
Mesh and Pyramid Algorithms for Iconic Indexing

Alok Chouclhary and Sanjay Ranka

School of Computer and Information Science

4-116 CST

Syracuse University

Syracuse, NY 13244-4100

April 9, 1991

Abstract

In this paper parallel algorithms on meshes and pyra-

mids for iconic indexing are presented. Our algorithms

are asymptotically superior to previously known parallel

algorithms.

1 Introduction

Several approaches have been proposed for pictorial in-

formation retrieval. They include giving-by-pictorial-

example [1], database queries [2], quad-trees [3], and

iconic indexing [4]. As proposed in [4], images in a pic-

torial database can be represented by symbolic pictures.

In other words, a symbolic picture contains symbols to

denote objects in the source image. The retrieval can be

performed by matching the symbolic picture represent-

ing the query with the symbolic representation of the

pictorial database. For example, a query can be “Find

all pictures containing a jeep to the right of a house, ”

or “Find all pictures containing a man next to a dog.”

In [4] a method is proposed to represent a symbolic

pictures and a picture query by two-dimensional string

(2-D string). The problem of pictorial information re-

trieval then becomes a problem of 2-D subsequence

matching. This approach allows an efficient way to con-

struct iconic indexes [21]. Iconic index means a linear

index containing symbols from the symbolic picture be-

ing indexed and representing the spatial relations in the

picture.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notica is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1991 ACM 0-89791 -434- 1/91/0006 /0295 . ..$1.50

In this paper we present parallel algorithms for iconic

indexing on massively parallel mesh and pyramid ar-

chitectures. We present algorithms for Type-2, Type-1,

and Type-O matching problems (as defined in [4] and

section 4). Furthermore, we introduce another match-

ing problem (called Type-3) and present algorithms for

it. Given a symbolic picture F (dimension n x n) and a

symbolic pattern P (dimension m x m), the proposed al-

gorithms have the following asymptotic execution time

on a n x n mesh and an n x n base pyramid. Type-2

matching can be performed in 0(rn2) on a mesh and in

0(m2) on a pyramid. By using hashing techniques the

same algorithms can be performed in O(m) on a mesh

and in O(m) on a pyramid. Type-2 matching in cases

where wild characters exist (a wild character can match

with any other character) can be performed in 0(m2)

on a mesh and 0(m2) on a pyramid. Type-1 matching

takes 0(rnin(n2, m2n)) time a mesh as well as a pyra-

mid. Type-O matching can be performed in O(n) on

a mesh and O(min(n, m2 + log n)) time on a pyramid.

Finally, Type-3 matching takes 0(m3) on a mesh and

0(rn3) on a pyramid. Our algorithms for pyramid archi-

tecture are asymptotically superior to the one presented

in [5].

The rest of this paper is organized as follows. In Sec-

tion 2, a description of mesh and pyramid architectures

is provided. Section 3 describes some preliminary op-

erations required for Section 4 and 5. Section 4 defines

the matching problems and contains examples. Section

5 presents the parallel algorithms for iconic indexing on

massively parallel meshes and pyramids. Concluding

remarks are given in Section 6.

295

ticomputer and the programming notation we use are:

1. There are P processing elements connected to-

gether via an interconnection network. Different

interconnection networks lead to different SIMD ar-

chitectures. Each processing element (PE) has a

unique index in the range [0, P — 1]. We shall use

brackets

([1) to indexan array and parentheses (’()>) to

index PEs. Thus, A[i] refers to the i-th element of

array A and A(i) refers to the A register of PE i.

Also, A[j](i) refers to the j-th element of array A

in PE i. The local memory in each PE holds data

only (i.e., no executable instructions). Hence PEs

need to be able to perform only the basic arithmetic

operations (i.e., no instruction fetch or decode is

needed).

2. There is a separate program memory and control

unit. The control unit performs instruction se-

quencing, fetching, and decoding. In addition, in-

structions and masks are broadcast by the control

unit to the PEs for execution. An instruction mask

is a boolean function used to select certain PEs to

execute an instruction. For example, in the instruc-

tion

A(i) := A(i)+ 1, (iO = 1).

