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ABSTRACT
In online social networks (OSNs), spam originating from
friends and acquaintances not only reduces the joy of In-
ternet surfing but also causes damage to less security-savvy
users. Prior countermeasures combat OSN spam from differ-
ent angles. Due to the diversity of spam, there is hardly any
existing method that can independently detect the majority
or most of OSN spam. In this paper, we empirically ana-
lyze the textual pattern of a large collection of OSN spam.
An inspiring finding is that the majority (63.0%) of the col-
lected spam is generated with underlying templates. We
therefore propose extracting templates of spam detected by
existing methods and then matching messages against the
templates toward accurate and fast spam detection. We
implement this insight through Tangram, an OSN spam fil-
tering system that performs online inspection on the stream
of user-generated messages. Tangram automatically divides
OSN spam into segments and uses the segments to construct
templates to filter future spam. Experimental results show
that Tangram is highly accurate and can rapidly generate
templates to throttle newly emerged campaigns. Specifi-
cally, Tangram detects the most prevalent template-based
spam with 95.7% true positive rate, whereas the existing
template generation approach detects only 32.3%. The inte-
gration of Tangram and its auxiliary spam filter achieves an
overall accuracy of 85.4% true positive rate and 0.33% false
positive rate.
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J.4 [Computer Applications]: Social and behavioral sci-
ences
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1. INTRODUCTION
Spam has been plaguing the Internet community for more

than a decade. With the tremendous popularity of online
social networks (OSNs) in recent years, spammers quickly
start to exploit this new media channel. Despite the de-
velopment of countermeasures, spammers find their way to
adapt and stick. Research reveals that on Twitter, one of
the most popular OSNs nowadays, more than 4% of collected
tweets are spam [27], which has slipped through all the de-
ployed defense mechanisms. Researchers have proposed to
combat OSN spam from multiple angles, including mining
the textual content [6], studying the redirection chains of
embedded URLs [15] as well as classifying the URL landing
pages [26]. Despite the effort to build OSN spam mitigation
systems, it is not yet clear what techniques the spammers
are using to construct OSN spam, and how the techniques
evolve. This missing piece of information plays a crucial role
to inspire effective designs to throttle OSN spam.

In this paper, our first contribution is to reveal the OSN
spam generation techniques according to spam textual pat-
terns (Section 2). We conduct a measurement study, iden-
tifying 115 campaigns from more than 500 thousand spam
messages. We find that the majority of spam (63.0%) is gen-
erated with underlying templates, which is consistent with
prior email spam research [12, 13, 22]. Templates are valu-
able for spammers, because they let spammers control and
customize the semantic meaning of generated messages to
boost the conversion rate. Meanwhile, they generate di-
versified messages that are more difficult to detect. OSN
spammers have evolved to use more sophisticated templates
that break the assumptions in prior email spam template
generation research, making them ineffective for OSN spam.
In addition, the spam without underlying templates calls for
effective countermeasures as well.

In particular, we identify three major challenges that ren-
der existing spam template generation techniques ineffective.

1. Absence of invariant substring in template. Prior
spam template generation research [22,33] made a cru-
cial assumption that an invariant substring is hard-
coded in a template, so that every instantiation of the
template contains such string. Unfortunately, an OSN
spam template does not always contain any invariant
substring.

2. Prevalence of noise. Spammers extensively add se-
mantically unrelated noise words into spam messages.
The presence of noise diversifies spam messages, and
increases the difficulty to identify semantically mean-
ingful text segments.



3. Spam heterogeneity. Spam instantiating different
templates mixes with spam without any underlying
templates. It is hard to obtain a training set with
a single template in an online detection scenario.

Our second contribution is to propose Tangram, a system
that performs effective template generation to combat OSN
spam (Section 3). Many existing methods detect spam-
mers instead of spam. These methods are based on account
activity and need long observation periods for the account
features to accumulate [3, 25, 29, 31]. Many other detection
approaches are based on URL analysis, which inherently
cannot detect spam without URLs [15, 26, 30]. Researchers
have revealed significant amount of such spam [4]. The few
existing methods that detect spam with or without URLs
in real-time suffer from high false positive rates [4, 6, 24].
In contrast, Tangram is the first accurate online OSN spam
detection system that detects spam with or without URLs.
It extracts templates of spam detected by existing methods
and then matches messages against the templates toward
accurate and fast spam detection. In practice, it can be de-
ployed in combination with heterogeneous detection meth-
ods, like account and URL analysis, to optimize detection
accuracy. Specifically, Tangram is highly accurate because
of the following four innovations.

1. Embrace the absence of invariant substring. We
identify frequently appearing segments within messages
and then locate equivalent segments among messages.
Such segments are later assembled into spam templates,
which are used to match future spam.

2. Mitigate the prevalence of noise. We cast a sequence-
labeling task to label each word in a given message as
either “noise” or “non-noise”. Only “non-noise” words
are used to generate templates.

3. Break spam heterogeneity. We pre-cluster spam
and perform template generation within individual par-
titions. The template generation procedure also dis-
cards outlier messages in the partition.

4. Build a double defense. We mitigate spam without
underlying templates using a supplementary module
that detects spam with excessive semantically unre-
lated noise words. In an adversarial setting, spammers
may deliberately copy or adapt benign content copied
from other sources in attempt to avoid detection by
Tangram. Since spammers need to use popular con-
tent to attract the audience and they generate a large
number of spam, the OSN administrator will observe
the popular content with replaced URLs in large vol-
ume, which defeats the spammers’ purpose to evade
detection. In addition, we can equip Tangram with
multiple heterogeneous detection modules in practice.
It is hard for spammers to evade detection from mul-
tiple angles simultaneously.

