
 IEEE COMPUTER ARCHITECTURE LETTERS

1

Abstract—As transistor feature sizes continue to shrink into
the sub-90nm range and beyond, the effects of process variations
on critical path delay and chip yields have amplified. A common
concept to remedy the effects of variation is speed-binning, by
which chips from a single batch are rated by a discrete range of
frequencies and sold at different prices. In this paper, we discuss
strategies to modify the number of chips in different bins and
hence enhance the profits obtained from them. Particularly, we
propose a scheme that introduces a small Substitute Cache
associated with each cache way to replicate the data elements
that will be stored in the high latency lines. Assuming a fixed
pricing model, this method increases the revenue by as much as
13.8% without any impact on the performance of the chips.

Index Terms— Computer Architecture, Cache Memories,
Process Variations, Fault-tolerant Computing.

I. INTRODUCTION

 HE COMPUTING research literature is filled with design
techniques and architectural optimizations that seek to

improve performance, power consumption, reliability, and
security among others. However, the evaluation of these
concepts tends to neglect one of the key factors driving any
chip manufacturing decision: a company's bottom-line of
revenue and profit. This shortcoming is understandable, as the
relationship between any of the standard design metrics and
profit is not well understood. For example, an optimization
that improves performance by 10% will increase profit only if
a) the cost of re-engineering can be amortized over the
lifespan of the chip, b) the per-unit testing cost stays constant,
and c) consequent changes in other design factors do not
decrease the value of the new chip to consumers. In this work,
we aim to fill this important gap and show how architectural
decisions can be made considering the revenue/profit from a
batch of chips.1

Chip yield is one obvious scope for optimization, as the
continuing downward scaling of transistor feature sizes has
made fabrication considerably more difficult and expensive
[10]. However, an approach that optimizes solely for yield
would not take into account the fact that CPUs concurrently
manufactured using a single process are routinely sold at
different speed ratings and prices. This practice of speed-
binning (Figure 1a) is usually performed by testing each
manufactured chip separately over a range of frequency levels
until it fails. As a result of the inherent process variations, the
different processors fall into separate speed bins, where they

1Manuscript submitted: 9-May-2007. Manuscript accepted: 01-Jun-2007.

Final manuscript received: 13-Jun-2007.

are rated and marketed differently. Figure 1b shows this
distribution for AMD Opteron family processors [2]. Similar
superlinear correlation between frequency and price of a chip
can be observed for various processor families by vendors
such as Intel, IBM, and Texas Instruments. Speed-binning
thus helps chip manufacturer create a complete product line
from a single design. Assuming a simplified supply and
demand model, total chip revenue would be the sum of the
segmented areas under the yield curve. Consequently, one
way of increasing revenue would be to shift the binning
distribution in such a way that more processors are able to fall
into higher-priced bins.

 (a)

 (b)
Fig. 1 (a) Frequency binning in modern microprocessors, (b) Price vs.

frequency of AMD Opteron family [2].

In order to improve the binning of individual chips at the
circuit and architectural level, the effects of process variations
on fabrication must be masked. Previous studies have shown
that in a relatively mature technology like 130nm, these
variations are known to result in as much as a 30% decrease in
maximum frequency and 500% increase in leakage power [5].
For newer technologies, these variations can be even higher:
20-fold increases in leakage have been reported for 90nm [4].
An expected continuation of this trend will increase the impact
of speed-binning on a manufacturer's bottom-line.