(iO = 1) is a mask that selects only those PEs whose

index has bit O equal to 1; i.e., odd indexed PEs

increment their A registers by 1. Sometimes we

shall omit the PE indexing of registers. So, the

above statement is equivalent to the statement:

A:= A+l, (io= l).

3. We shall consider the following interconnection net-

works:

(a) Mesh: A P = n x n mesh connects n’

PEs that are logically arranged as a two-

dimensional array (Figure 2) . Each PE

has a unique index in the range (O... n –

1,0. . .n – 1). PE(i, j) is connected to PE((i–

1) mod n,j), PE((i + 1) mod n,j), PE(i, (j –

1) mod n), and PE(i, (j + 1) mod n). Some-

times we will use a one-dimensional index-

ing of the mesh. This is obtained using the

standard row major mapping in which (i, j) is

mapped in + j. A number of mesh-connected

computers have been constructed. Examples

I r
-1

Processing
I

~
Element

* b :
e

I

r

c

0

n
+ Memory n

e
c
t
I

\

..”

. .

.

0

n

--El

Figure 1: An SIMD Multicomputer

296

(b)

4.

5.

6.

2.1

The

standard row major mapping in which (i, j) is

mapped in -t-j. A number of mesh-connected

computers have been constructed. Examples

include the CLIP4 [6,7], the GAPP [8], and

the MPP [9,10].

Pyramid: A pyramid with an n x n = 22q

base connects P = (4n2 – 1)/3 processors.

These PEs form q + 1 meshes of size n x

n, n/2x n/2,..., 1 x 1, respectively. These

meshes are stacked one on top of the other in

decreasing order of size and interconnected as

shown in Figure 3. Each PE has a unique

index P13(i, j, k), where O < i ~ q and O :<

j, k ~ n – 1. Examples of pyramid computers

that have been or are being built include the

HCL Pyramid [11,12], the MPP Pyramid [13],

the SPHINX [14], and PAPIA [15].

The following relationships can be defined fc,r

a pyramid.

i. The father of the PE (1, i, j) is the PE

(1 – 1, [i/2], [j/2]), where O <1 ~ log n

o 0 0 0

0 0 0 0

0 0 0 0

000

000

000

000

0
000

0

0

000 d

i--1

and O<i, j~2’–l.
Figure 2: A 4 x 4 Mesh (end around connection are not

ii. The sons of the PE (1, i, j) are the PEs shown)
(l+l,2i–l,2j– 1), (l+lj2i–l,2j),

(1+ 1, 2i, 2j – 1) and (1+1, 2i, 2j), where

O~l<logn.

Interprocessor assignments are denoted using the

symbol -, while intraprocessor assignments are

denoted using the symbol :=. Thus the assignment

statement:

B(i, j) _ .B(i, (j + 1) mod n), (i = O)

on a mesh is executed only by those processors in

the O-th row. These processors transmit their B

register data to the processors on their left.

In a unit route, data may be transmitted from one

processor to another if it is directly connected.

Since the asymptotic complexity of all our algo-

rithms is determined by

our complexity analysis

Image Mapping

the number of unit routes,

will count only these.

image is mapped on the mesh such that PE(i, j)

contains I(i, j). For the pyramid, the image is mapped

on the base mesh. Thus PE(log n, i, j) contains I(i, j).

297

Figure 3: A 21-Node Pyramid

3 Preliminaries

3.1 Sorting

On a n x n mesh sorting can be done in O(n) time

using the algorithm of [22] [10]. The same algorithm can

be used to complete sorting on a pyramid in O(n) time.

3.2 Compress

Assume that each PE has a certain record. Further, the

PEs are sorted according to some key on the record. Af-

ter performing the compress operation duplicate records

are combined together and a count field is attached to

them which refers to the number of records with that

value. For example (2, 2,2,3,4,4,5, 6) is replaced by

((2, 3), (3, 1), (4,2), (5, 1),(6, l).,–, –, –), where – rep-

resents the null symbol. This can be completed in O(n)

time on a mesh and a pyramid by using the algorithms

for ranking and concentrating of [17].