We evaluate Tangram’s ability to detect real-time spam
on a large Twitter dataset of 17 million tweets (Section 4).
Equiped with one necessary auxiliary spam filter, Tangram
detects 95.7% of the most prevalent template-based spam.
The complete system detects Twitter spam with 85.4% true
positive rate and 0.33% false positive rate. The true positive
rate is similar with existing systems [4,6,24], while the false
positive rate is at least 2 times better than that in [6] and 10
times better than [4,24]. Tangram reacts to newly emerged
spam campaigns quickly. Finally, we investigate Tangram’s
robustness (Section 5) and related work (Section 6).

2. MOTIVATION: REVEALING TWITTER
SPAM TEMPLATE

In this section, we empirically analyze the textual patterns
of Twitter spam as a first attempt to quantitatively reveal
popular techniques that generate current OSN spam. We
find that the majority of spam is generated by underlying
templates. This finding motivates Tangram.

2.1 Data Collection
We first collected a large dataset from Twitter that con-

tained about 17 million public tweets generated by 4.2 mil-
lion users. The tweets were generated between June 1, 2011
and July 21, 2011. In the data collection process, we con-
tinuously downloaded popular Twitter Hashtags from the
website What the Trend [1]. We then downloaded all pub-
lic tweets that contained the Hashtags. Our data collec-
tion method was inevitably biased towards tweets contain-
ing popular Hashtags. Consequently, the spam tweets in our
dataset were also biased towards spammers using hashtags.
We, however, would like to emphasize that the numerical
accountIDs in our dataset followed a uniform distribution,
suggesting the dataset was not overly biased towards specific
account groups.

We revisited Twitter in March 2012 to label the collected
tweets. For each account that posted tweets in the dataset,
we crafted a special URL, using which we could access the
account’s personal profile on Twitter. We only checked if
we were redirected to a page indicating that the account
had been suspended. We found that 120,386 accounts were
suspended. They posted 558,706 tweets, all of which were
labeled as spam. There were 532,676 unique spam tweets,
showing that our collected spam had few duplicates. The
other tweets were labeled as legitimate. Using the same
method, we collected another relatively small tweet dataset
generated during January, 2012, containing 46,844 spam
tweets. The labeled spam tweets did not represent the spam
that Twitter could already detect. Rather, their presence in
our collected data meant that Twitter failed to detect them
when they were generated1.

Big Name A an eye-catching action - URL

Celebrity B an eye-catching action - URL

Big Name A offensive content , look at this video URL

Celebrity B offensive content , look at this video URL

RIP Celeb C offensive content , look at this video URL

Table 1: Retrofitted sample spam from a template-
based campaign. (Notes: We intentionally substi-

tuted likely offensive contents such as celebrity iden-

tities and sexuality in the example spam tweets. In-

terested readers are welcome to contact the authors

for original datasets.)

2.2 Template-based Spam Dominates
Through mining the textual pattern of spam, we find that

the majority (63.0%) of the 2011 spam dataset shares under-

1The spam labeling approach assumed that suspended ac-
counts generated no legitimate message. To validate this
assumption, we randomly selected 100 suspended accounts
and manually checked all their posted tweets, which were in-
deed spam. Although spamming was not the only reason for
account suspension in Twitter, our manual checking showed
that it was the overwhelmingly dominant reason.



lying templates. Table 1 shows five (intentionally retrofitted)
sample spam tweets from a much larger, but typical template-
based campaign. We substitute the embedded URLs with
the symbol URL for brevity. The tweets in this campaign
comprise three components: a celebrity name, an eye-catching
action, and a URL. Each component has one or more choices
of textual content. The number of unique spam messages
that this template can potentially generate, therefore, in-
creases quickly with the number of components.

Spam Template Model. We formally model the true
spam template as a macro sequence (m1, m2, ..., mk). We
define two types of macros: dictionary macros and noise
macros. At the time of spam generation, a dictionary macro
picks the textual content from a pre-defined list of choices
(e.g., celebrity name in Table 1). It is possible for a dictio-
nary macro to have only one choice. In this case, the macro
reduces to an invariant substring that all generated messages
will contain. Dictionary macros carry semantic meanings so
that spammers can lure the recipients to visit the embedded
URLs. In comparison, we abstract any macro that does not
convey any semantic meaning, but purely increases the mes-
sage diversity or increases the chance of exposing the spam
to more users, as a noise macro. A noise macro can be im-
plemented by, for example, randomly generating a character
string, mentioning Twitter users, etc.; it is not our interest
to differentiate among them. The concatenation of the in-
stantiation of macros constitutes a spam message.

We assume that a template shall contain at least one dic-
tionary macro, while it may or may not contain any noise
macro. However, we do not assume the existence of any in-
variant substring. Written in human language, a spam mes-
sage is not restricted to any particular expression to present
a semantic meaning. We have also observed spam template
without invariant substring in our data. This relaxed as-
sumption is one of our major differences from the existing
template generation work [22, 33] that relies on invariant
substrings.

2.3 Template-based Spam Continues Dominat-
ing

Spam Categorization. We first split spam into two
categories: “semantically similar” and “semantically dissimi-
lar”. Semantically similar spam forms big clusters that share
the same semantic meaning, whereas semantically dissimilar
spam does not. We further divide the “semantically simi-
lar” spam into “template-based” and “paraphrase” spam. In
contrast with template-based category, Paraphrase Category
consists of spam tweets that share the same semantic mean-
ing but cannot be uniformly divided into semantically equiv-
alent segments. Meanwhile, the tweets do not share regular
wording, e.g., “browsing statistics click Celebrity John URL”
and“interesting site on Celeb J URL”. In addition, semanti-
cally dissimilar spam consists of No-content Spam that con-
tains very little semantically meaningful textual content and
Other Spam that we have not systematically categorized.

