
1092 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 10, OCTOBER 1993

NETRA: A Hierarchical and Partitionab le
Architecture for Computer Vision Systems

Alok N. Choudhary, Janak H. Patel, Fellow, IEEE, and Narendra Ahuja, Fellow, IEEE

Abstract- Computer vision is regarded as one of the most
complex and computationally intensive problems. In general, a
Computer Vision System (CVS) attempts to relate scene(s) in
terms of model(s). A typical CVS employs algorithms from a very
broad spectrum such as such as numerical, image processing,
graph algorithms, symbolic processing, and artificial intelligence.
This paper presents a multiprocessor architecture+ called “NE-
TRA,” for computer vision systems. NETFLA is a highly flexible
architecture. The topology of NETRA is recursively defined, and
hence, is easily scalable from small to large systems. It is a
hierarchical architecture with a tree-type control hierarchy. Its
leaf nodes consists of a cluster of processors connected with a
programmable crossbar with selective broadcast capability to
provide the desired flexibility. The processors in clusters can
operate in SIMD-, MIMD- or Systolic-like modes. Other features
of the architecture include integration of limited data-driven
computation within a primarily control flow mechanism, block-
level control and data flow, decentralization of memory manage-
ment functions, and hierarchical load balancing and scheduling
capabilities. This paper also presents a qualitative evaluation and
preliminary performance results of a cluster of NETRA.

Index Terms-Computer vision, parallel architectures, parallel
algorithms, partitionable architectures, performance evaluation.

I. INTRODUCTION

A. Computer k&ion

C OMPUTER vision has been regarded as one of the
most complex and computationally intensive problems.

A Computer Vision System (CVS) employs algorithms from
a very broad spectrum such as numerical, signal processing,
image processing, graph algorithms, symbolic processing, and
artificial intelligence.

A typical CVS using color images requires a processor
capable of handl ing 23 Megabytes of input data per second,
interpreting it to construct a three-dimensional model of the
environment [S], [38]. An interpretation may require hundreds
of objects of different types to be identified [ll]. Estimating
the motion of and recognizing a moving object from a se-
quence of time varying images may further involve motion

Manuscript received July 16,199l; revised August 10, 1992. This work was
supported in part by National Aeronautics and Space Administration Under
Contract NASA NAG-1-613.

A. N. Choudhary is with the Department of Electrical and Computer
Engineering, Syracuse University, Syracuse, NY 13244.

J. H. Pate1 is with the Center for Reliable and High Performance Computing,
University of Illinois, Urbana-Champaign, Urbana, IL 61801.

N. Ahuja is with Beckman Institute, University of Illinois, Urbana-
Champaign, Urbana, IL 61801.

IEEE Log Number 9213476.

effects and employ a model based recognit ion in addit ion to
the interpretation needed for static images [7], [9].

Vision researchers have shown that pattern recognit ion
techniques and bottom-up processing alone is not adequate
for the above tasks [16]. Vision also involves top-down and
knowledge-based processing. Between these two levels of
abstraction, another level, known as “intermediate level” is
normally introduced. It involves symbolic processing. Symbols
range from extracted image characteristics such as edges or re-
gions through perceptual ly useful groupings such as geometr ic
f igures and surfaces. Hence, vision algorithms are normally
classified into three levels: low (sensory, image processing),
intermediate (symbolic processing), and high (knowledge-
based).

B. Architectural Considerat ions
From a mult iprocessor architecture perspective, an image

understanding and computer vision tasks’ computat ional re-
quirements can be descr ibed considering different abstract
levels of processing.