3.3 Hashing

As suggested in [23] a hash function can be use to re-

duce the two-dimensional matching problem into a one-

dimensional matching. A hash function can be defined

as follows : h(r) = r mod q, where q is a large prime

number and r is the symbol. For a pattern of length m,

each symbol is transformed into an integer and packed

into a binary string (integer). This corresponds to writ-

ing the symbols as numbers in a radiz — d number sys-

tem, where d is the number of possible symbols. The

number k corresponding to a pattern of length m (say,

P(i) ,.. P(i-i–m-l)) is:

k = ord(P(i) x din-l) + ord(P(z’ + 1) x din-z)+

. ..+ord(P(i+m–1)

k = ord(P(i + m – 1)) + d(ord(P(i + m – 2))+

. . ~+ d(ord(P(i))))

where oral(x) is the order of the symbol x. Shifting the

pattern one position to the right (or down) corresponds

to replacing k by

(k - ord(P(i) x din-’) x d+ ord(P(i + m)).

Therefore, obtaining a hash of each block of consec-

utive patterns of size m in a string of length M takes

O(M + m) steps if it is performed sequentially.

3.4 Shift

SHIFT(A, i) shifts the A register data circularly

counter-clockwise by i, It can be performed in Ii] unit

routes.

3.5 Data Accumulation

For this operation, PE j has an array A[() . . .rn – 1] of

size m. The notation A[i] (j) refers to A[i] in PE j. In

addition, each PE has a value in its 1 register. After

the data accumulation the m elements of A in PE j are

such that:

A[i](j) = I((j+i) mod P), O < i < m, O <j < P.

This operation can be performed in (m – 1) unit

routes.

3.6 AC Operation

Assume that each PE i has a record ai. An AC opera-

tion is an associative and commutative operation on all

values of ai (like -I-, x, or, and). Let * be an AC opera-

tion. The result of the AC operation is al * az * . . . ap.

It can be performed on an n x n mesh in O(n.) time and

O(log n) time on an n. x n base pyramid.

3.7 Merge

Assume that each PE has two records A and B. Con-

sider the case of 4 PEs. Let A = (1,3,4,5) and B =

(3,4,5,6). The merge of A and B is (1,3,3,4,4,5,5,6).

Each PE contains two values. This operation can be

completed in O(n) time on a mesh and a pyramid.

3.8 Random Access Read (RAR)

In this formulation an index S(i) is contained in

PE(i), O < i < n. PE(i) is to receive data from

PE(S(i)). We shall assume that the data to be trans-

mitted to PE(i) is originally in register D(S(i)). (D(j)

denotes register or memory cell D in PE(j).) Also, if

PE(i) is not to receive data from any other PE, then

S(i) = w. Random Access Read can be completed in

O(n) time on a mesh [17] and a pyramid.

4 The Matching Problems

Let V be a set of symbols. Each symbol may represent a

pictorial object (a named object such m “house,” “car,”

298

etc.) or a part of an object. A symbolic picture is a

mapping S x S - W where S = {1,2, . . .,n} and W

is the power set of V. The null object is denoted by { }

[6].

A symbolic pattern is a mapping S x S - W IJ

{#} where “#” is a wild character , i.e., a “don’t care

symbol” which matches all the elements in W.

Given a symbolic picture 1’ and a symbolic pattern

P (with dimensions n x n and m x m, respectively), we

want to detect the occurrences of the pattern P in F.

In the following we make use of the array-like notation

F(i, j) (resp, P(i, j)) to denote the (i, j)-th element c,f

F (resp. P). Also we will use characters (“a,” “b,” etc.)

as symbols rather than named objects.

An occurrence of a pattern P can be searched for

inside the picture, depending on three different criteria.

Given a symbolic pattern P(m x m) and a symbolic

picture F(n x n), P has a type-t (t = O, 1, 2 and 3)

occurrence in F if

(t= 2) there exists a pair (k, 1) of indices with 1< k f:

n–m+land l~l<n–m+l such that F(k,l)a:

P(l, 1) and

F(k+i–l, i+j–l)=P(i, j)

forl~i~mandl~j~m.

In other words, P has a type-2 occurrence in F if it

occurs somewhere in F in its native configuration; this

can be viewed as a 2-D pattern-matching problem. Note

that the right member of the equality above determines

the occurrence of P in F.