In this paper, we propose a scheme in which the level 1
(L1) cache is augmented with a small Substitute Cache (SC)
storing the most critical cache words. We concentrate on

Microarchitectures for Managing Chip
Revenues under Process Variations

Abhishek Das, Serkan Ozdemir, Gokhan Memik, Joseph Zambreno, and Alok Choudhary
Electrical Engineering and Computer Science Department, Northwestern University

T
Yield loss Bin 0 Bin 1 Bin 2 Yield loss

Frequency

Bin 3

of

 c
hi

ps
chips lost
for high
leakage

chips
lost for

high
delay

Bin 4

AMD Opteron

0

200

400

600

800

1000

2 2.2 2.4 2.6 2.8 3
Frequency (GHz)

P
ric

e
in

 $

AMD Opteron

 IEEE COMPUTER ARCHITECTURE LETTERS

2

caches because caches are known to be the critical component
under process variations [7]. Also, our analysis (described in
Section II) reveals that the critical path lies on the cache 58%
of the chips we model. With the help of minimal control logic,
the processor can fetch data from SC instead of the main data
array whenever a read/write access is made to these critical
words. Hence access latency is minimized with no extra cache
misses. The SC technique registers 12.4% and 13.8%
increases in revenue for the average and best cases,
respectively. These gains are achieved mostly through an
increase in the number of chips in the higher-priced bins.

The rest of this paper is organized as follows. Section II
describes the modeling framework. Revenue estimation
techniques are discussed in Section III. In Section IV, we
present our proposed architecture in detail. Experimental
results are presented in Section V. Related work and
conclusions are presented in Sections VI and VII.

II. MODELING FRAMEWORK

A. Architecture Modeling
To model a processor core, we have taken into account the

7-stage pipeline in Alpha-21364 (EV7) architecture. The main
components of our processor are the Issue Queue, the Integer
Execution Unit, the Register File, and the L1 Data cache. All
these components are modeled in SPICE using the 45nm
BPTM technology models. The issue queue is based on that of
EV7 and has 20 entries. The register file is an 80-entry
structure with 4 read and 2 write ports. The integer execution
unit is modeled using the netlist generated after synthesizing
the corresponding component in the Sun OpenSPARC code
[12]. The L1 cache is a 32 KB 4-way set associative cache and
our model is based on the architecture described by Amrutur
and Horowitz [3].

B. Modeling Process Variations
Process variations are statistical variations in circuit

parameters like gate-oxide thickness, channel length, Random
Doping Effects (RDE), due to shrinking process geometries
[4]. They can be of two types: with-in-die (WID) and die-to-
die (D2D) variations. WID variations consist of spatially
correlated or systematic variations, and random variations.

Fig. 2. Maps showing the variation of threshold voltage for different

range parameters: φ = 0.3 (left) and φ = 0.5 (right).

We model both spatially correlated and random process
variations for five different process parameters (metal
thickness, inter-layer dielectric thickness, and line-width on
interconnects; gate length and threshold voltage for the MOS
devices). The statistical distributions of these parameters are
based on limits given by Nassif [10]. To take into account the
spatial correlation we use a range factor (φ) in the two

dimensional layout of the chip, which gives a measure of
randomness in variations. The values in two different points
separated by a distance d are correlated by 1/d if d < φ and are
not correlated if d > φ. Since spatially correlated process
variations are found to be the dominating factor [6], we set the
random variations to constitute 30% of the total variation. A
spatial map of parameter values is generated using the ‘R’ tool
for statistical computing. Example maps with varying φ values
are shown in Figure 2. We then use the floorplan of Alpha
EV7 processor to extract the parameter values corresponding
to the different units we model in this work.

C. Binning Methodology
In order to estimate the binning and demonstrate the effect

of process variations on it, we chose a set of 1000 chips for
our analysis. The delay and leakage current values obtained
from SPICE simulations are used in estimating the total delay
and leakage power, which in turn is used to determine the
binning distribution and yield loss. The cut-off for delay has
been set to be the sum of mean and standard deviation of the
delay of the simulated chips (µ + σ) and the leakage cut-off
has been set to be three times the mean leakage value.

Fig. 3. Normalized leakage and delay distribution scatter plot for

simulated chips showing the binning for 5-bin strategy.

