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Abstract—As transistor feature sizes continue to shrink into 
the sub-90nm range and beyond, the effects of process variations 
on critical path delay and chip yields have amplified. A common 
concept to remedy the effects of variation is speed-binning, by 
which chips from a single batch are rated by a discrete range of 
frequencies and sold at different prices. In this paper, we discuss 
strategies to modify the number of chips in different bins and 
hence enhance the profits obtained from them. Particularly, we 
propose a scheme that introduces a small Substitute Cache 
associated with each cache way to replicate the data elements 
that will be stored in the high latency lines. Assuming a fixed 
pricing model, this method increases the revenue by as much as 
13.8% without any impact on the performance of the chips.  

Index Terms— Computer Architecture, Cache Memories, 
Process Variations, Fault-tolerant Computing. 

I. INTRODUCTION 

 HE COMPUTING research literature is filled with design 
techniques and architectural optimizations that seek to 

improve performance, power consumption, reliability, and 
security among others. However, the evaluation of these 
concepts tends to neglect one of the key factors driving any 
chip manufacturing decision: a company's bottom-line of 
revenue and profit. This shortcoming is understandable, as the 
relationship between any of the standard design metrics and 
profit is not well understood. For example, an optimization 
that improves performance by 10% will increase profit only if 
a) the cost of re-engineering can be amortized over the 
lifespan of the chip, b) the per-unit testing cost stays constant, 
and c) consequent changes in other design factors do not 
decrease the value of the new chip to consumers. In this work, 
we aim to fill this important gap and show how architectural 
decisions can be made considering the revenue/profit from a 
batch of chips.1 

Chip yield is one obvious scope for optimization, as the 
continuing downward scaling of transistor feature sizes has 
made fabrication considerably more difficult and expensive 
[10]. However, an approach that optimizes solely for yield 
would not take into account the fact that CPUs concurrently 
manufactured using a single process are routinely sold at 
different speed ratings and prices. This practice of speed-
binning (Figure 1a) is usually performed by testing each 
manufactured chip separately over a range of frequency levels 
until it fails. As a result of the inherent process variations, the 
different processors fall into separate speed bins, where they 
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are rated and marketed differently. Figure 1b shows this 
distribution for AMD Opteron family processors [2]. Similar 
superlinear correlation between frequency and price of a chip 
can be observed for various processor families by vendors 
such as Intel, IBM, and Texas Instruments. Speed-binning 
thus helps chip manufacturer create a complete product line 
from a single design. Assuming a simplified supply and 
demand model, total chip revenue would be the sum of the 
segmented areas under the yield curve. Consequently, one 
way of increasing revenue would be to shift the binning 
distribution in such a way that more processors are able to fall 
into higher-priced bins. 

          
             
 
 
 
 
 
           

  (a)               
 
 
 
 
 
 
 
 
 
 
 
                 (b) 
Fig. 1 (a) Frequency binning in modern microprocessors, (b) Price vs. 

frequency of AMD Opteron family [2]. 

In order to improve the binning of individual chips at the 
circuit and architectural level, the effects of process variations 
on fabrication must be masked. Previous studies have shown 
that in a relatively mature technology like 130nm, these 
variations are known to result in as much as a 30% decrease in 
maximum frequency and 500% increase in leakage power [5]. 
For newer technologies, these variations can be even higher: 
20-fold increases in leakage have been reported for 90nm [4]. 
An expected continuation of this trend will increase the impact 
of speed-binning on a manufacturer's bottom-line. 

In this paper, we propose a scheme in which the level 1 
(L1) cache is augmented with a small Substitute Cache (SC) 
storing the most critical cache words. We concentrate on 
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caches because caches are known to be the critical component 
under process variations [7]. Also, our analysis (described in 
Section II) reveals that the critical path lies on the cache 58% 
of the chips we model. With the help of minimal control logic, 
the processor can fetch data from SC instead of the main data 
array whenever a read/write access is made to these critical 
words. Hence access latency is minimized with no extra cache 
misses. The SC technique registers 12.4% and 13.8% 
increases in revenue for the average and best cases, 
respectively. These gains are achieved mostly through an 
increase in the number of chips in the higher-priced bins. 