(t= 1) there exists a pair (k, 1) of indices and

two ascending sequences of positive integers

(ZI, Z2,..., $m-l), (Yl)Y2). ..j yin-l) with 1 ~ k <

n – Zm-l and 1 ~ 1 ~ n – yin-l such that

F(k, 1) = P(l, 1) and

F(k+ &l,/+~j-1) = Hi, j)

forl~i< m,l~j~malldxO=yO =0.

In other words, the elements of F, obtained by

intersecting the m rows of F in positions (k, k +

%1, ..., k + Zm - 1) with the m columns in positions

(/, 1 + Y1,1 + y~-1) determine the elements which

form the occurrence of P in F. This can potentially

lead to an exponential number of matches in a par-

ticular row or column, e.g., matching al az . . . an with

alalazazasas . . .a,Jan. Thus any algorithm to recognize

F=[y]f2=[:alfl=[cel

[1fo= ~ b

Figure 4: Examples of Matching

‘=[W
Figure 5: An Example Query (Type-2)

this matching may potentially have to consider expo-

nential possibilities and may take exponential time. We

restrict this matching by requiring that F(k + z, i+ y) #

P(i, j) for zi–1 < z < zi, y = O (first row); and

Y~– 1 < Y < Yj, z = O (first column). BY a similar argu-

ment this matching rhay have to consider exponential

number of matches in the presence of wild cards; and

hence may take exponential exectition time. We restrict

this matching to be without any wild cards.

(t= O) each symbolic item i in P occurs in F, and

whenever i occurs k times in P itoccurs at least k

times in F.

(t =3) each symbolic item i in P occurs in a size m x m

sub-block of F, and whenever i occurs k times in

P it occurs at least k times in that sub-block.

We say that P is a type-t subpicture of F if it has

at least one type-t occurrence in F(t = O, 1, 2, 3). For

example, in Figure 4 the pictures f 2, f 1, and f O are

type-O subpictures of F; $2 and ~1 are type-1 subpic-

tures off; only f2 is a type-2 subpicture of F.

Examples

Type-2 Query. Figure 5 shows an example of type-

2 query. The query is “Find all images containing a

house with a lake on the east and a tree on the north.”

represents a wild character that can match with any

symbol,

Type-1 Query. In type-1 query we are interested in

finding all images in which the symbols in the pattern

299

(a)[j $ ~
1[

(b)
t##a

h##l 1

[1(c) ; ;

hl

Figure 6: Examples of Type-1 Query

[hltt]

Figure 7: Example of Type-O Query

maintain alignments between each other but in which

the dist ante between any two symbols is different than

in the original pattern. Figure 6 shows an example of

type- 1 query.

Type-O Query. In type-O query we are interested

in finding all the pictures containing specified symbols

(objects). For example, the query shown in Figure 7

is “Find all pictures cent aining at least one house, two

trees, and a lake.” In such a query, relative positions of

symbols do not matter.

Type-3 Query is a variant of type-O query. In this

variant we want to find out an m x m sub-block of the

picture which has at least as many symbols of each kind

as an m x m pattern. In this query the relative positions

of symbols do not matter. However, the locality of the

appearance should be limited to m x m block.

5 Iconic Indexing Algorithms

In this section we describe our results for performing

iconic indexing on meshes and pyramids.

5.1 Type-2 Matching

We will classify the type-2 matching into two kinds: the

first variation in which no wild cards are allowed (exact

matching), and the second variation in which wild cards

are allowed.

By using a suitable hashing function a two-

dimensional matching can be reduced to a one-

dimensional matching, In this case each symbol in the

symbolic query array is replaced by the hash of all the

m — 1 symbols below it and itself. This computation can

be performed on a mesh in parallel in O(m) time. The

same hashing function is used to convert the pattern

into a one-dimensional pattern.

Assume that the symbol is stored in register B of each

processor and the hashed bit pattern of the m symbols

(of the symbol with the processor and m – 1 symbols

of the processors below it) is to be stored in register A

of each processor. In the following algorithm each pro-

cessor computers m hash values and sends m — 1 values

to the processors above it. All processors execute in

parallel. The following algorithm is given for processor

P(i, j).