Template-based spam continues dominating other
categories of spam. Table 2 provides the popularity of
four spam categories in June/July, 2011 and January, 2012.
Template-based spam remains to be the most popular cat-
egory in 2012, with its percentage increasing to 68%. The
no-content category almost vanishes. Its percentage dramat-
ically drops to 0.3%. It is possible that the no-content cate-
gory exhibits strong patterns and can be easily blocked. The

Figure 1: Tangram framework: The template gen-
eration and matching overview.

increasingly popular template-based spam indicates that our
detection method with focus on spam template generation
is effective to combat modern OSN spam.

Spam Category 2011 2012

Similar Semantic
Template-based 63.0% 68.3%
Paraphrase 14.7% 12.9%

Dissimilar Semantic
No-content 8.4% 0.3%
Others 13.9% 18.5%

Table 2: The popularity of four spam categories in
June/July, 2011 and January, 2012, respectively.

3. TANGRAM: TEMPLATE-BASED SPAM
DETECTION SYSTEM

In this section, we present Tangram, a template-based
spam detection system with high accuracy and speed. We
first formulate the notions of template, template matching
and template generation. Next, we present the details of the
online Tangram system. Tangram does not need the knowl-
edge of spam categorization (Section 2.3) as input. It only
needs the stream of raw messages, plus a small number of
labeled tweets for noise labeling as described in Section 3.4.

3.1 System Design Overview
Tangram builds template-based spam detection on top

of existing detection methods toward higher accuracy and
speed. It generates the underlying templates of spam de-
tected by various existing methods. It then uses the tem-
plates to accurately, quickly match and detect spam. Fig-
ure 1 depicts the Tangram workflow. It takes a stream of
raw messages as input, and classifies them as either spam or
legitimate online. After the classification, spam is filtered,
while legitimate messages pass through. Two components
can classify messages: the template matching module and
the auxiliary spam filter. The template matching module,
along with the template generation technique, is our major
contribution. The auxiliary spam filter, on the other hand,
supplies training spam messages. It can be any deployed
spam filter, e.g., a blacklist spam filter. We further discuss
the dependence on the auxiliary spam filter in Section 5.

Template Matching and Template Generation. We
define a template to be a sequence of macros of two types,
dictionary and noise (Section 2.2). We represent a dictionary
macro as a set of values separated by “|” and a noise macro
as “.*”. Thus, templates produced by Tangram are natu-
rally encoded as regular expressions, specifically concatena-
tions of “|” clauses and “.*”s. Template matching matches a



given message against the corresponding regular expression.
A successful template match implies the tested message in-
stantiates the template, and should be flagged as spam. We
define template generation as the task of inferring the tem-
plate’s regular expression representation from a set of ob-
served spam instances.

Initially the template matching module is not equipped
with any template, so all messages will pass through. How-
ever, if a message is blocked by the auxiliary spam filter, it
is treated as an instantiation of an unforeseen template, and
is saved in the spam buffer. Once the number of messages
in the spam buffer exceeds a predefined window size thresh-
old t, the system invokes the template generation procedure,
and deploys the newly generated templates in the template
matching module. The system input is a mixture of spam
instantiating different templates and spam without underly-
ing templates. This differentiates our system from previous
spam template generation work [22].

The template generation first identifies the subset of spam
messages believed to share the same template (Section 3.3).
These messages are tokenized into sequences of words. After
executing noise detection (Section 3.4), we are left with spam
content generated by dictionary macros. We divide every
message into the same number of segments. Each segment,
containing zero or more tokens, corresponds to one macro in
the template. We then construct the macro by combining
the segment’s unique strings across messages with “|”. The
concatenation of the macros for all segments constitutes the
complete template.

Inferring the number of segments and which tokens belong
to which segment are key challenges in template generation2.
We use the heuristic of preferring more compact templates
(i.e., shorter regular expressions) that match all of the in-
put spam messages without using wild cards. This heuristic
follows the traditional approach of preferring simpler de-
scriptions to more complex ones; our experiments validate
its effectiveness. Furthermore, finding the shortest template
for a set of messages is an NP-hard problem (Appendix A).
We develop approximate techniques that work well in prac-
tice, as described below.

3.2 Single Campaign Template Generation
For ease of presentation, we first introduce the approach to

generate a single template given spam instantiating the same
underlying template. It is the basis of Tangram. We use the
template generation process of the campaign in Table 1 as
a running example to elaborate our approach. We expand
the approach to generate templates on a mixture of spam
instantiating multiple templates in Section 3.3.

A strength of our approach is generating templates with-
out any invariant substring. However, we do expect that
some non-trivial subset of a campaign will share a common
substring, because the dictionary macro may instantiate to
the same textual content when multiple spam messages are
generated. This property helps us infer the correspondence
of segments between messages. For example, if we observe
the first two messages in Table 1 from a campaign, it strongly

2Common techniques for segmenting text into chunks from
Natural Language Processing (NLP) cannot easily apply to
our segmentation task because 1) it is difficult to use stan-
dard NLP tools on OSN text [23] and 2) our segments often
do not correspond to typical NLP segments such as noun
phrases.

indicates that “Big Name A” and “Celebrity B” are two in-
stantiations of the same macro. This indication holds for the
campaign even if some messages do not have the substring
“an eye-catching action -”.

We systematically exploit such substrings shared by sub-
sets of a campaign in three steps, common supersequence
computation, column concatenation, and regular expression
representation.