Most processor families are available in discrete frequency
intervals. Likewise, our binning methodology also assumes
equal binning intervals depending on the number of bins to be
generated. Chips that satisfy delay and leakage cut-off,
contribute to total yield and are placed into discrete bins
starting from the slowest to the fastest bin. Figure 3 shows the
distribution of the normalized leakage power consumption
versus the distribution of chip latencies for the base case (i.e.,
without any architectural optimizations) for the 1000
simulated chips. The chips are distributed in 5 distinct bins;
those falling within ‘µ + σ’ and ‘µ + 0.5σ’ delay values are put
into Bin0 (denoted by B0). These correspond to the slowest
chips. Similarly, chips with latencies within ‘µ + 0.5σ’ and ‘µ’
are assigned to Bin1, between ‘µ’ and ‘µ - 0.5σ’ to Bin2, and
likewise. Note that the highest bin consists of the chips with
delay values less than ‘µ – σ’. Using a similar methodology,
we model a strategy that generates 6 or more bins. In this case,
the bin intervals are set to 0.4µ.

III. REVENUE ESTIMATION METHODOLOGY
To devise a simplistic revenue estimation methodology, we

0

2

4

6

8

10

12

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Sigma variation in delay

No
rm

al
iz

ed
 le

ak
ag

e

B inning Range

B 4 B 3 B 2 B 1 B 0

Leakage
Loss

Delay Loss

Sigm a Variation in Delay

N
or

m
al

iz
ed

 L
ea

ka
ge

 IEEE COMPUTER ARCHITECTURE LETTERS

3

analyze the prices of the available chips from representative
families and use this information to estimate a change in
revenue when the distribution of the chips in the bins is
changed. Pricing data was collected from Intel, AMD, and
Texas Instruments (TI), for representative families having 5
and 6 speed ratings [2, 8]. The majority of the processors
manufactured by the above companies have 5 or 6 distinct
frequency ratings matching with our binning methodology.

Instead of using the absolute prices, we use normalized
prices within each family. In order to make the model
independent of any particular processor family, we use
maximum, average, and minimum normalized price values for
each of the 5-bin and 6-bin families. To calculate the revenue
earned from a bin, we multiply the yield of that bin with its
normalized price. The revenues obtained from each of these
bins are then summed up to get the total revenue for the whole
processor family manufactured.

Note that our cost model is easy to develop, since it based
on the current market prices. However, it assumes the
existence of previously determined pricing data, and hence
cannot be used to estimate revenue for a new processor family
before manufacturing and marketing of the same. Moreover,
significant economic fluctuations like change in demand and
supply may affect this simplified cost model.

IV. REVENUE-AWARE ARCHITECTURE
Our goal in this work is to control the critical paths in a set

of manufactured set of chips and move the chips to the faster
bins to increase the revenue. We achieve this with the aid of a
novel scheme called Substitute Cache (SC). At a high level,
the idea is to augment each cache way with extra storage that
will be used if certain locations in the main cache exhibit long
latencies. In such cases, the data will be read from the
substitute cache, and chips from the lower frequency bins can
now be placed in higher frequency bins, because the high
latency lines are not used. Moreover, some of the chips, which
could have failed due to high access latencies, will be added to
the overall yield.

Fig. 4. One cache way of a 32KB 4-way set associative L1 cache

augmented with Substitute Cache. Column muxes are shaded as they
select data from 9 inputs as opposed to 8 inputs.

The anatomy of the proposed cache architecture is shown in

Figure 4. The substitute cache (SC) for a single cache way is
highlighted within the dashed block. SC is similar to a fully
associative cache structure. In our study, its size is either 4 or
8 entries. As opposed to the L1 cache, SC has smaller line
sizes. Particularly, it consists of only 64-bit entries, because it
stores words of the main data array. Instead of storing the
whole cache line, only the critical word in the line is stored in
the SC, because our study reveals that the words with
maximum access latency are always the ones that are furthest
from the decoder. As a result, by storing these words, we
obtain the same improvement in frequency while keeping the
SC size small.