T(i, j):=l?(i,j)

A(i, j):=(oml(l?(i,j))) mod q

fork= ltom–ldo

tmp(i, j) + tmp(i + 1, j)

A(i, j):=(ct x A(i, j) + tmp(i, j)) mod q

After the above algorithm is executed, each proces-

sor’s register A contains the hash value of the m sym-

bols below it including its own symbol. The algorithm

takes O(m) steps to execute.

Once the hashing is performed, the problem is re-

duced to performing a one-dimensional matching and

can be completed in another O(m) steps. Thus the to-

tal time required is O(m) on a mesh. The same can be

performed in O(m) time on a pyramid.

Theorem 1 Exact matching can be performed on a

mesh in 0(m2) time on a mesh and 0(m2) on a pyra-

mid by using a variant of template matching algorithm

[18]. The amount of memory required per PE is 0(1).

Theorem 2 With hashing, type-2 exact matching can

be performed in O(m) on a mesh and O(m) time on a

pyramid. The amount of memory required per node is

o(l).

Theorem 3 With wild cards, the type-2 matching can

be performed in 0(m2) on a mesh and 0(m2) time on

a pyramid. The amount of memory required per PE

is O(1). This can be done by a variant of template

matching algorithm [18]

5.2 Type-1 Matching

A high-level description of the algorithm for computing

the type-1 matching is given in Figure 8. Step 1 and

Step 2 can be completed in O(m) time. Steps 3 and

4 can be

pleted in

completed in O(n) time. Step 5 can be com-

O(m2n) time. Step 5 can also be completed

300

in 0(n2) by passing the whole image through every PE.

This requires storing the whole pattern in every PE.

The amount of memory required is 0(rn2).

Theorem 4 Type-1 matching can be completed in

0(rn2n) time on a mesh and a pyramid using O(m)

memory per PE. It can also be completed in 0(n2) time

using 0(rn2) amount of memory.

5.3 Type-O Matching

In type-0 matching we are supposed to find out whether

the symbols appearing in the pattern also appear in the

picture. This can be performed by the algorithm in

Figure 9.

Steps 1, 2, 3, and 4 require O(n), O(n), (1(m) and

O(m) time, respectively. Step 5 requires O(n) time.

Steps 6 and 7 require O(1) time. Step 8 requires O(n)

time on a mesh and O(Iog n) time on a pyramid.

Theorem 5 If the pattern is already stored in the PEs,

type-O matching can be completed in O(n) time of a

mesh and a pyramid. The amount of memory required

is O(1). If the pattern is in the controller the total time

is O(n + mz) on a mesh and on a pyramid.

There is another possible algorithm for pyramids.

The pattern is first sorted. After sorting, the pattern

values are broadcast to all the PEs in a pipelined fash-

ion. At every step the PEs find a match with the current

pattern value. The output of each PE is 1, if there is a

match. These values are added up in a pyramid and

sent back to the corresponding PE. There is a pipeline

of result summed up and results sent down. This can

be completed in 0(m2 + log n) time. At the end of

this stage, each PE compares the (symbol, count) with

the corresponding (pat-symbol, count) and outputs a

1 appropriately. An and of all the PEs having pat-

symbol gives the desired result. The total time required

is 0(m2 + log n). The complexity of the algorithm is

independent of the fact whether the pattern is already

loaded on the pyramid or not.

5.4 Type-3 Matching

Type-3 matching is a variant of type-O matching. In

this variant we want to find out an m x m sub-block of

the picture which has at least as many symbols of each

kind as an m x m pattern. There is a potential match

at every sub-block of size m x m starting at O < i, j s

n — m + 1. The algorithm consists of mz stages. Each

Step 1: Broadcast PA7’[0 . . . m– 1, O] to all PEs. Each

PE stores them in CIO . . . m – 1].

Step 2: Broadcast PAT’[0, O. . . m– 1] to all PEs. Each

PE stores them in RIO . . . m – 1].