Low-Level Processing-Tasks in this class exhibit mas-
sive spatial parallelism which is suitable for both SIMD
and MIMD computat ions. Computat ions are normally
simple and data independent. Computat ions mainly in-
volve numeric processing and manipulat ion of simple data
structures (such as pixels). Communicat ion requirements
are structured. Communicat ion may be local or global
in the sense that the output may depend on a spatially
local ne ighborhood of data (e.g., convolution), or it may
depend on the entire input image data (e.g., 2D-FIT).
Also, communicat ion requires efficient broadcast and
synchronization.
Intermediate Level Processing-Computat ions in this cat-
egory manipulate symbolic (e.g., tokens) as well as nu-
meric data [39]. Computat ions are normally data de-
pendent and irregular. They are suitable for medium
to coarse grain parallelism. The available parallelism is
dynamic and data dependent . Communicat ion patterns
can be regular as well as unstructured, depending on the
data. Both local and global communicat ion (including
broadcasts) are required. Since computat ions are data
dependent , independent decision making capabilities and
distributed control are required.
High-Level Processing-Tasks in this level of processing
are normally top-down (model directed). Computat ions
require both numeric as well as symbolic processing and

1045-9219/93$03.00 0 1993 IEEE

CHOUDHARY et cd.: NETRA: ARCHITECTURE FOR COMPUTER VISION SYSTEMS 1093

are suitable for MIMD coarse-grain parallelism. Com-
putations are both data and model dependent , and are
irregular. Communicat ion is unstructured and irregular.
Processors require accesses to shared data (which stores
model and image information.) Furthermore, distributed
control of processing as well as efficient mechanism to
coordinate different activities is needed.

An architecture for CVS’s should be capable of performing
tasks from all levels of processing efficiently and synergisti-
cally. Hence, it needs to be flexible to be able to adapt to the
required processing. Furthermore, a flexible communicat ion
structure is needed to allow different types of communicat ion
among various parts of an architecture. The architecture should
allow a partition execut ing tasks from one level of vision to
be reconf igured to perform a task from another level. This
requires the architecture to be reconfigurable into the most
suitable mode of operat ion (such as SIMD mode or MIMD
mode) for a given task. Real-time vision and high performance
requirements dictate that tasks from all levels exist and execute
simultaneously in the system, and therefore, the architecture
should be divisible into several partitions that can operate
independently, yet interact with each other to exchange ap-
propriate data and information. Top-down processing and load
balancing requirements suggest a hierarchical and distributed
control in the architecture [26]. Time-varying data or different
sets of data may represent varying and unevenly distributed
load. Therefore, efficient resource allocation, topology and
data size independent mapping capabilities, and efficient load
balancing capabilities are needed in the architecture. Finally,
an architecture for such a complex problem should be mod-
ular.

In this paper, we present a parallel architecture called
NETRA for CVS’s. The architecture was originally p roposed
by Sharma, Patel, and Ahuja [28]. NETRA is a recursively
def ined tree-type hierarchical architecture, each of whose
leaf nodes consists of a cluster of processors. Processors
in a cluster are connected with a programmable crossbar
with selective broadcast capability. The internal nodes of the
architecture are schedul ing processors whose functions are task
schedul ing, load balancing, and global memory management .
The processors in clusters can operate in SIMD-, MIMD- or
Systolic-like mode. Other features of the architecture include
integration of limited data-driven computat ion within a pri-
marily control flow mechanism, block-level control and data
flow, decentralization of memory management functions, and
hierarchical load balancing and schedul ing capabilities.

C. Organizat ion
Section II contains a review of architectures proposed for

image processing and computer vision. A brief overview of
hierarchical, partitionable, and reconfigurable architectures is
also presented. Section III presents the architecture of NETRA
and descr ibes its components and their functions in detail.
In Section IV, NETRA is critically examined with respect
to the CVS architectural requirements. Section V contains
preliminary results on the cluster performance. Finally, Section
VI summarizes the paper.

II. REVIEW OF ARCHITECTURES

A. SIMD Architectures

Massively parallel SIMD mult iprocessors are well suited for
low-level and well structured vision algorithms that exhibit
spatial parallelism at the pixel level. However, such archi-
tectures are not well suited for high-level vision algorithms
because these algorithms require nonuniform processing, more
complex data structures, and data dependent decision making
capabilities. Meshes, array processors, hypercubes, and pyra-
mids are some of the most common SIMD parallel processors
proposed for image analysis and processing. In meshes, the
processing elements are ar ranged in a square array. Examples
of mesh connected computers include CLIP4 [121 and the MPP
[3]. The Connect ion Machine (CM) provides a NEWS network
for local communicat ion and a hypercube network for long
distance communicat ion [17], [36].