An SC is divided into 2 components: an index table and a
data array. Whenever a cache word is placed in the data array
of the SC, index bits of its address, which is equal to the
concatenation of the row and column addresses (10 bits in our
architecture) are placed in the index table of the SC. In case of
a data access, the index table is checked with the index bits of
the address. A match implies that the data will be read from
the SC instead of the main array. Specifically, if the index of
the address is found in the SC index table, the contents of the
corresponding data array row are forwarded to the column
multiplexers of the main array. If the index of the address does
not match any index table entries, the main array will be
accessed. Note that, even if there is a match in the index table,
the access can still miss in the cache if the corresponding tag
does not match.

During a typical read operation the row address part of the
index field selects the appropriate row in the data array
through the row decoder. The requested word is then chosen
by the column multiplexers with the help of the column
address bits of the index. One of the key observations is the
difference between the times taken by each of these steps.
Particularly, the inputs to the column multiplexers are
available at the same time the decoder is accessed. However,
the signals provided to the decoders will traverse through the
decoder logic, the word lines, the memory cell, the bit lines,
and the sense amplifiers before it will reach the column
multiplexers. We utilize this imbalance to operate our SC
structure. As soon as the address is available, we start
accessing the SC index table. If they record a hit, we change
the input to the column multiplexers to 0, and forward the
output of the SC as the output of the cache. If, on the other
hand, there is no match in the index table, we will set the
column multiplexer to the original position indicated by the
column address. Using CACTI 3.2 we found the total access
latency for an 8-entry SC to be 0.24 nanoseconds; whereas the
latency for the main array (one set of the 32KB 4-way set
associative cache) is 0.40 nanoseconds. Therefore, the SC
access can be completely overlapped with the main array
access and will not cause an increase in the cache access
latency. The only change in the latency of the main array is
due to the changes in the column multiplexers. Because of the
data forwarding from the SC, the column multiplexers
(straddled in Figure 4) have an additional input coming from
the SC data array. Using SPICE we found this overhead to be

R
ow

 D
ec

od
er

Tag Index Off

Substitute
Cache

L1 Data
Banks

64-bit Data
Word

DataSelect
(Index match)

Row
Address

Column
Address

0

10

Data
Select
Mux

7

3

1019 3

Data array

128 x
128
bits

16

128

64

16 b 16 b 16 b 16 b
Index
Table

10

4

 IEEE COMPUTER ARCHITECTURE LETTERS

4

0.34% of the overall cache access latency. Note that there is
no performance loss in terms of CPI for the SC scheme, as the
effective cache size remains unchanged.

One of the key components during the operation of SC is
the index table. After the chip is manufactured, a Built-In-
Self-Test (BIST) is performed where n most critical cache
indices are chosen and placed in the SC index table. It should
be noted that the size of the SC dictates the area and power
overhead of this approach. With the help of SPICE and
CACTI, we found the total power overhead to be 6.0% and
6.5%, and the area overhead to be 3.7%, and 4.1% of the main
array for the 4-, and 8-entry SCs, respectively.

V. EXPERIMENTAL RESULTS
To find how the chips are placed into different bins, we first

analyze the base architecture and find the ‘µ’ and ‘σ’ of
critical path latencies of the 1000 chips. The bin boundaries
are set based on these values. We then apply the SC scheme to
find the new latencies and the corresponding bin distribution.

The chips that fall in the higher/faster bins are sold with
higher prices than those falling in the lower/slower bins. The
number of chips in different bins for the base case (without
any resizing) is multiplied with their respective maximum
(max), average (avg), and minimum (min) prices to calculate
the maximum, average, and minimum revenue for the base
case. Using the same methodology, the revenues for different
SC schemes are calculated based on their new binning
distribution. The relative change in revenue is then calculated
with respect to the revenue of the base case.

Table 1 presents the percentage increase in revenue
obtained using two different SC schemes. The SC-4 scheme
increases the revenue by up to 7.3 % for 6-bin case. Note that
SC has power consumption overhead because of the additional
structures it uses, and hence causes some power-related chip
losses. However, despite this loss, we observe that the SC
tends to provide better revenues than base case, because it is
able to generate elevated number of chips in higher bins. The
SC-8 scheme improves the revenue by up to 13.8%.
Generally, we see that the improvements are higher when φ =
0.3. This is expected because when the process variation
parameters are more random, there are few extreme cases and
SC can eliminate them, making a significant change on the
overall critical path latency.

