 64 128 256
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

8 16 32 64 128 256 512 1024 2048

 0

 10

 20

 30

 40

 50

 60

 70

8 16 32 64 128 256

 0

 20

 40

 60

 80

 100

8 16 32 64 128 256 512 1024 2048
 0

 20

 40

 60

 80

 100

8 16 32 64 128 256

per−variable write multi−variable write

Figure 8. Performance results of FLASH I/O benchmark

FLASH I/O produces a checkpoint file and two visualiza-

tion files containing centered and corner data. Checkpoint

files are the largest of the three output data sets, the I/O

time of which dominates the entire benchmark. We set the

block size to be 8× 8× 8, which produces approximately 8

MB of data per process. Figure 5(b) depicts the I/O pattern

of FLASH I/O. There are 24 collective write calls, one for

each of the 24 array variables. In each MPI collective write,

every MPI process writes a contiguous chunk of a variable,

appended to the data written by the previous ranked MPI

process.

In our experiments, we only evaluated the write per-

formance for checkpoint files. We define every FLASH

variable as a non-record variable PnetCDF. We use im-

plicit approach for the combining write operations. The

test program calls asynchronous write functions and adds

a call to ncmpi wait() function before closing the file.

Each time a asynchronous collective write function is called

for a variable, the internal implementation only stores the



Table I
TIME TO WRITE FOR 512 PROCESSES ON FRANKLIN SYSTEM

size of subarray
multi-variable write(second) per-variable write(second) percentage improvement
non-record record non-record record non-record record

8 × 8 × 8 0.0408 0.0162 0.3026 0.0844 86.52% 80.80%
32 × 32 × 32 0.1290 0.1518 0.3537 1.6132 63.53% 90.59%
50 × 50 × 50 0.5444 0.5377 0.7497 25.004 27.37% 97.84%

request metadata and does no I/O. All procedures for

combing parameters and write operations are executed when

ncmpi wait() is called. There is only one collective write call

for the checkpoint write. Figure 8 compares the performance

results of the FLASH I/O benchmark using the multi-

variable write approach and the original per-variable write

approach. The multi-variable write approach is significant

better than the per-variable approach in all cases on both

Franklin and Mercury. Similar performance dips are ob-

served at 512-process case on Franklin. The dip starts at

128-process case on Mercury. This is owing to the increasing

contention on the I/O servers.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we propose a new mechanism for PnetCDF

to combine multiple I/O operations for better I/O per-

formance. The mechanism uses MPI derived datatypes to

specify file views and buffer’s memory layout for multiple

array variables. It can be used to define a new function that

takes arguments for a list of multiple array variables to be

written, allowing the application to explicitly access multiple

array variables in a single function call. It can also be

used in the implementation of asynchronous I/O functions,

so that the combination is carried out implicitly, without

changing the application source code. Our performance

results demonstrate significant improvement for two well-

known I/O benchmarks.

In the future, we will extend the approach to allow for

writing multiple distinct sub-regions of the same variable

with a single call, which will benefit from this approach as

well. This type of access is common for applications that do

not distribute data in a simple row-block, column-block, or

block-block distribution, but rather use some more complex

distribution such as a space filling curve. Currently these

applications must perform many separate PnetCDF calls to

perform I/O, even for a single variable.
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