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ABSTRACT: The design of materials needed for the storage, delivery, and conversion
of (re)useable energy is still hindered by the lack of new, hierarchical molecular
screening methodologies that encode information on more than one length scale.
Using a molecular network theory as a foundation, we show that to describe charge
transport in disordered materials the network methodology must be scaled-up. We
detail the scale-up through the use of adjacency lists and depth first search algorithms
for during operations on the adjacency matrix. We consider two types of electronic
acceptors, perylenediimide (PDI) and the fullerene derivative phenyl-C61-butyric acid
methyl ester (PCBM), and we demonstrate that the method is scalable to length scales
relevant to grain boundary and trap formations. Such boundaries lead to a decrease in the percolation ratio of PDI with system
size, while the ratio for PCBM remains constant, further quantifying the stable, diverse transport pathways of PCBM and its
success as a charge-accepting material.

The prospect of organic semiconductors replacing their
inorganic counterparts, in a variety of applications,

depends on a detailed understanding of charge transport on
the mesoscale, while the chemical design of the organic
moieties requires a molecular-level understanding. Rationalizing
this dichotomy requires one to build a bridge from quantum-
chemistry descriptors to the macroscopic observables of a
functional semiconducting device. Recently, a molecular
network theory has been developed that has successfully
described charge-transport networks in a variety of organic
materials.1 Utilizing a graph theoretical approach incorporating
intermolecular electronic couplings, a methodology for
quantifying multimolecule charge transport networks in soft,
disordered materials has been established using molecular
couplings from a tight-binding Hamiltonian.1 Conventional
organic semiconducting molecules such as polyacenes and
pyrenes showed promise as high electron mobility materials
because of their capacity to strongly couple to adjacent
molecules using π-orbital overlap, yet transport beyond the
neighbor shell proved problematic. Next-generation derivative
molecules such as rubrene,2,3 TIPS pentacene,4 and benzothio-
phene heterocyclic oligomers5,6 rely less on just cofacial π-
stacking due to their higher order molecular packing. However,
multicrystalline interfaces such as domain boundaries that
contain >1000 molecules still provide transport bottlenecks,
such as recombination,7 and theoretical methods must be held
to account for them.8

Theoretical understanding of these devices is often bifurcated
into distinct length scales. At one end (1−10 nm), single-
molecule in vacuo studies probe HOMO/LUMO gaps and
reorganization energy.9,10 At the other end (10−1000 nm),

bulk (device) studies probe packing, percolation, hopping
transport, and device characteristics.11,12 The size limitation of
single-molecule studies and the lack of molecular details in bulk
studies hinders our understanding and impedes rational design.
Motivated by these challenges, we have previously developed a
charge-transport model based on graph theory1 that couples
bulk sampling (molecular dynamics) with n-wise molecular
couplings (tight binding Hamiltonian) to bridge the length-
scale divide and to accurately measure the charge transport on
length scales competitive with recombination.
Using the network methodology, we advance the model for

intermolecular couplings toward the length scale of an entire
active layer of an organic photovoltaic cell, thin-film transistor,
or light-emitting diode, that is, ∼50 nm. This requires
improving the method scaling, a process on which we have
made significant progress. We show the effect of network
fragmentation due to the emergence of (dis)order on larger
length scales. This points to the importance of modeling larger
system sizes to capture longer length scale phenomena, such as
multicrystalline domains and the interfacial effects of ordered
domains13 and their effects on charge transport. We report the
percolation ratio of two high-quality electron acceptors for
system sizes where domain effects like domain boundaries
become evident and discuss their disruptive behavior to charge
transport. We connect the need for larger scale modeling to the
desire to utilize the next-generation rational design methods of
machine learning. Machine learning and data mining offer a
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promising route for achieving rational materials design.14 In
contrast with other data-driven methods such as rational design
using cheminformatics,15,16 where large training data sets must
be manually constructed from literature, mesoscale chemical
networks can rely on automated database generation as the
macroscopic properties are predictive. Already, learning
methods have been applied for inorganic17 and crystalline18

materials. We hope to use the network theory to enable similar
progress in the area of (hybrid) organic electronics.
We consider two types of electron-accepting molecules,