Pyramid architecture was proposed to mimic multidimen-
sional d iv ide-and-conquer computat ions [11. However, it was
discovered that while the pyramid structure was efficient for a
large class of low-level image processing tasks, it was not
efficient for higher level tasks [28]. Examples of pyramid
architectures include PAPIA [6], SPHINX [24], MPP pyramid
[27], and HCL Pyramid [35].

B. HierarchicallPartit ionable/Reconfigurable Architectures

Several hierarchical, partitionable, and reconfigurable archi-
tectures have been proposed (and some prototypes built). The
following is a brief review of some of these architectures.

TRAC is an experimental reconfigurable array computer pro-
posed for scientific computat ions [22]. The available resources
can be partit ioned into several SIMD/MIMD partitions. The
partitioning in TRAC is done by setting switches of the
interconnection network to partition resources into blocks such
that each resource is exactly part of one block.

PASM is a partit ionable SIMDMIMD architecture [31],
[13]. PASM can be structured as one or more independent
SIMD and/or MIMD machines of various sizes. PASM’s
multistage network is a general ized cube network. PASM
provides hierarchical control. Partitioning of processors and
networks is performed by explicitly setting switches to the
desired configuration.

ZUA (Image Understanding Architecture) has been devel-
oped to embed three abstract levels of vision processing
into an architecture [39]. It has a hierarchical structure. At
the high level, IUA is a MIMD parallel processor. The
low level is a Content Addressable Array Parallel Processor
(CAAPP) which operates in pure SIMD mode. It also has
a reconfigurable mesh with a local broadcast capability. The
intermediate level operates in synchronous-MIMD or MIMD
mode. Communicat ion and data transfer between different
levels is achieved using a shared memory.

Cedar is a mult iprocessor architecture with a hierarchical
memory structure [20]. Cedar unifies distributed and shared
memory paradigms. It consists of multiple clusters (each
cluster being a mult iprocessor) connected through an omega
network to a global memory.

1094 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 10, OCTOBER 1993

Other proposed multiprocessor architectures that have con-
sidered flexibility, partitioning and reconfiguration include
CHiP [33], Non-Von [29], and REPLICA [23].

C. Other Architectures

The CMU Warp processor [14] is a systolic array machine
proposed and built for image understanding and scientific
computations. The machine has a programmable systolic array
of linearly connected cells. iWarp (next in the sequence to
Warp) is a two-dimensional systolic and distributed memory
architecture considered for image understanding and scientific
computations [4]. It supports memory communication and
systolic communication. Another architecture called “VisTA”
(Vision Tri-Architecture) has been proposed for integrated
vision systems which attempts to explicitly embed three levels
of vision in the architecture [34]. General purpose shared and
distributed memory multiprocessors have also been considered
and evaluated [37] for image understanding and computer
vision.

III. AFCHITECTUI~E OF NETRA
Fig. 1 shows the architecture of “NETRA.” NETRA consists

of the following components:
1) A large number (102-104) of Processing Elements

(PE’s), organized into clusters of 16 to 64 PE’s each.
2) A tree of Distributing-and -Scheduling- Processors

(SDP’s) that make up the task distribution and control
structure of the multiprocessor.

3) A parallel pipelined shared Global Memory.
4) A Global Interconnection that links the PE’s and SDP’s

to the Global Memory.

A. Processor Clusters
The clusters consist of 16 to 64 PE’s, each with its own

program and data memory. They form a layer below the
SDP-tree, with a leaf SDP associated with each cluster. PE’s
within a cluster also share a common data memory. The PE’s,
the SDP associated with the cluster, and the common data
memory are connected together with a crossbar switch. The
crossbar switch permits point-to-point communications as well
as selective broadcast by the SDP or any of the PE’s.