Common Supersequence Computation. The first
step is to compute the messages’ common supersequence.
Shortest common supersequence is an NP-hard problem (Ap-
pendix A). We use an approximation algorithm named
Majority-Merge [10] because of its simplicity. It takes n
sequences as input, and initializes the supersequence, s, as
an empty string. Next, it iteratively chooses the majority
of the leftmost tokens of the input sequences, denoted as a,
and appends a to s. Meanwhile, the leftmost a are deleted
from the input sequences. It repeats this step until all se-
quences are empty, and outputs s. Each token in the output
supersequence is trivially a substring shared by some sub-
set of the campaign. Desirable substrings are i) shared by
large subsets and ii) long. We achieve goal i) by producing
a shorter supersequence.

We build a matrix during the execution of Majority-Merge
algorithm. Table 3 shows an excerpt (due to page width
limit) of such a table for the example campaign. The header
row is the supersequence output by the Majority-Merge al-
gorithm. The rest of the rows represent the input sequences,
one row for each sequence. We label the jth column using
the token that is chosen in the jth step of the Majority-
Merge algorithm. The cell at row i, column j will be as-
signed the column label if the ith sequence is picked in step
j. Otherwise it will be an empty string, ε. Naturally, the
concatenation of each row is exactly the corresponding in-
put sequence. We denote this property as the supersequence
property.

To produce a shorter supersequence, we need to merge
columns that shares the same label, while maintaining the
supersequence property. After merging, the cell will be as-
signed the column label if either cell before merging has
been assigned so. Without loss of generality, we state the
three sufficient conditions that determine whether column k
can be merged into column j without affecting the super-
sequence property (Appendix B). Note that the merging is
directional, after which column j is kept while column k is
deleted. Condition i) column j and column k have identical
label; Condition ii) in any row at least one column is ε; and
Condition iii) if the cell at row i, column k is not ε, all
cells in row i, between column j and column k must be ε.
Table 4 excerpts the column merging result. Noticeably, the
repeated columns of “offensive content, look at this video”
is gone after the merging, yielding a more compact matrix
representation.

Column Concatenation. To achieve goal ii) for ob-
taining long substrings shared by subsets of campaigns, we
further concatenate the matrix columns obtained from the
previous step. Column concatenation also operates on a col-
umn pair, after which each cell becomes the concatenation of
the two corresponding cells. Different from column merging,
column concatenation does not require the target columns
to share identical label. It only requires that the value of
the corresponding, non-ε cells in the two columns has 1-1
mapping. For example, the first two columns in Table 4 are



Big Name A Celebrity B an eye-catching action offensive content , look at this video URL ...

Big Name A ε ε an eye-catching action ε ε ε ε ε ε ε ε ...
ε ε ε Celebrity B an eye-catching action ε ε ε ε ε ε ε ε ...

Big Name A ε ε ε ε ε offensive content , look at this video URL ...
ε ε ε Celebrity B ε ε ε offensive content , look at this video URL ...
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ...

Table 3: Excerpt of the initial matrix built by the common supersequence computation process. The header
row is the computed supersequence. Each remaining row corresponds to one input sentence.

Big Name A Celebrity B an eye-catching action - RIP Celeb C ...
Big Name A ε ε an eye-catching action - ε ε ε ...
ε ε ε Celebrity B an eye-catching action - ε ε ε ...

Big Name A ε ε ε ε ε ε ε ε ε ...
ε ε ε Celebrity B ε ε ε ε ε ε ε ...
ε ε ε ε ε ε ε ε ε RIP Celeb C ...

Table 4: Excerpt of the intermediate matrix after the matrix column reduction step. The header row is a
shorter supersequence.

concatenated because“Big”always maps to“Name”, but the
5th and the 6th columns in Table 4 cannot be concatenated
because “B” maps to two values, “an” and ε.

The effect of column concatenation is two-fold. First,
it moves multiple tokens into one cell, which helps reveal
the true template by assembling tokens (words) into word
phrases. For example, the three separate columns “Big”,
“Name”, and “A” in Table 4 become one celebrity name.
Second, the cells on the same column after column concate-
nation may have different contents. This maps to the dictio-
nary macro case, where different cell contents are different
instantiation of the dictionary macro.

Regular Expression Representation converts the ma-
trix into a regular expression to represent the generated tem-
plate. We initialize the regular expression representation to
be an empty string, s. Then we iterate through each col-
umn. If all the cells in the column share an identical value,
we append the value to s. Otherwise, we make a “|” clause
by concatenating all the unique values with “|”, and append
the clause to s. The generated regular expression representa-
tion from Table 4 is ˆ(Big Name A | Celebrity B | RIP Celeb
C) (offensive content , look at this video | an eye-catching
content - ) URL$, where “ˆ” and “$” respectively mark the
beginning and the ending of a message. The output regu-
lar expression matches all input sequences that build this
matrix.

3.3 Multi-campaign Template Generation
We now expand single campaign template generation to

multi-campaign template generation over spam instantiating
different templates or even without underlying templates.
An intuitive solution is to first separate the spam into dis-
tinct campaigns automatically, then invoke the single cam-
paign template generation procedure on each one of them.
We use a clustering and refining approach to this task.

We first use single-linkage clustering to group messages
that share at least k consecutive identical tokens, k being a
system parameter. The goal is to put semantically similar
messages in the same cluster, while separating semantically
different messages into different clusters. The transitive clo-
sure of these links forms our initial clustering. This clus-
tering does not require every message pair in the cluster to
share an invariant substring. We use a small training set of
collected spam tweets to choose the value of k experimen-
tally, before applying the system on the much larger dataset.