phenyl-C61-butyric acid methyl ester (PCBM) and a
perylenediimide (PDI) with R = −CH[(CH2)4CH3]2. While
both of these have been used with success in organic
electronics, the charge networks of PDI and PCBM differ due
to reduction in the possible coupling directions of PDI relative
to PCBM. The core of PDI is perylene, a five-member fused
benzene ring system that is planar. The addition of two imides
at each end creates two more rings and allows the addition of
solubilizing groups. Although solubilizing groups can stick out
of the plane, charge transport is limited to the direction
perpendicular to the plane, as π-stacking between adjacent PDIs
leads to the most favorable coupling. This limits the number of
coupling directions to two and leads to the terminology that
PDI is a 1D material. In contrast, the PCBM core is a spherical
fused ring system known as buckminsterfullerene, which can
couple in more than two directions. Density functional and
semiempirical methods show that PCBM can form one-, two-,
or three-dimensional percolation networks, with higher energy
virtual orbitals often participating in electron transfer.19 For
example, PCBM can couple to as many as six neighbors in the
strong coupling regime.
We have made progress in scaling the network methodology

from small systems of 64 PCBM or PDI molecules to as many
as 256 molecules. This is accomplished through the use of
sparse data structures for a Hamiltonian and the storage of
hierarchical couplings in the adjacency matrix. The adjacency
matrix is used to represent the molecular system in graph
theoretical terms and, when expressed as a sparse adjacency list,
allows for scaling of the methodology to millions of graph

nodes. Likewise, to perform a calculation on a Hamiltonian
containing couplings for thousands of basis functions, a sparse
matrix data structure optimized for matrix-vector products must
be used. Below, we describe the methodology and discuss the
bottlenecks present in the Hamiltonian calculation. We find
that our choice of sparse matrix structure significantly speeds up
the calculation, leading us to discover the steady decay in the
percolation ratio (defined below) with system size for PDI, in
contrast with PCBM. Crystalline domain boundaries, on length
scales that form beyond systems sizes of ∼50 molecules, are
discussed as a explanation behind the trend. Finally, the time
improvements made by considering the use of an adjacency list
to represent the molecular graph are presented.
The network methodology involves a series of calculations

that are shown in Figure 1. For each snapshot of a molecular
dynamics trajectory, one must (1) calculate a molecular
Hamiltonian, (2) produce an adjacency matrix via thresholding,
and (3) compute graph theoretical descriptors. One can
average the graph descriptors over the trajectory. We have
chosen to compute the connected components, which
represent the pathways through which charge transfer can
occur in the system. Graph theory is the bridge between length
scales, whose application is potentially independent of the
dynamics and quantum methods chosen. The application of
graph theory has previously found success in many chemistry
subdisciplines,20,21 for example, in molecular connectivity22 and
morphology characterization.23

The molecular dynamics simulation is straightforward, using
the optimized potentials for liquid simulations (OPLS) force
field. A box of molecules is first relaxed in the microcanonical
ensemble (NVE) to remove any high-energy initial config-
urations. The relaxed molecules are then heated from 10 to 550
K over a 50 ps time frame, using a 1 fs time step, in the
isothermal−isobaric ensemble (NPT) at 1 atm. After annealing
the molecules at this temperature for 2 ns, we rapidly cool the
system over 100 ps to 298 K. Finally, we sample the low-energy
states every 100 ps for 10 ns. This creates 100 snapshots to
average network properties over.