Fig. 2 shows the cluster organization. A 4x4 crossbar is
shown as an example of the implementation of the crossbar
switch. The switches are controlled by control bits indicating
the connection pattern. If a processor of SDP needs to broad-
cast, then all the control bits in its row are made one. In order
to connect processor Pi to processor Pj, control bit (i, j) is set
to one and the rest of the control bits in row i and column j are
off. Details of the crossbar are discussed later in this section.

Clusters can operate in a SIMD-, a systolic-, or an MIMD-
like mode. Each PE is a general purpose off-the-shelf pro-
cessor. In a SIMD mode, PE’s in a cluster execute iden-
tical instruction streams from private memories in a Iock-
step fashion. Since instruction streams are supplied from
the PE’s private memory (as opposed to being broadcast
by a controller), this type of execution represents is SPMD

--

L
GLOBAL INTERCONNECTION

SDP : Scheduling and Distributing Pnxeseor

C : Processor Cluster M : Memory Module

Fig. 1. Organization of NETRA.

SYNCHRONIZATION BUS

TO

UNIDIRECTIONAL

CROSSBAR

DSP

CDM

PE : PROCESSOR M : LOCAL MEMORY

CDM : COMMON DATA MEMORY

Fig. 2. Organization of processor cluster.

(Single-Program-Multiple-Data) execution in lock-step. In the
systolic mode, PE’s repetitively execute a set of instruction
on data streams from one or more PE’s. In both cases,
communication between PE’s is synchronous. The advantage
of providing these two modes of communication is that
computations and communications can be overlapped and fine-
grain communication among processors can be obtained. In
the MIMD mode, PE’s asynchronously execute instruction
streams resident in their private memories. The streams may
be different. In order to synchronize the processors in a cluster,
a synchronization bus is provided which is used by processors
to indicate to the SDP that a processor(s) has finished its

CHOUDHARY et al.: NETRA: ARCHITECI-URE FOR COMPUTER VISION SYSTEMS 1095

computat ion. The SDP can either poll the processors or the
processors can interrupt the SDP using the synchronizat ion
bus.

1) Crossbar Design: An interconnection pattern between
processors must be programmed in the crossbar before pro-
cessors can communicate with each other. That is, there
is no arbitration in the crossbar switch. Programming the
crossbar requires writing a communicat ion pattern into the
control memory of the crossbar. In the SIMD mode, the
SDP alters the communicat ion patterns during the program
execut ion as required by the communicat ion pattern of the
computat ions. In the MIMD mode, a processor can alter the
communicat ion pattern by updat ing the control memory as
long as it does not conflict with the existing communicat ion
pattern. In case of conflicts, the SDP is responsible to resolve
them. The SDP associated with the cluster can write into the
control memory to alter the communicat ion pattern. The most
common communicat ion patterns such as linear arrays, trees,
meshes, pyramids, shuff le-exchanges, cubes, and broadcast
can be stored in the memory of the crossbar. These patterns
need not be suppl ied externally. Therefore, switching to a
different pattern in the crossbar is fast because switching only
requires writing the patterns into the control bits of the crossbar
switches from its control memory.

The advantages of such a crossbar design are the following:
Firstly, since there is no arbitration, the crossbar is faster than
one which involves arbitration because switching and arbitra-
tion delays are avoided. Secondly, switches are simple, easy
to design and implement because arbitration is absent. Such
a crossbar is easily scalable. Unlike other interconnections
(such as cubes, shuff le-exchanges etc.), the scalability need
not be in powers of 2. A unit scalability is possible. In other
words, it is possible to provide just one more processor and
link in the crossbar, which can replace any other processor
and link upon a failure. Hence, it is easy to provide fault-
tolerance in a cluster. This is possible because there is no
inherent structure that connects the processors. Each processor
(link) is topologically equivalent to any other processor (link).
Finally, the most commonly used communicat ion patterns can
be stored in the on-chip memory of the crossbar. That allows
a single-cycle parallel load of a new pattern, and therefore,
switching to a new pattern can be achieved in one cycle.