The rest of this paper is organized as follows. Section II 
describes the modeling framework. Revenue estimation 
techniques are discussed in Section III. In Section IV, we 
present our proposed architecture in detail. Experimental 
results are presented in Section V. Related work and 
conclusions are presented in Sections VI and VII. 

II. MODELING FRAMEWORK 

A. Architecture Modeling 
To model a processor core, we have taken into account the 

7-stage pipeline in Alpha-21364 (EV7) architecture. The main 
components of our processor are the Issue Queue, the Integer 
Execution Unit, the Register File, and the L1 Data cache. All 
these components are modeled in SPICE using the 45nm 
BPTM technology models. The issue queue is based on that of 
EV7 and has 20 entries. The register file is an 80-entry 
structure with 4 read and 2 write ports. The integer execution 
unit is modeled using the netlist generated after synthesizing 
the corresponding component in the Sun OpenSPARC code 
[12]. The L1 cache is a 32 KB 4-way set associative cache and 
our model is based on the architecture described by Amrutur 
and Horowitz [3].  

B. Modeling Process Variations 
Process variations are statistical variations in circuit 

parameters like gate-oxide thickness, channel length, Random 
Doping Effects (RDE), due to shrinking process geometries 
[4]. They can be of two types: with-in-die (WID) and die-to-
die (D2D) variations. WID variations consist of spatially 
correlated or systematic variations, and random variations.  

 
 
 
 
 
 
Fig. 2. Maps showing the variation of threshold voltage for different 

range parameters: φ = 0.3 (left) and φ = 0.5 (right). 

We model both spatially correlated and random process 
variations for five different process parameters (metal 
thickness, inter-layer dielectric thickness, and line-width on 
interconnects; gate length and threshold voltage for the MOS 
devices). The statistical distributions of these parameters are 
based on limits given by Nassif [10]. To take into account the 
spatial correlation we use a range factor (φ) in the two 

dimensional layout of the chip, which gives a measure of 
randomness in variations. The values in two different points 
separated by a distance d are correlated by 1/d if d < φ and are 
not correlated if d > φ. Since spatially correlated process 
variations are found to be the dominating factor [6], we set the 
random variations to constitute 30% of the total variation. A 
spatial map of parameter values is generated using the ‘R’ tool 
for statistical computing. Example maps with varying φ values 
are shown in Figure 2. We then use the floorplan of Alpha 
EV7 processor to extract the parameter values corresponding 
to the different units we model in this work.  

C. Binning Methodology 
In order to estimate the binning and demonstrate the effect 

of process variations on it, we chose a set of 1000 chips for 
our analysis. The delay and leakage current values obtained 
from SPICE simulations are used in estimating the total delay 
and leakage power, which in turn is used to determine the 
binning distribution and yield loss. The cut-off for delay has 
been set to be the sum of mean and standard deviation of the 
delay of the simulated chips (µ + σ) and the leakage cut-off 
has been set to be three times the mean leakage value.  

 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Normalized leakage and delay distribution scatter plot for 

simulated chips showing the binning for 5-bin strategy. 

Most processor families are available in discrete frequency 
intervals. Likewise, our binning methodology also assumes 
equal binning intervals depending on the number of bins to be 
generated. Chips that satisfy delay and leakage cut-off, 
contribute to total yield and are placed into discrete bins 
starting from the slowest to the fastest bin. Figure 3 shows the 
distribution of the normalized leakage power consumption 
versus the distribution of chip latencies for the base case (i.e., 
without any architectural optimizations) for the 1000 
simulated chips. The chips are distributed in 5 distinct bins; 
those falling within ‘µ + σ’ and ‘µ + 0.5σ’ delay values are put 
into Bin0 (denoted by B0). These correspond to the slowest 
chips. Similarly, chips with latencies within ‘µ + 0.5σ’ and ‘µ’ 
are assigned to Bin1, between ‘µ’ and ‘µ - 0.5σ’ to Bin2, and 
likewise. Note that the highest bin consists of the chips with 
delay values less than ‘µ – σ’. Using a similar methodology, 
we model a strategy that generates 6 or more bins. In this case, 
the bin intervals are set to 0.4µ. 

III. REVENUE ESTIMATION METHODOLOGY 
To devise a simplistic revenue estimation methodology, we 
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analyze the prices of the available chips from representative 
families and use this information to estimate a change in 
revenue when the distribution of the chips in the bins is 
changed. Pricing data was collected from Intel, AMD, and 
Texas Instruments (TI), for representative families having 5 
and 6 speed ratings [2, 8]. The majority of the processors 
manufactured by the above companies have 5 or 6 distinct 
frequency ratings matching with our binning methodology. 