The value of k is not sensitive to the training set size. For ex-
ample, we test with size 10,000, 5,000 and 2,000 and obtain
consistent results. With a training set of size 10,000, a loose
threshold (e.g., k = 3) results in a big cluster containing
42% of the spam, while spam messages in this cluster have
different semantic meanings like Lady Gaga, Apple product
and so on. A tight threshold (e.g., k >= 5) results in a large
number of small clusters, where multiple clusters share the
same semantic meaning. For example, 9 out of the 20 largest
clusters in the experiment should be merged. In comparison,
k = 4 produces the best result in our experiments.

We then refine the clusters using the single campaign tem-
plate generation algorithm. Intuitively, spams from different
campaigns will result in non-compact templates, a fact we
utilize to identify which spam should be removed from a
given cluster. Specifically, during template generation, we
repeatedly remove the row with the largest number of ε, be-
cause it likely results from a clustering error. A column will
be removed if all its non-ε cells are removed. We repeat this
process until the matrix contains sufficiently low number of
ε.

3.4 Noise Labeling
Spam tweets often mention other users, popular terms

and hashtags that are unrelated to the semantics of the
rest of the tweet. Earlier research has confirmed this phe-
nomenon [8]. Such content helps to expose spam to a larger
audience, because users may search or browse tweets by
topic. It also diversifies spam and increases the difficulty
to detect spam. We refer to this type of content as noise.
Popular forms of noise include celebrity names, TV shows,
trending hashtags and many others. We next elaborate how
noise affects template generation and design a model to au-
tomatically label noise given a small amount of easily, man-
ually labeled noise as trained data. Once trained well, the
model can accurately label noise tokens in real-time stream
of spam tweets during Tangram execution.

Noise creates extra difficulties for template generation. If
the generated template contains a segment of noise, the tem-
plate will be too “specific”, in the sense that it cannot match
the spam with a different sequence of noise terms. In addi-
tion, spam instantiating different templates may coinciden-
tally share an identical sequence of noise terms. It increases
the chance to mislead the template generation module so
that it attempts to extract a single template for them. Thus,



we first perform a pre-processing step to identify noise to-
kens in the tweet, and then effectively ignore them when
generating the template (i.e., we replace them with .*, a
wildcard that matches anything).

We treat noise detection as a sequence labeling task, in
which the goal is to automatically label each token in the
tweet as noise or non-noise. We employ a standard sequence-
labeling approach, Conditional Random Fields (CRFs) [14].
The CRF is a model, learned from training data, that infers
a label for each token in a given tweet. The model exploits
regularities in the features of noise and non-noise tokens
(detailed below), as well as regularities in label sequences.

The CRF requires identifying a set of features for each
token that are relevant to the task. In our case, we found a
set of features that appear to be highly indicative of noise.
The key observation is that noise terms are popular, yet un-
related to each other and to other elements of the tweet.
As a result, we would expect regions of noise to contain
individual tokens that are common on Twitter, but tran-
sitions between tokens that are relatively uncommon. We
capture these intuitions with three numeric features. Let
freq(s) represent the frequency of a string s, which we
measure of a large set of unlabeled tweets. For each to-
ken ti in a tweet, we create the following three features in
the CRF: freq(ti), freq(titi+1)

2/(freq(ti)freq(ti+1)), and
freq(ti−1ti)

2/(freq(ti−1) freq(ti)). The first feature cap-
tures the popularity of the token ti, whereas the second and
third estimate how likely ti is to occur given the surround-
ing tokens. We processed these features into five discrete
quantiles for incorporation into the CRF.

We further add four orthographic features to capture com-
mon elements of noise terms. They indicate whether ti is
capitalized, is numeric, is a hashtag, or is a user mention
(i.e. using @).

To train our CRF, we hand-labeled 1,000 tweets as train-
ing data, manually identifying each token as noise or non-
noise. We then employed this learned model on each tweet
before template generation. In a separate experiment on
the labeled tweets, we found that our trained CRF correctly
labeled an average of 92% of test-set tokens as noise or non-
noise.

Detection based on noise labeling. Besides pre-processing
tweets to facilitate template generation, noise labeling can
also directly detect spam from another angle. Intuitively,
we expect legitimate messages to have very few semanti-
cally unrelated noise terms, whereas spam contains much
larger number of noise terms. We design a straightforward
idea to use the percentage of noise terms in the message to
distinguish spam. Our system classifies a tweet as spam if
its percentage of noise terms is larger than a threshold t. In
the experiments we set t to be 75%. This threshold is rela-
tively high and conservative, because we want to minimize
the false alarm on legitimate tweets.

4. EXPERIMENTS
We evaluate Tangram using the labeled dataset in Sec-

tion 2.1 as ground truth. The two major metrics that we
use to evaluate the system are accuracy and speed. We
conduct a strict accuracy evaluation. We only count spam
caught by template matching or noise detection as true pos-
itives. We count spam missed by these two but caught by
the auxiliary spam filter as false negatives. In this way, we
are only evaluating the detection accuracy of the modules

proposed in this paper, not the accuracy of the auxiliary
spam filter. For speed, we evaluate the template generation
and matching latency. We feed the system with the collected
tweets obeying their timestamp order to reflect the perfor-
mance in real-world scenario. We conduct all experiments
on a server with an eight-core Xeon E5520 2.2GHz CPU and
16GB memory.

Tangram needs an auxiliary spam filtering module to pro-
vide the initial set of spam messages to construct the under-
lying template. We leverage an existing online OSN spam
filtering tool [6] for this task to conduct a realistic evalua-
tion. We reuse the same parameters reported in the paper.
The auxiliary spam filter is not an oracle. It may mistakenly
report legitimate messages as spam, or miss to report spam
messages.

4.1 Detection Accuracy
We test Tangram with spam window size t = 1000, which

means when the number of spam messages that slip through
the template matching module but are blocked by the auxil-
iary spam filter reaches 1000, the system will invoke the tem-
plate generation module to infer the underlying templates of
the messages. The value of parameter k is 4.