2) Crossbar Implementation: This crossbar design has been
implemented and is currently being tested [32]. The crossbar
chip is a 2-bit-sliced 8x8 crossbar fabricated using 2.0 pm
CMOS technology with a die size of 4402 by 6602 /Am This
was packaged in a standard 64 pin DIP. The output ports
are des igned to be set to high impedance so that the chip
can function as a building block for larger sized crossbars.
Commands sent to the crossbar’s opcode input pins instruct
the crossbar as to which input ports are to be connect to which
output ports. Opcodes exist for setting individual connect ions,
pairs of connect ions, and connect ing a single input to all eight
output ports (i.e. the crossbar is set up for broadcast). Each
time a new connect ion is made to an output port, the previous
connect ion to that output port is over written.

The crossbar is capable of storing on chip the state of the
input to output port connect ions for later access. The stored

state can then be returned to through the execut ion of a single
opcode. Storing current connect ions state is also done in a
single instruction. Up to eight sets of connect ions can be
stored at any one time. Each set is made up of eight subsets.
The subsets consist of the address of one output port and
one input port. Each subset’s output port address is distinct.
It should be noted that the number of patterns that can be
stored on-chip depends on the amount of space available on
the chip for memory. Given the current VLSI technology,
enough memory can be put on the chip to store thousands of
patterns on the crossbar itself. Since the first implementation
was done to test the proof of concept, only a limited amount
of memory was put on chip. Further, it should be noted that
the size of the memory on chip is not a limitation on how
many patterns the crossbar can allow, because the chip allows
one to supply a new pattern externally. The only drawback
is that it is much slower than using a pattern already stored
on chip.

The chip is provided with a programmable chip address so
that the opcode can be registered off a common bus. This
functions as a chip select when compared with an incoming
address off an address bus. If the address off the address bus
does not match that of the chips, the registered opcode is
ignored and a no-op is performed. The crossbar’s chip address
is set via scan. Because the address is 5 bits wide it will take
five scan operat ions to set the chip’s address. This is normally
done at boot time.

Two additional operat ions not specif ied through the opcode,
that the crossbar is capable of performing, are reset and test.
There is a reset pin that when activated, tri-states all output
ports and sets the chip address to 16. Reset is normally
executed at boot time. Test is another operat ion that has
a dedicated pin. When this signal is active several internal
signals are routed to output pins to provide internal visibility
dur ing test.

A larger crossbar can be obtained using a concatenat ion of
smaller crossbars. The crossbar chip has been built to provide
this scalability. For example, four 32 x 32 crossbar chips can
be used to obtain a 64 x 64 crossbar. However, if the crossbar
becomes very large, it becomes difficult to support single-cycle
transfer of data, or the cycle time must be increased, thereby
reducing the bandwidth.

Some other architectures have employed programmable
crossbar switches, most notably among them are the GFll
[18] and ICAP communicat ion switch [25]. The GFll was
primarily des igned for QCD (Quantum Chromodynamics)
computat ions. The GFll employs a three stage Benes network
which connects 576 processors. The main switch of the
network is a 24 x 12 one bit wide crossbar. Each node of
the switch consists of a 24 x 24, nine bit crossbar. Each node
contains memory to store 1024 switch settings. Before a job
is run, the appropriate switch settings suitable for the problem
are loaded. This programmabil i ty allows the switch settings to
be changed after each word transfer, which takes four cycles.
Although the GFll crossbar switch is very similar to our
crossbar switch, our switch allows both horizontal and vertical
expansion, thereby allowing us to build larger crossbars from
smaller chips.