Figure 1. Overview of the molecular network theory method. Simulation snapshots of a molecular dynamics trajectory are partitioned into fragments
based on a distance criterion. A quantum calculation is performed on each fragment. The fragments are joined together to produce the full-system
Hamiltonian. A thresholding procedure is then used to transform the Hamiltonian into an adjacency matrix. This matrix is analyzed using graph
theory. Optionally, adjacency lists can be used instead of the matrix for optimal calculation of graph properties.
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To describe the graphical connectivities of topologically
complex, disordered molecules, two data types have to be
constructed: the molecular orbitals of the molecules and the
adjacency matrix based on the couplings between molecular
orbitals.1 Methods for constructing electronic (molecular)
orbitals for organic molecules are straightforward, yet to
accurately simulate charge transport on the mesoscale, tens of
thousands of calculated molecular orbitals must be stored
dynamically throughout a simulation, presenting a practical data
challenge. The scaling of the orbital data structure to the
mesoscale is the first challenge we have started to address. In
the past, we have used coarse-grained charge-hopping models
and Monte Carlo lattice models. While these models are
qualitatively descriptive, to move to quantitative descriptions
there needs to be a scale-up in the capacity of molecular orbital
sparse data structures.13 Integration of sparse data operations
into quantum-chemistry solvers is key to achieve the scale in
orbital construction on the mesoscale. Complementary
approaches in classical molecular simulations have been utilized
for the description of sparsely populated (rare-event) properties
of oligomeric soft materials, especially using high-throughput
computational resources like parallel tempering molecular
dynamics. As an example, simulated annealing in MD has
often been utilized to simulate configurations that are sparsely
distributed in highly disordered biomolecular systems, such as
biopolymer (peptide or oligonucleotide) assembly,24,25 and
such methods could be adapted to construct the large sparsely
occupied orbital data sets.
We use semiempirical extended Hückel theory to compute

transfer integrals between all nearest-neighbor molecules in the
system, creating a Hamiltonian of the aggregate. Details of
extended Hückel can be found elsewhere.26,27 As PDI and
PCBM are used as electron acceptors, we consider the LUMO
as the relevant charge-transport state. The basis set uses Slater
Type Orbitals (STOs), which represent the valence electrons
and approximate hydrogenic atomic orbitals centered on atoms
in the system. Considering the valence orbitals on C, N, O, and
H, there are 310 atomic orbitals on a single PCBM and 262 on
PDI. Given a box of 32 to 256 molecules, the Hamiltonian will
have 9920 to 79360 basis functions for PCBM and 8384 to
67072 basis functions for PDI. We utilize a semiempirical
Hamiltonian due to the size of the system and its ability to scale
to larger systems. Even so, in systems as small as 64 molecules,
the orbital overlap calculation is still too expensive. Instead, a
simulation snapshot is partitioned into clusters based on a
distance criterion (<2 nm). A coupling calculation is then
performed on each cluster. The justification is that molecules
beyond a certain distance will have no orbital overlap and thus
contribute nothing to the overlap matrix or Hamiltonian. The
fragment calculations are then joined together to produce the
full-system Hamiltonian.
The tight-binding Hamiltonian takes the form of eq 1, where

ϕi is the ith basis function, ϵi is its eigenvalue, vij is the coupling
between the ith and jth basis functions, and N is the total
number of basis functions.

∑ ∑ϕ ϕ ϕ ϕ= ϵ | ⟩⟨ | + | ⟩⟨ |H v
i

N

i i i
ij

N

ij i j
(1)

The form is similar to an adjacency matrix. An adjacency
matrix is used to represent a graph or network. If two vertices vi
and vj are connected, the corresponding entry in the adjacency
matrix Aij is set to one. If no such edge exists, the element Aij is

set to zero. The adjacency matrix of an undirected simple graph
is symmetric; that is, the element Aij = Aji and is redundant.
Using an adjacency list, one can simplify the representation by
only storing lists of vertices for every vertex vi. While the
redundancy is still present in such a representation, the explicit
zeros in the adjacency matrix are not stored. More importantly,
the question of which vertices share edges with a given vertex vi
changes from a V( ) operation to a constant (1) operation.
Such a question is crucial to labeling the connected
components in the network algorithm.
To create the adjacency matrix (or list), a thresholding

procedure is used on the Hamiltonian of eq 1. As shown in eq
2, elements |Hij| ≥ vt are set to 1 and elements |Hij| < vt are set
to 0. The value of vt can be varied but typically is ∼5 meV. If
elements of the Hamiltonian represent molecular states, this
means significant coupling between molecules i and j and thus a
charge- transfer pathway. A higher value of vt corresponds to
the strong coupling regime and leads to more edges, larger
connected components, and percolative charge transfer.