The results show that the TP rate for the most prevalent
template-based spam achieves 95.7%. The system can also
detect some spam messages that are not template-based, be-
cause the system treats all messages as if they were template-
based, and makes best-effort detection. As expected, the TP
rate of such messages is lower than the TP rate of template-
based messages. The overall TP and FP rate are 76.2% and
0.12%, respectively.

True Positive Analysis. Table 5 reports a detailed
breakdown of true positive rate into different spam cate-
gories. Tangram has two detection modules. Both modules
perform well on the specific spam category that they are de-
signed for. The template generation/matching module can
detect template-based spam with 95.7% TP rate. The noise
detection module can detect no-content spam with 73.8%
TP rate. Unfortunately, the true positive rate of the other
two spam categories is lower. About 80% of the false nega-
tives (spam misclassified as legitimate) belong to the other
two categories.

False Positive Analysis. Since the labeling approach
we use to build the ground truth may miss to label true
spam tweets (Section 2.1), We further compare the true
positives against the detected tweets that are not labeled.
We observe that spammers frequently attach Retweet marks
(RT @username) and Mentions (@username) at the be-
ginning of tweets, as well as noise words after the embedded
URL. Hence, we remove all the noise and acquire the stem
of spam tweets. Any tweet that shares the same stem with
spam tweets is also regarded as spam. The comparison re-
veals that 15,271 (0.12%) tweets reported by Tangram are
neither labeled as spam, nor sharing the same stem with
spam tweets. They represent the false positives that our
system incurs. The comparison approach exploits charac-
teristics that may only apply to our specific dataset. Hence,
we only use it as a post-processing step in the evaluation,
rather than adopting it in the system design.

Among the false positive tweets, 42.0% of them are caused
by overly general spam templates. Another 21.7% of them
are popular tweets like birthday wishes for Nelson Mandela.
These popular tweets are mistakenly reported as spam by



System
Template Based Syntactical Tangram +

Tangram Judo Clustering Syntactical
Spam Category
Template-based 95.7% 32.3% 70.1% 98.4%

Paraphrase 51.0% 52.2% 51.4% 70.1%
No-content 73.8% 41.9% 67.0% 83.1%

Other 18.4% 30.4% 43.2% 44.7%
Overall TP 76.2% 35.9% 63.3% 85.4%

FP 0.12% 5.0% 0.27% 0.33%

Table 5: The detection accuracy of Tangram and two
existing systems compared in Section 4.2. The last
column shows the accuracy if we combine Tangram
and the syntactical approach.

the auxiliary filter, so templates are generated to match
them.

4.2 Detection Accuracy Comparison with Ex-
isting Work

We limit the direct experimental comparison to only the
approaches that examine the message content to detect spam.

Syntactical clustering + machine learning. We first
compare with a recent spam detection work that adopts syn-
tactical message clustering and supervised machine learn-
ing [6] (denoted as the syntactical clustering approach here-
after) in detail. The two systems share similar design goals.
In addition, the existing approach is used as the auxiliary
spam filter in our experiment. Hence, it is crucial to quantify
the detection accuracy gains over directly using the existing
system. We run the system using the same dataset on which
we test Tangram.

The syntactical clustering approach achieves an overall
detection accuracy of 63.3% TP rate and 0.27% FP rate.
The true positive rate obtained by the syntactical clustering
approach on our data is lower than the reported number
in [6]. The reason is that our spam labeling approach labels
more spam tweets as ground truth, which the syntactical
clustering approach does not detect. In contrast, Tangram
achieves a substantial improvement on both the TP rate
(to 76.2%) and the FP rate (to 0.12%). Table 5 lists the
detailed accuracy comparison. The difference between the
spam detected by these two systems indicates that they can
potentially complement each other. Both systems work in a
similar way and it is straightforward to integrate them. For
example, a message can be labeled as spam if either system
blocks it. This simple integration suffers from the increased
FP rate of 0.33%, but can boost the TP rate to 85.4%.

Judo. To validate that our template generation technique
is more tailored to OSN spam detection, we also compare
our work with a recent email spam detection system called
Judo [22]. Judo detects email spam based on template gen-
eration. We have already presented the difference between
the two systems analytically by elaborating the difference
in the critical system assumptions, i.e., invariant substring
in template and quality of training samples. We further
demonstrate their difference in experimental results, shown
in Table 5, column “Judo”. Different from our system, Judo
requires training set that contains pure spam generated by
the same underlying template. As a result, in real-world
deployment the system relies on the assumption that only a
small number of templates are actively used at a given time,
so that the training set is pure at least within a given small
time window. We implement the template generation mech-
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Figure 2: The box plot of template matching latency
as a function of the number of generated templates.

anism of Judo as described in [22], and test the detection
accuracy using the same dataset. Even with small window
size (10 spam messages), the generated templates can only
achieve 35.9% TP rate. The TP rate further drops to 10.6%
if the window size is increased to 20. On the other hand, the
FP rate is high (5.0%). It shows that real-world OSN trace
breaks the crucial assumptions of Judo. As a result, Judo
achieves extremely high accuracy in email spam detection,
but does not perform well for OSN spam detection. In com-
parison, our system achieves much higher accuracy on the
same corpus.

4.3 Template Generation/Matching Speed
Template matching. The template matching latency

incurred by Tangram is minimal and is not noticeable to
users. Figure 2 plots the minimum, 25% quantile, 75% quan-
tile and maximum of the template matching time as a func-
tion of the number of generated templates during our online
experiment. We observe a large variance of template match-
ing latency, because the time consumed for regular expres-
sion matching highly depends on the text being matched.
Nevertheless, the largest latency in the entire dataset is less
than 80ms. The overall trend is that the template matching
latency, shown by the boxes representing the 25% quantile
and the 75% quantile, grows slowly with the number of tem-
plates. Even with more than one thousand templates, the
median template matching latency is only 8ms.