VI. RELATED WORK
Several circuit-level techniques have been adopted to

counter the negative effects of process variations. Datta et al.
[5] propose a novel approach of changing the effective speed-
binning by gate sizing, and thus increasing the profit. Ozdemir
et al. [11] present cache architectures which improve the
overall yield of a batch of chips. The approach in this paper is
significantly different from [11] since the total chip yield is
divided into bins that have unequal weights. Liang et al. [9]
target at mitigating the effects of process variations by
introducing variable latency structures. Agarwal et al. [1]
propose a scheme that prevents yield loss due to failures in the
SRAM cells of the cache. In comparison to the
abovementioned works, our efforts have been directed
towards effective binning and revenue optimization. Besides
the novelty of the SC scheme, to the best of our knowledge,
this is the first work in revenue/profit-aware architectures.

VII. CONCLUSION
Efficient binning under process variations is becoming a

significant challenge for chip manufacturers. A considerable
amount of effort is being made to save chips from excessive
delay and market them properly to increase the profit margin.
In this paper, we proposed an architecture that aims at
maximizing the revenue obtained from a particular line of
chips. This technique, called Substitute Cache (SC), has no
performance overhead and works by storing critical words of
the data array in a separate structure. Overall, the most
aggressive SC scheme increases the revenues by up to 13.8%,
with no performance overhead.

REFERENCES
[1] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy, "A Process-

Tolerant Cache Architecture for Improved Yield in Nanoscale
Technologies," IEEE Trans. Very Large Scale Integrated Systems, vol.
13, pp. 27-38, 2005.

[2] AMD, "AMD Processor Pricing", May 2006,
http://www.amd.com/pricing

[3] B. S. Amrutur and M. A. Horowitz, "Speed and Power Scaling of
SRAM's," IEEE Trans. on Solid-State Circuits, vol. 35, pp. 175-185, Feb.
2000.

[4] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
"Parameter Variations and Impact on Circuits and Microarchitectures," In
Proc. of Design Automation Conference, 2003.

[5] A. Datta, S. Bhunia, J. H. Choi, S. Mukhopadhyay, and K. Roy, "Speed
Binning Aware Design Methodology to Improve Profit Under Parameter
Variations," In Proc. of ASP-DAC, 2006.

[6] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos,
"Modeling Within-Die Spatial Correlation Effects for Process-Design Co-
Optimization," In Proc. of ISQED, 2005.

[7] E. Humenay, D. Tarjan, and K. Skadron, "Impact of Parameter Variations
on Multi-Core Chips," In Proc. of Workshop on Architectural Support for
Gigascale Integration, June 2006.

[8] Intel, "Intel Processor Pricing", 2006,
http://www.intel.com/intel/finance/pricelist/processor_price_list.pdf

[9] X. Liang and D. Brooks, "Mitigating the Impact of Process Variations on
CPU Register File and Execution Units," In Proc. of International
Symposium on Microarchitecture, 2006.

[10] S. R. Nassif, "Modeling and Analysis of Manufacturing Variations," In
Proc. of IEEE Conference on Custom Integrated Circuits, May 2001.

[11] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou, "Yield-Aware
Cache Architectures," In Proc. of Intl. Symp. on Microarchitecture, 2006.

[12] Sun, "OpenSPARC T1", http://opensparc-t1.sunsource.net/index.html

TABLE I
Increase in revenue [%]

Φ = 0.3 Φ = 0.5
Binning
Strategy

Price
Curve

SC-4 SC-8 SC-4 SC-8
Max 6.99 11.42 6.16 13.01
Avg 6.57 10.90 6.07 12.32 5 bins
Min 5.83 9.71 5.78 11.43
Max 7.29 13.75 5.83 12.14
Avg 6.49 12.41 5.61 11.51 6 bins
Min 5.59 10.44 5.51 10.39