∀ ∈ | | < → = ∧ | | ≥ → =i j N H v A H v A, [0, ), ( 0) ( 1)ij t ij ij t ij

(2)

Finally, the adjacency matrix is analyzed using graph theory.
One key metric of interest to charge transfer theory is the
presence of connected components in the graph. Connected
components are subgraphs such that any vertex in the subgraph
can be reached via traversal of edges within the subgraph and
no vertex outside the subgraph can be reached. The idea is that
charge transfer occurs between molecules with a baseline
coupling, represented by the threshold value discussed above.
This translates to the graph edges representing possible
pathways for charge transfer, and a lack of connected
components spanning the simulation box, and more so a
semiconductor device active layer, leads to poor electron
transport. The scalability of the method is crucial if rational
design methods are to be deployed.
We now discuss the present limitations in the extended

Hückel calculation, for which we have used the YAeHMOP
package to perform. For a single molecular dynamics trajectory
snapshot, tens of thousands of molecular STO orbitals must be
stored dynamically throughout a simulation. Typically, one
averages over 100 snapshots. This poses three challenges to the
calculation. The first challenge is the size of the system. Even
for a single snapshot, the calculation is impractical. Fortunately
one can fragment the system into molecular components based
on a distance criterion. The reasoning here is that molecular
units outside a certain distance cutoff will have little to no
orbital overlap. One can thus calculate the Hamiltonian and
overlap matrix of the clusters and stitch them back together in a
highly parallelized fashion.
The second challenge is that fragmenting the system

becomes nontrivial as the system size increases. While the
number of basis functions used to represent each fragment
Hamiltonian remains small, the full-system Hamiltonian is a
sparse matrix because distant molecules do not have significant
interaction. The stitching of fragments together benefits from a
List of Lists (LIL) sparse matrix representation. The LIL form
is a row-based linked list of nonzero elements and is efficient
for constructing sparse matrices incrementally. However, this
form does not perform well when computing matrix multi-
plication or matrix-vector products. Stitching fragments using
the LIL form, then switching to a compressed sparse row
(CSR) form greatly improves performance. The CSR form

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.6b02921
J. Phys. Chem. Lett. 2017, 8, 415−421

417

http://dx.doi.org/10.1021/acs.jpclett.6b02921


allows fast matrix-vector products at the expense of changes in
sparsity structure.28 The benefit of switching matrix represen-
tation far outweighs the cost. Figure 2 shows the timing for a

single snapshot calculation of systems of increasing size before
and after this optimization. For example, for a single snapshot
of a PDI trajectory with 256 molecules, the calculation time is
reduced from 45.8 to 2.81 h.
The final challenge is the interface with the extended-Hückel

calculation itself must be altered to scale up the fragmented vij|
ϕi⟩ ⟨ϕj| molecular coupling calculations. Sparse matrix
Hamiltonian and overlap integrals for each molecular fragment
must be calculated as an intermediate calculation. For large
molecules or large system sizes, it becomes intractable to save
the data as an intermediate calculation. The number of
fragments scales as N2, where N is the number of molecules
in the system. Additionally, as the number of orbitals increases,
the size of even a single fragment can approach hundreds of
GB. Fortunately, this is only an interface problem with the
network calculation, and on-the-fly calculations of the overlap
integrals will remove the bottleneck. Implementing the atomic
overlap calculations is a work in progress, and it will eliminate
the large amount of overhead in the coupling calculations.
With this implementation, we can observe the nature of

networks in the larger systems. Figure 3A shows how the size of
the largest network RNET, measured by the radius of gyration
RG
NET of the largest network formed, scales as a function of the

number of molecules NMOL. We scale RNET by the system size
RSYS ≡ RG

TOT to show the percolation ratio (RNET/RSYS) of the
networks. The data are distributed over a set of coupling
thresholds vt for 1 ≥ vt ≥ 50 meV (blue for PCBM and green
for PDI) for each system size NMOL. The percolation ratio
varies between 0 and 1 and is the fraction of the system of
which is the largest charge network.1 PDI shows a steady
decrease in percolation ratio as the system size increases, in
contrast with PCBM, which remains relatively constant over the
range of system sizes up to NMOL = 256. We attribute the decay
in the percolation ratio for larger system sizes in Figure 3A to a
competition between growing cofacial stacks of PDI, leading to
stacking faults. At larger system sizes we had originally expected
the that RNET would either slightly increase or remain constant
due to the minimization of the “surface effect”, where network