Template generation. It is crucial to throttle spam
campaigns at their early stage. Hence, we measure how
fast templates can be generated. The time to generate tem-
plate depends on the number of buffered spam messages. In
our experiment, the mean template generation time is only
2.3 seconds. Although the time needed for template gen-
eration is larger than the time for template matching, the
template generation time is not the bottleneck of Tangram,
since template generation is performed in parallel with tem-
plate matching.

4.4 Sensitivity for New Campaigns
We take the five largest campaigns, one of which matches

the template instantiated by spam in Table 1, and evalu-
ate how fast Tangram reacts to newly emerged spam. We
randomly select a small percentage of messages from each
campaign, and use them as training samples to generate the
template. We vary the percentage of training samples from
0.05% to 0.5%. The remaining messages serve as the testing
set. We measure the true positive rate as the percentage
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Figure 3: The TP rate when template generation is
performed separately for each campaign, varying the
size of training set. Most observation points reach
100% TP rate.

of the testing set that the generated template can match.
Figure 3 shows the results. We observe that all campaigns
achieve almost 100% coverage even with only 0.15% of mes-
sages as training samples. Three campaigns have lower cov-
erage when only 0.05% of messages are used to generate
the template, because the system has not observed all pos-
sible values of dictionary macros due to insufficient train-
ing samples. Nonetheless, the coverage quickly climbs up
to almost 100% when the percentage of training samples
increases. The result indicates that when new spam cam-
paigns emerge, the system can react quickly and generate
effective templates to throttle them.

5. DISCUSSIONS
How to increase the attack resilience of the aux-

iliary spam filter? In practice, Tangram needs an auxil-
iary filter with a low false positive rate. This is a reason-
able requirement, since we can tune the auxiliary filter to
be conservative in reporting spam. Spammers can try to
evade Tangram by evading the auxiliary spam filter, so that
no training samples are available for template generation.
We can address this by introducing heterogeneity into the
auxiliary filter. Using a combination of multiple inherently
different existing spam detection systems as the auxiliary
filter makes it very hard for spammers to evade all of them.

How to mitigate training sample poisoning? Power-
ful adversaries can manipulate the training samples to mis-
lead the training of the detection system. One possible way
is to inject popular legitimate content into spam, hoping that
the generated template matches a large number of legitimate
messages. However, our experimental results show that Tan-
gram will not generate template for spam with seemingly
legitimate content. As a second precaution, we can set a
threshold and only deploy the templates that incur a false
positive rate lower than the threshold.

Another popular attack is to send spam with different pat-
terns from the training samples after the detection system
finishing training. Tangram is inherently immune to such
attack, because it does not have separate training and test-
ing phase. If spammers produce spam from a non-stationary
distribution, Tangram can also detect it as long as sufficient
large amount of spam is produced from each distribution.

How to mitigate paraphrase spam? The major dif-

ficulty for Tangram to detect paraphrase spam is the lack
of ordering among semantically meaningful segments, which
is assumed by the template model. Nonetheless, semantic
analysis techniques that do not consider the word ordering
may be used to mitigate such spam, e.g., clustering based
on cosine similarity using bag-of-words model. In addition,
paraphrase generation is still an active area of research in
Natural Language Processing [20]. So is paraphrase detec-
tion [5]. The detection of paraphrase spam can leverage
existing paraphrase detection approaches, and is one of our
future research directions.

How to mitigate spam that re-uses legitimate con-
tent? Since spammers need to use popular content to at-
tract the audience and generate a large number of spam, the
OSN administrator will observe the popular content with
replaced URLs in large volume, which defeats the spam-
mers’ purpose to evade detection. Also, in practice, we can
equip Tangram with multiple heterogeneous detection mod-
ules that do not rely on spam content.

6. RELATED WORK
Spam Detection. Judo [22] also infers the underlying

template used to generate spam. However, Judo (as well
as its adaptation to web spam [33]) assume the presence
of invariant substring in the template, and requires a clean
spam trace instantiating the same template as input. These
requirements are hard to satisfy in the OSN environment.
We also show via experiments that the Judo design does not
yield satisfactory detection accuracy on a real-world OSN
trace. In contrast, our system is designed specifically for
OSN and is not limited by the above two requirements.

Researchers have proposed other approaches that fight
spam using the textual content, including using the syntac-
tical textual similarity within the same campaign [6,34] and
extracting signature of embedded URLs [30]. Meanwhile,
other features of spam/spammers are used to fight spam as
well. Egele et al. model account profiles and use anomaly
detection to identify compromised accounts in OSNs [4].
Song et al. propose to use the social graph property to de-
tect spam tweets [24]. Yang et al. use sender profile features
among others [31]. Other proposed techniques include focus-
ing on embedded URL information like redirection chains,
DNS and WHOIS information and so on [15, 18, 19], classi-
fying URLs’ landing pages [2,26] and using sender’s reputa-
tion [3,9,25,29]. Building sender profile features takes time
and it is difficult to adopt for real-time detection. Compared
with our work, although some of the above approaches re-
port higher spam coverage, they incur significantly higher
false positive rate, showing that the features they use are
less precise than spam templates. More importantly, very
few existing works can do real-time detection and filter spam
without URLs simultaneously, where as Tangram by design
can achieve both.