IEEE TRANSACI- IONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 10, OCTOBER 1993

The ICAP switch (ICAP is the intermediate level processor
of the IUA architecture descr ibed earlier) prototype is a
64 x 64 network which uses 32 x 32 bit serial crossbar chips
(called PARCOS). The chip consists of an on-chip control
memory capable of storing 32 configurations. Therefore, the
chip can hold up to 32 most frequently used connect ion
patterns. Changing the connect ion pattern (which uses one
of the patterns stored on the chip) requires a single write
instruction with the address of the new pattern in the control
memory. In this respect, the switch is similar to our crossbar.
But in its usage to build larger networks, this switch is closer to
the GFll switch. Also note that, like our design, the number
of on-chip control words is not a limitation on how many
patterns can be used in the PARCOS chip. It allows loading
of new patterns externally, when needed.

3) Significance of Crossbar for Reconfigurability: Several
techniques for implementing reconfigurability between a set
of PE’s were studied [lo], [30]. It was concluded that using
a crossbar switch to connect all PE’s was simpler than any
other scheme. When designing communicat ion networks in
VLSI, the primary constraint is the number of pins and not
the chip area. The number of pins is governed by the number
of ports on the network and is independent of the type of
network. Furthermore, it was realized that a crossbar with a
selective broadcast capability was not only a very powerful
and flexible structure, but was also simpler, scalable, and less
expensive. However, it must be noted that the crossbar is
central ized and tightly coupled. But at the same time, such
a design allows single cycle data transfer across the crossbar.
Therefore, we have limited a cluster size to 64 processors.
It must be noted that a NETRA configuration containing 256
processors (4 clusters of 64 processors) will have 4 crossbars
of size 64 and not 16 crossbars of size 64.

B. The SDP Hierarchy

The SDP-tree is an n-tree with nodes corresponding to
SDP’s and edges to bi-directional communicat ion links. Each
SDP node is composed of a processor, a buffer memory, and
a corresponding controller.

The tree structure has two primary functions. First, it
represents the control hierarchy for the multiprocessor. A SDP
serves as a controller for the subtree structure under it. Each
task starts at a node on an appropriate level in the tree, and is
recursively distributed at each level of the subtree under the
node. At the bottom of the tree, the subtasks are executed on
a processor cluster in the desired mode (SIMD or MIMD) and
under the supervision of the leaf SDP.

The second function is that of distributing the programs
to leaf SDP’s and the PE’s. Low-level vision algorithms are
character ized by a large number of identical parallel processes
that exploit spatial parallelism and operate on different data
sets. For global algorithms such as connected component
labeling, multidimensional d iv ide-and-conquer can be used. It
involves two phases, 1) computat ions within partitions (e.g.,
labeling within partitions) and merging the partial results. The
first phase involves execut ion of the same program for each
processor on different data sets. The second phase involves

execut ion of programs that merge partial results. The body of
the programs is normally the same. The difference occurs in
execut ion where the control flow is data dependent . It would be
highly wasteful if each PE issued a separate request for its copy
of the program block to the global memory because it would
result in unnecessari ly high traffic through the interconnection
network. Under the SDP-hierarchy approach, one copy of the
program is fetched by the controll ing SDP (the SDP at the root
of the task subtree) and then broadcast down the subtree to the
selected PE’s. Also, SDP hierarchy provides communicat ion
paths between clusters to transfer control information or data
from one cluster to others. The SDP-tree is also responsible
for Global Memory management .

The SDP hierarchy provides a hierarchical control and
resource and process management functions, which is specif-
ically useful for high-level vision algorithms. High-level vi-
sion exhibits functional parallelism where tasks have a loose
coupling. For example, a collection of tasks may work on
obtaining the best match of hypotheses with the models. A
SDP controll ing a cluster can dynamically schedule these tasks
as and when necessary. Since the outcome of such computa-
tions is normally nondeterministic, and computat ions change
depending on the data, schedul ing and resource allocation
cannot be done in advance. A SDP, therefore, can perform
efficient resource management , schedul ing, and coordination
functions by controll ing the initiation and execut ion of the
tasks from its task queues.