Instead of using the absolute prices, we use normalized 
prices within each family. In order to make the model 
independent of any particular processor family, we use 
maximum, average, and minimum normalized price values for 
each of the 5-bin and 6-bin families. To calculate the revenue 
earned from a bin, we multiply the yield of that bin with its 
normalized price. The revenues obtained from each of these 
bins are then summed up to get the total revenue for the whole 
processor family manufactured. 

Note that our cost model is easy to develop, since it based 
on the current market prices. However, it assumes the 
existence of previously determined pricing data, and hence 
cannot be used to estimate revenue for a new processor family 
before manufacturing and marketing of the same. Moreover, 
significant economic fluctuations like change in demand and 
supply may affect this simplified cost model. 

IV. REVENUE-AWARE ARCHITECTURE 
Our goal in this work is to control the critical paths in a set 

of manufactured set of chips and move the chips to the faster 
bins to increase the revenue. We achieve this with the aid of a 
novel scheme called Substitute Cache (SC). At a high level, 
the idea is to augment each cache way with extra storage that 
will be used if certain locations in the main cache exhibit long 
latencies. In such cases, the data will be read from the 
substitute cache, and chips from the lower frequency bins can 
now be placed in higher frequency bins, because the high 
latency lines are not used. Moreover, some of the chips, which 
could have failed due to high access latencies, will be added to 
the overall yield. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. One cache way of a 32KB 4-way set associative L1 cache 

augmented with Substitute Cache. Column muxes are shaded as they 
select data from 9 inputs as opposed to 8 inputs. 

The anatomy of the proposed cache architecture is shown in 

Figure 4. The substitute cache (SC) for a single cache way is 
highlighted within the dashed block. SC is similar to a fully 
associative cache structure. In our study, its size is either 4 or 
8 entries. As opposed to the L1 cache, SC has smaller line 
sizes. Particularly, it consists of only 64-bit entries, because it 
stores words of the main data array. Instead of storing the 
whole cache line, only the critical word in the line is stored in 
the SC, because our study reveals that the words with 
maximum access latency are always the ones that are furthest 
from the decoder. As a result, by storing these words, we 
obtain the same improvement in frequency while keeping the 
SC size small. 

An SC is divided into 2 components: an index table and a 
data array. Whenever a cache word is placed in the data array 
of the SC, index bits of its address, which is equal to the 
concatenation of the row and column addresses (10 bits in our 
architecture) are placed in the index table of the SC. In case of 
a data access, the index table is checked with the index bits of 
the address. A match implies that the data will be read from 
the SC instead of the main array. Specifically, if the index of 
the address is found in the SC index table, the contents of the 
corresponding data array row are forwarded to the column 
multiplexers of the main array. If the index of the address does 
not match any index table entries, the main array will be 
accessed. Note that, even if there is a match in the index table, 
the access can still miss in the cache if the corresponding tag 
does not match.  

During a typical read operation the row address part of the 
index field selects the appropriate row in the data array 
through the row decoder. The requested word is then chosen 
by the column multiplexers with the help of the column 
address bits of the index. One of the key observations is the 
difference between the times taken by each of these steps. 
Particularly, the inputs to the column multiplexers are 
available at the same time the decoder is accessed. However, 
the signals provided to the decoders will traverse through the 
decoder logic, the word lines, the memory cell, the bit lines, 
and the sense amplifiers before it will reach the column 
multiplexers. We utilize this imbalance to operate our SC 
structure. As soon as the address is available, we start 
accessing the SC index table. If they record a hit, we change 
the input to the column multiplexers to 0, and forward the 
output of the SC as the output of the cache. If, on the other 
hand, there is no match in the index table, we will set the 
column multiplexer to the original position indicated by the 
column address. Using CACTI 3.2 we found the total access 
latency for an 8-entry SC to be 0.24 nanoseconds; whereas the 
latency for the main array (one set of the 32KB 4-way set 
associative cache) is 0.40 nanoseconds. Therefore, the SC 
access can be completely overlapped with the main array 
access and will not cause an increase in the cache access 
latency. The only change in the latency of the main array is 
due to the changes in the column multiplexers. Because of the 
data forwarding from the SC, the column multiplexers 
(straddled in Figure 4) have an additional input coming from 
the SC data array. Using SPICE we found this overhead to be 
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0.34% of the overall cache access latency. Note that there is 
no performance loss in terms of CPI for the SC scheme, as the 
effective cache size remains unchanged.  