Spam Measurement. Thomas et al. examine a large
corpus of suspended Twitter accounts in [27], which provides
rich knowledge on Twitter spammers that inspires our work
from multiple aspects. In addition, Grier et al. and Gao et
al. discovered the popularity of compromised spamming ac-
counts in Twitter and Facebook, respectively [7, 8]. Due
to the different data collection method, most spamming ac-
counts in our dataset are created by spammers. Yang et
al. analyze the social network formed by spamming ac-



counts and reveal different categories of legitimate accounts
that follow spamming accounts [32]. Levchendo et al. and
Kanich et al. study the monetization of spam campaigns [11,
16]. In comparison, our work focuses on detecting spam,
whereas the above works focus on revealing spammers’ char-
acteristics using known spam.

Signature Generation. The problem of spam template
generation bears similarity with polymorphic worm signa-
ture generation [17, 21]. The worm signature generation is
based on the assumption that polymorphic worm content
contains invariant substrings, which is reasonable because
some invariant bytes are crucial for successfully exploiting
the vulnerability. However, this assumption is not solid in
the context of spam detection, where spammers can express
the same message using different expressions in human lan-
guage. Our Twitter spam analysis supports this argument.
Venkataraman et al. formalize the limits on the pattern-
extraction algorithms for signature generation in the pres-
ence of powerful adversaries [28]. Due to the difference in
the underlying assumptions, i.e., with and without invariant
substrings, it is hard to directly apply their conclusions to
our spam template generation problem.

7. CONCLUSION
We have proposed and evaluated Tangram, a template-

based system for accurate and fast OSN spam detection.
Our measurement study reveals that 63% of Twitter spam
is likely to instantiate underlying templates. Based on the
empirical findings, Tangram mainly employs template gen-
eration/matching to mitigate OSN spam. Tangram distin-
guishes from existing template generation work in that it can
construct template in the absence of invariant substrings.
Tangram detects OSN spam in real-time without a separate
training phase. Experimental results show that Tangram
can detect 95.7% of the most prevalent template-based spam
in the collected Twitter dataset. Equipped with one neces-
sary auxiliary spam filter, the combined system achieves an
overall true positive rate of 85.4% and a false positive rate
of 0.33%.
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APPENDIX

A. TEMPLATE GENERATION COMPUTA-
TIONAL CHALLENGE

We prove that the template generation problem is NP-
hard. We use the following notions for ease of presentation:

1. len(S): When S is a token sequence, this operation
computes the number of tokens in S. When S is a set
or a list, this operation recursively computes the sum
of len() for all the elements in S. len(ε) is zero.

2. cat(S): This operation concatenates the elements of a
set S in arbitrary order and returns the concatenation.

3. [s1, s2, ..., sk]: An ordered list containing k elements.

Single Campaign Template Generation (SCTG): We
start with the problem to reconstruct the underlying tem-
plate given a set of spam messages instantiating the same
template.
Input: n token sequences, instantiating the same template.
Output: An ordered list L = [S1, S2, ..., Sk], where each Si

is a set of token sequences. Si may contain ε (representing
nothing). Every input token sequence can be represented
as the concatenation of one element in each Si. Meanwhile,
len(L) is minimized.
Hardness: SCTG is NP-hard. We prove this by reduc-
ing Shortest Common Supersequence Problem, a well-known

NP-hard problem, into SCTG (Table 6).
Input: A set of n token sequences M = {m1, m2, ..., mn}
Reduction:
Find L, the SCTG solution of M .
S :=“”
Foreach Si in L:

S := S + cat(Si)
End Foreach
S is the shortest common supersequence of M .
Proof: S is the shortest common supersequence of M
It is trivially true that S is a common supersequence of M .
Assume ∃S′, such that S′ is a common supersequence of M
and that len(S′) < len(S).
We can construct an ordered list L′ of len(S′) elements,
where the ith element is a set {the ith token in S′ , ε}.
Apparently, every mi ∈ M can be represented as the con-
catenation of one element of each set in L′.
Because L is the output of the SCTG solver, we must have
len(L) <= len(L′).
Because len(L) = len(S), len(L′) = len(S′) and len(S′) <
len(S), we have len(L) > len(L′).
We thus reach a contradiction.
Hence we reject the assumption and prove that S is the
shortest common supersequence of M .

Table 6: The reduction from Shortest Common Su-
persequence Problem to SCTG.

Multiple Campaign Template Generation (MCTG):
In real-world deployment scenarios, the system is expected
to receive a mixture of spam instantiating multiple tem-
plates, and it is non-trivial to separate them. Accordingly,
the system should be able to generate multiple templates
from the input spam. Intuitively, the MCTG problem is at
least as hard as the SCTG problem, since a MCTG solver
is able to solve the SCTG problem as well.

B. CORRECTNESS OF MATRIX COLUMN
REDUCTION

In Section 3.2, we state three conditions to merge matrix
columns. Condition i) column j and column k have iden-
tical label; Condition ii) in any row at least one column is
ε; and Condition iii) if the cell at row i, column k is not
ε, all cells in row i, between column j and column k must
be ε. Under the three conditions, we prove that the super-
sequence property holds after merging by contradiction. Let
column j and column k satisfy the above three conditions,
and we assume that after merging column k into column j,
the resulting concatenation of column labels are not a super-
sequence of some input sequence i (row i). There is at least
one token in sequence i that is not covered by the resulting
concatenation of column labels. Let it be at the mth column
in the original matrix. m must be k because other columns
still perserve after merging. Hence, row i column k must
not be ε. We denote it as t. Due to condition ii), row i
column j must be ε. Due to condition iii), the subsequence
of row i between column j and column k is merely one to-
ken, t. Since column j and column k have identical token
(condition i)), after merging the label of columns between
j and k can cover t. Hence, the resulting column labels are
still a supersequence of input sequence i. We hereby reach
a contradiction, and the proof is complete.