C. Global Memory
The multiport global memory is a parallel-pipelined struc-

ture as introduced in [5]. Given a memory-access-t ime of T
processor-cycles, each line has T memory modules. It accepts
a request in each cycle and responds after a delay of T cycles.
Since an L-port memory has L lines, the memory can support
a bandwidth of L words per cycle.

Data and programs are organized in memory in blocks.
Blocks correspond to “units” of data and programs. The size
of a block is variable and is determined by the underlying
tasks, their data structures, and data requirements. A large
number of blocks may together constitute an entire program
or an entire image. Memory requests are made for blocks.
The PE’s and SDP’s are connected to the Global Memory
with a multistage interconnection network. Each line also
incorporates a secondary storage device, thus support ing a
large paged virtual memory.

The global memory is capable of queueing requests made
for blocks that have not yet been written into. Each line (or
port) has a Memory-l ine Controller (MLC) which maintains
a list of read requests to the line and services them when the
block arrives. It maintains a table of tokens corresponding to
blocks on the line, together with their length, virtual address,
and full/empty status. The MLC is also responsible for virtual
memory management functions.

Two main functions of the global memory are: input-output
of data and program, to and from the SDP’s and processor
clusters; to provide intercluster communicat ion between var-
ious tasks as well as within a task if a task is mapped onto
more than one cluster.

CHOUDHARYetnL:NETRA: ARCHITECWREFOR COMPUTER VISION SYSTEMS 1097

D. Global Interconnection

The PE’s and the SDP’s are connected to the Global
Memory using a multistage circuit-switching interconnection
network. Data is transferred through the network in pages.
A page is a unit of data or instruction. A page is transferred
from the global memory to the processors which is given in the
header as a destination port address. The header also contains
the starting address of the page in the global memory. When
the data is written into the global memory, only the starting
address must be stated. In each case, end-of-page may be
indicated either by using an extra flag bit appended to each
word (which may be expensive but is the most flexible), or
by containing the length of the page in the header (which
requires a capability to count, and therefore, additional logic,
in the MLC).

IV. CVS REQUIREMENTS AND
ARCHITECTURAL FEATURES OF NETRA

A. Reconfigurability (Computation Modes)

The clusters in NETRA provide SIMD, MIMD, and systolic
capabilities. It is important to provide these modes of opera-
tions in a multiprocessor system for CVS’s so that processor
configuration can be adapted to suit the best implementation
for each algorithm. Consider matrix multiplication. We will
show how it can be performed in SIMD and systolic modes.
Let us assume that the computation requires obtaining the
matrix C = A x B. For simplicity, let us assume that the cluster
size is P and the matrix dimensions are P x P. In general,
any arbitrary size computation can be performed independent
of the data or cluster size.

I) SZMD Mode: The algorithm can be mapped as follows.
Each processor is assigned a column of the B matrix, i.e.,
processor Pi is assigned column Bi (0 < i 5 P - 1). The SDP
broadcasts each row to the cluster processors which compute
the inner product of the row with their corresponding column
in lock-step fashion. Note that the elements of the A matrix
can be continuously broadcast by SDP, row by row without
any interruptions, and therefore, efficient pipelining of data
input, multiply, accumulate operations can achieved. Fig. 6(a)
illustrates a SIMD configuration of a cluster. The following
pseudo code describes the SDP and processor (9’s program,
0 < Ic 5 P - 1) program.

SIMD Computation
SDP
1. FOR i=O to i=P-1 DO
2. connect(SDP,Pi)
3. out(column Bi)
4. END-FOR
5. connect(SDP, all)
6. FOR i=O to i=P-1 DO
7. FOR j=O to j=P-1 DO
8. out(aij)
9. END-FOR
10. END-FOR

pk
1. -
2. NO-OP
3. in(column B;)
4. -
5. NO-OP
6. c;k = 0
7. FOR j=O to j=P-1 DO
8. in(aij)
9. Cik = c,k + ~Xij X bjk
10. END-FOR

In the above code, the computation proceeds as follows.
In first three lines, the SDP connects with each processor
through the crossbar and writes the column (one word at
a time) on the output port. That column is input by the
corresponding processor. In statement 5, the SDP connects
with all the processors in a broadcast mode. Then from
statement 6 onwards, the SDP broadcasts the data from matrix
A in row major order and each processor computes the inner
product with each row. Finally, each processor has a column
of the output matrix. It should be mentioned that the above
code describes the operation in principle, and does not give
exact timing of operations.