fragmentation often starts at the surface of the molecular
aggregate. The unexpected decrease in RNET for PDI points to
the importance of larger system sizes, where larger scale
morphologies like domain boundaries can come into play, and
their effect on charge transport is not negligible.13

To further show that this effect is not due to the fact that
there are more molecules in the cluster and therefore the decay
in the percolation ratio is just a scaling artifact due to the fact
that there are additional (small) networks in the cluster, we plot
in Figure 3B the number of total networks in the system NNET.
Again, the y axis in Figure 3B is scaled by the total system size,
in this case the number of molecules NMOL, to present the data
as a ratio and to restrict it between 0 and 1. The plot is over the
coupling threshold values 1 ≥ vt ≥ 50 meV. Note that a ratio of
1 would mean that the cluster is entirely fragmented and each
molecule is its own network. It is found that the ratio of large
networks does not significantly change for PDI (or PCBM) for
larger system sizes. This is interpreted to mean that the decay
of RNET/RSYS is due to the emergence of molecular order on
another length scale, which we attribute to domain boundaries.
We illustrate the role system size has in the coupled networks
and the emergence of domain boundaries in PDI aggregates in
the Supporting Information (see Figures S1 and S2). A detailed
(zoomed) view at PDI domains is shown in Figure S3. The
effect is highlighted for the modest threshold of vt = 10 meV
(Figure 3C,D), a threshold at which charge transfer occurs on
time scales of τ ≈ 5−7 ps.1 The decay of the percolation ratio
for increasing NMOL is evident even when the threshold for
fragmentation is small. Spherically symmetric molecular

Figure 2. Walltime (hours) of the network code versus system size
(number of molecules) before and after sparse matrix optimization for
(A) PDI and (B) PCBM. The List of Lists (LIL, before)
representation vastly slows down the calculation compared with the
compressed structured row (CSR, after) representation. Although
PCBM has fewer basis functions than PDI, calculations on PCBM take
longer because there are more intramolecular interactions relative to
PDI (i.e., the PCBM Hamiltonian has more nonzero elements).

Figure 3. (A) Box plots of the percolation ratio RNET/RSYS, distributed
over the coupling threshold values 1 ≥ vt ≥ 50 meV. Box plots are
used as a guide for the eye on how the data points are distributed
(shaded boxes show inner quartile and whiskers show outer quartiles).
Distributions are shown for PCBM (blue) and for PDI (green) as well
as for each system size NMOL. (B) Box plots of the reduced number of
networks NNET/NMOL. (C) Subset of RNET/RSYS and (D) subset of
NNET/NMOL for low coupling (vt = 10 meV) and high coupling (vt = 50
meV).
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topologies like PCBM may also have multicrystalline domains,
but at these system sizes they are not evident. This indicates
that PCBM forms robust percolation networks, while PDI does
not. One should note that the number of networks, NNET, and
the percolation ratio consider only the membership of
molecules in the respective networks; the number of connected
neighbors per molecule is not directly reflected in the largest
network size or total NNET, yet fragmentation occurs when the
average number of connections falls below 2, and that is the
maximum number of connections for PDI, so the percolation
ratio for PDI rigorously shows the fragmentation of the
networks.
Another obstacle to scaling up the molecular network

methodology is performing operations on the adjacency matrix.
Under certain conditions, the adjacency matrix can be
constructed directly from the molecular orbitals in a tight-
binding (one-electron) Hamiltonian. By operating on the
adjacency matrix, graphical properties such as the molecular
connectivity,29 percolative networks,30,31 and network fragility
can be found. Operations on adjacency matrices to find
(sub)networks involve an upper limit on the order of hundreds
of molecules. High-throughput techniques have been devised to
operate on complex networks with thousands of nodes.31,32