One of the key components during the operation of SC is 
the index table. After the chip is manufactured, a Built-In-
Self-Test (BIST) is performed where n most critical cache 
indices are chosen and placed in the SC index table. It should 
be noted that the size of the SC dictates the area and power 
overhead of this approach. With the help of SPICE and 
CACTI, we found the total power overhead to be 6.0% and 
6.5%, and the area overhead to be 3.7%, and 4.1% of the main 
array for the 4-, and 8-entry SCs, respectively. 

V. EXPERIMENTAL RESULTS 
To find how the chips are placed into different bins, we first 

analyze the base architecture and find the ‘µ’ and ‘σ’ of 
critical path latencies of the 1000 chips. The bin boundaries 
are set based on these values. We then apply the SC scheme to 
find the new latencies and the corresponding bin distribution.   

The chips that fall in the higher/faster bins are sold with 
higher prices than those falling in the lower/slower bins. The 
number of chips in different bins for the base case (without 
any resizing) is multiplied with their respective maximum 
(max), average (avg), and minimum (min) prices to calculate 
the maximum, average, and minimum revenue for the base 
case. Using the same methodology, the revenues for different 
SC schemes are calculated based on their new binning 
distribution. The relative change in revenue is then calculated 
with respect to the revenue of the base case. 

 
 
 
 
 
 
 
 
 

Table 1 presents the percentage increase in revenue 
obtained using two different SC schemes. The SC-4 scheme 
increases the revenue by up to 7.3 % for 6-bin case. Note that 
SC has power consumption overhead because of the additional 
structures it uses, and hence causes some power-related chip 
losses. However, despite this loss, we observe that the SC 
tends to provide better revenues than base case, because it is 
able to generate elevated number of chips in higher bins. The 
SC-8 scheme improves the revenue by up to 13.8%. 
Generally, we see that the improvements are higher when φ = 
0.3. This is expected because when the process variation 
parameters are more random, there are few extreme cases and 
SC can eliminate them, making a significant change on the 
overall critical path latency.  

VI. RELATED WORK 
Several circuit-level techniques have been adopted to 

counter the negative effects of process variations. Datta et al. 
[5] propose a novel approach of changing the effective speed-
binning by gate sizing, and thus increasing the profit. Ozdemir 
et al. [11] present cache architectures which improve the 
overall yield of a batch of chips. The approach in this paper is 
significantly different from [11] since the total chip yield is 
divided into bins that have unequal weights. Liang et al. [9] 
target at mitigating the effects of process variations by 
introducing variable latency structures. Agarwal et al. [1] 
propose a scheme that prevents yield loss due to failures in the 
SRAM cells of the cache. In comparison to the 
abovementioned works, our efforts have been directed 
towards effective binning and revenue optimization. Besides 
the novelty of the SC scheme, to the best of our knowledge, 
this is the first work in revenue/profit-aware architectures. 

VII. CONCLUSION 
Efficient binning under process variations is becoming a 

significant challenge for chip manufacturers. A considerable 
amount of effort is being made to save chips from excessive 
delay and market them properly to increase the profit margin. 
In this paper, we proposed an architecture that aims at 
maximizing the revenue obtained from a particular line of 
chips. This technique, called Substitute Cache (SC), has no 
performance overhead and works by storing critical words of 
the data array in a separate structure. Overall, the most 
aggressive SC scheme increases the revenues by up to 13.8%, 
with no performance overhead. 
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TABLE I 
Increase in revenue [%] 

Φ = 0.3 Φ = 0.5 
Binning 
Strategy 

Price 
Curve 

SC-4 SC-8 SC-4 SC-8 
Max 6.99 11.42 6.16 13.01 
Avg 6.57 10.90 6.07 12.32 5 bins 
Min 5.83 9.71 5.78 11.43 
Max 7.29 13.75 5.83 12.14 
Avg 6.49 12.41 5.61 11.51 6 bins 
Min 5.59 10.44 5.51 10.39 