Step 3:

CMATCH: = FALSE

Il(i, j) := I(i, j)

b:=O

fora=Oton–ldo

if not CMATCH then

if C[b] = 11 then

b:=b+l

CMATCHARRAY [b] := a

if (b = m) then CMATCH: = TRUE.

~l(i, j) * Il(i, (j + 1) mod n)

end;

CMATCH := CMATCH and (I(i~) = CIO])

Step 4: Same as Step 3 but along rows. The re-

sult is stored in RMATCH and RMATCHARRAY

[1... m].

Step 5:

MATCH: =RMATCH and CMATCH

fora:=l tomdo

for b:=l tomdo

BROADCAST PAT[a, b] to all PEs

Store it in PAT

S(i,j) := (i + RMATCHARRAY[a], j +

C’MATCHARRAY[b])

D(i, j) := /(i, j)

RAR

MATCH := MATCH and (D(i, j) = PAT)

end

end

Figure 8: Type-1 Matching Algorithm

301

Step 1: [SORT] Sort the elements of the picture 1 and

store the result in S’ (in a snakelike order).

Step 2: [COMPRESS] Perform the compress opera-

tion on S. Each processor stores the result as

A{ SYMBOL, COUNT, 1}.

Step 3: [SORT] Sort the elements of the pattern

store the result in T (in a snakelike order).

P and

Step 4: [COhIPRESS] Perform the compress opera-

tion on T. Each processor stores the result as

B{ SYMBOL, COUNT, O}.

Step 5: [MERGE] C =MERGE (A, B). Each proces-

sor has at most two tuples (the last few may have

null tuples). Let these t uples be represented by Cl

and C2, respectively. The first two fields represent

the symbol and its occurrences respectively (in the

picture or pattern). The third field of C represents

whether the tuple is from pattern or picture (O or

1).

Step 6: X +-- C2 (LEFT) where LEFT represents the

left PE in the snakelike order.

Step 7:

MATCH: =TRUE

i~Cl . {3} = O then

t~not((X. {1} = (71. {1]) andl

then MATCH: =FALSE

ij (2’2 . {3} = O then

i~not ((C2 . {1} = Cl ‘ {1.

C2 ~ {2}))

then MATCH: =FALSE

X.{2} > C1.{2}))

)ana! (cl . {2} >

Step 8: Perform an AC operation (and) on MATCH.

Figure 9: Type-O Matching Algorithm

stage is similar to the one given in Figure 9. Each of

the steps of Figure 9 are performed in an m x m sub-

block. We assume that each m x m sub-block contains a

copy of the pattern (This can be loaded in 0(m2) time

if required). Thus one stage can be completed in O(m)

amount of time. This gives possible matches for the top

left hand corner for each sub-block. This algorithm has

to be applied m2 number of times by choosing suitable

sub-block boundaries at every stage so that the match

is found for all possible n2 points, The complexity of

the resultant algorithm is 0(m3)) on a mesh (including

the initial loading). It can be completed in the same

amount of time on the pyramid.

Theorem 6 Type-3 matching can be completed in

O(m3) on a mesh and 0(m3) on a pyramid. The amount

of memory required per PE is O(1).

6 Conclusions

In this paper we have presented algorithms for iconic

indexing on pyramids and meshes. Our algorithms are

asymptotically superior to the algorithms presented in

[16]. In many cases our algorithms are optimal. We are

currently implementing these algorithms on the Con-

nection Machine.

7 Acknowledgments

The work of Professor Alok Choudhary was sup-

ported in part by the Engineering Foundation grant no.

3537143.

The authors would like to thank Ms. Elaine Weinman

for converting the handtvritten text of this paper into

14TEX.

References

[1]

[2]

N. S. Chang and K. S. Fu. “Query-by-pictorial-

example.” Proc. COMPSA G 79, IEEE Corn Put.

SOC. (1979), 325-330.

S. K. Chang and T. Kunii. “Pictorial database

systems.” Computer (special issue on pictorial

information systems). S. K. Chang, Ed. (Nov.

1981), 13-21.

[3] H. Samet. ‘The quadtree and related data struc-

tures.” ACM Comput. Survey, vol. 16, no. 2

(June 1984), 187-260.