Utilizing these techniques will allow for the scale-up of the
network descriptors in molecular systems. Additionally,
alternative data structures, such as adjacency lists, need to be
incorporated.
The original implementation of the network generation code,

which determines the connected components in the graph
scales as V( )3 , where V is the number nodes in the graph.1

The number of nodes in the graph is determined by the
number of molecules in the system. If one chooses to represent
the system Hamiltonian on a molecular basis, then V represents
the number of molecules exactly, and the original scaling can be
coped with, even for systems as large as 103 molecules.
However, when attempting a simulation of an entire active layer
of a semiconducting device, the number of molecules could
easily approach 105 for nanoscale devices. Likewise, considering
an atomic Hamiltonian, where states reside on atom centers
instead of coarse-graining of states to the molecules, the
number of states will increase significantly. Thus for a PCBM
box with 128 molecules containing 39 680 STO basis functions,
sparse storage and optimal graph techniques must be employed.
Just like a sparse matrix improves the Hamiltonian

calculation performance, changing the graph data structure
from an adjacency matrix to an adjacency list improves the
running time of the algorithm. The adjacency list saves memory
by not storing explicit zeros. Figure 4 compares the running
time of connected component discovery versus network size for
various implementations and the two graph data structures. It is
found that adjacency lists with a recursive depth-first-search
(DFS) implementation outperform the original implementation
with the adjacency matrix.
DFS is a well known method for graph traversal. The

complexity of DFS depends on the data structure used. While
an adjacency matrix leads to V( )2 , using an adjacency list
leads to +V E( ), with E being the number of edges
traversed. Note that, in the worst possible case, E = V(V − 1);
that is, every single molecule has a significant interaction with
every other molecule in the system, an unlikely scenario.
Therefore, in this worst possible case, DFS would scale as

+ * − =V V V V( ( 1)) ( )2 . In a more likely scenario, each

molecule would interact with a constant number of neighboring
mo lecu l e s . In th i s c a s e , DFS wou ld sca l e a s

+ * =V d V V( ) ( ), where d is the degree of each vertex,
that is, the number of neighboring molecules with significant
interaction. PCBM shows, on average, around six neighbors in
the strong coupling regime, while PDI shows, on average, two
neighbors, leading to different scaling prefactors. This
optimization is expected to be very useful in large systems
with highly coupled molecules similar to PCBM.
To summarize, we have previously applied the molecular

network theory method to small systems, on the order of 64
molecules for the electron acceptors PCBM and PDI. By
scaling up the methodology to reach length scales of 256
molecules, we observed the emergence of long length-scale
domain boundary effects in the PDI system. This scalability was
achieved by fragmenting the Hamiltonian calculation and taking
care with the form of the sparse matrix representation.
Additionally, the interface to the quantum results of any code
must be streamlined to avoid large data files and redundant
information. The network generation scaling was greatly
improved from V( )3 to +V E( ) by using an adjacency
list and depth first search. As is the nature of disordered
molecular systems, the significant coupling between molecules
occurs only between neighbors, making E = d * V, with d being
the average number of neighboring molecules. Molecules with
deeply coupled charge networks will no longer suffer from poor
scaling. We aim to target much larger systems in the future, on
the order of a thousand molecules, to model the intermolecular
couplings on the length scale of an entire active layer of a
photovoltaic cell or organic light-emitting diode. This requires
improving the method scaling, a process on which we have
made significant progress via data structure optimization, as
discussed in this paper. The use of sparse matrix data structures
to optimize the quantum calculation and network generation

Figure 4. Running time (seconds) of the graph generation code versus
system size (number of vertices). When using an adjacency matrix data
structure, similar performance is observed for the original algorithm
(AMat, ORIG, blue), the recursive depth first search algorithm (AMat,
rDFS, red), and the iterative depth first search algorithm (AMat, iDFS,
green). The performance increases drastically when an adjacency list
data structure is used with iterative depth first search (ALst, iDFS,
yellow). The best performance is found with the recursive form (ALst,
rDFS, purple).
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has enabled us to study large systems, opening the door to true
rational materials.
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