302

[4] S. K. Chang, Q. Y. Shi, C. W. Yan. “Iconic

indexing by 2-D strings.” IEEE Trans. Pail e rn

Anal. MacAine Intell., vol. PAMI-9 (May 1987),

413-428.

[5] G. Tortora, Y. Costagliola, T. Arndt, S. K.

Chang. “Pyramidal Algorithms for Iconic Index-

ing.” Manuscript.

[6] M. J. Duff. “CLIP 4: A Large Scale Integrated

Circuit Array Parallel Processor.” IEEE Intl.

Joint Conf. on Pattern Recognition (Nov. 1976),

728-733.

[7] M. J. Duff. “Review of the CLIP Image Process-

ing System.” National Computer Conference,

Anaheim, California (1978).

[8] NCR Microelectronics Division, Product De-

scription ncr45cg72, NCR Corporation, Dayton,

Ohio (1984).

[9] K. Batcher. “Design of a Massively Parallel Pro-

cessor.” IEEE Trans. on Computers, vol. 29, no.

9 (1980), 836-840.

[10] C. P. Schnorr and A, Shamir, “An optimal sort-

ing algorithm for mesh-connected computers”

Proceeding of the 18th A GM Symposium on The-

ory of Computing, May 1986, 255-261.

[11] J. E. Devaney. “The MPP—A Totally Different

Approach to Programming.” IEEE Workshop on

Computer Architecture for Pattern Analysis and

Image Database Management (Nov. 1985), 420-

427.

[12] S. L. Tanimoto, T. J. Ligocki, R. Ling. “A Proto-

type Pyramid Machine for Hierarchical Cellular

Logic.” Parallel Hierarchical Computer Vision,

L. Uhr, Ed. Academic Press, London (1987).

[13] S. L. Tanimoto. “A Hierarchical Cellular Logic

for Pyramid Computers.” Journai of Parallei

and Distributed Computing, vol. 1 (1984), 105–

132.

[14] D. H. Schaefer, D. H. Wilcox, G. C. Harris.

‘(A Pyramid of MPP Processing Elements-

Experience and Plans.” Hawaii Intl. Conf. on

System Sciences (1985), 178-184.

[15] A. Merigot,

B. Zavidovique, F. Devos. “SPHINX, A Pyra-

midal Approach to Parallel Image Processing, ”

IEEE Workshop on Computer Architecture for

Pattern Analysis and Image Database Manage-

ment (Nov. 1985), 107–111.

[16] V. Cantoni, M. Ferretti, S. Levialdi, F. Mal-

oberti. “A Pyramid Project Using Integrated

Technology.” Integrated Technology for Paral-

lel Image Processing. Academic Press, London

(1985), 121-132.

[17] D. Nassimi and S. Sahni. “Data Broadcasting

in SIMD Computers. ” IEEE Transactions on

Computers, vol. C-30 (May 1981), 342-346.

[18] S. Y. Lee and J. K. Agarwal. “Parallel 2-D con-

volution on a mesh connected computer. ” IEEE

Transactions on Pattern Analysis and Machzne

Intelligence. (July 1987), 590-594.

[19] N. Ahuja and S. Swamy, “Multiprocessor Pyra-

mid Architectures for Bottom-up Image Anal-

ysis,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. PAMI-6, (July

1984), 463-475.

[20] P. J. Burt, T. H. Hong, and A. Rosenfeld,

“Segmentation and Estimation of Image Re-

gion Properties through Cooperative Hierar-

chical Computation, ” IEEE Transactions on

Systems, Man and Cybernetics, Vol. SMC-11,

(1981), 802-809.

[21] S. L. Tanimoto, “An iconic/symbol data struc-

turing scheme, “ in Pattern Recognition and Ar-

tificial Intelligence, C. H. Kohen, Ed., New

York, Academic, 1976.

[22] D. Nassimi and S. Sahni, “Bitonic Sort on

a mesh connected parallel computer, ” IEEE

Transactions on Computers, Vol. C-28, (Jan-

uary 1979), pp. 2-7.

[23] R. F. Zhu and T. Takaoda, “A technique for

two-dimensional pattern matching,” Communi-

cation of the ACM, Vol. 32, (September 19S9),

pp. 1110-1120.

303