2) Systolic Mode: The same computation can be performed
in systolic mode. Fig. 3 illustrates a linear systolic configu-
ration of a cluster. The SDP can reconfigure the cluster in
a circular linear array after distributing columns of matrix
B to processors as before. The SDP is not shown in the
figure. The SDP assigns row Ai of matrix A to processor
Pi. Each processor computes the inner product of its row
with its column. At the same time, a processor writes the
element of the row on the output port. This element of the
row is input to the next processor (through the programmed
crossbar connections). Therefore, each processor receives the
rows of matrix A in a systolic fashion and the computation
is performed in a systolic fashion. Note that the computation
and communication can be efficiently pipelined. In the code,
statements 7-10 illustrate the systolic computation. Each
element of the row is used by a processor and immediately
written on to the output port. At the same time, the processor
receives an element of the row of the previous processor (in
the circular linear array) on its input port. Therefore, every P
cycles a processor computes a new element of the C matrix.

Systolic Computation SDP Pi
1. FOR i=O to i=P-1 DO 1. -
2. connect(SDP,P;) 2. NO-OP
3. out(column Bi) 3. in(column Bi)
4. out(row Ai) 4. in(column Ai)
5. END-FOR 5. -
6. connect(Pi to Pi+lmodP) 6. cii = 0
7. - 7. FOR j=O to j=P-1 DO
8. - 8. Cii = cii + aij * bji
9. - 9. OUt(Uij)y in(Ui-lj)
10. - 10. END-FOR
11. - 11. repeat 7-10 for each new

row

B. Partitioning and Resource Allocation

There are several tasks with vastly different characteristics
in a CVS. The required number of processors for each task
may be different as well as each task may need a different
computational mode and partition. Hence, partitionability and
dynamic resource allocation are keys to high performance.

Partitionability of interconnection networks has been stud-
ied by many researchers [40], [30], [22], [lo], [19]. These
approaches are, however, relevant only to systems of tightly

1098 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 10, OCTOBER 1993

DSP I
a) SIMD Mode

e PO - PI 3. P; -0 0 0

-d

pp-1

b) Systolic Mode

Fig. 3. An example of SIMD and systolic modes of computation in a cluster.

coupled processes wherein tasks require specific interconnec-
tion patterns. In the above cases, links are reserved for specific
point-to-point communicat ion while a process executes. When-
ever a new process is instantiated, the required resources
should be free and l inked together in a specif ied manner. A
partition is, in effect, isolated from the rest of the system.

Partitioning in NETRA is achieved as follows. When a task
is to be allocated, the set of subtrees of SDP’s is identified
such that the required number of PE’s is available at their
leaves. One of these subtrees is chosen on the basis of
load balancing (discussed later), locality considerations, and
characteristics of the task. The chosen SDP represents the root
of the control hierarchy for the task. Together with the SDP’s
in its subtree, it manages the execut ion of the task. Once the
subtree is chosen, the processes may execute in SIMD, MIMD,
or systolic mode when they get to the head of the Ready
Queues at the PE’s or clusters. Further, MIMD processes may
exhibit widely varying execut ion times as processing required
often depends on input data characteristics. If rigid partitions
are used, processors would have to wait until all complete
processing before they start execut ing another task. Finally,
locality is maintained within the control hierarchy, which
limits the intratask communicat ion to within the subtree.

Since all tasks are assigned in this manner, the partitioning
is only virtual. The PE’s are not required to be physically
isolated from the rest of the system. Therefore, unlike physical
partitioning of a network, in the above approach, communica-
tion and data exchange is possible between tasks operat ing in
different partitions. For example, suppose there are two tasks
in the system execut ing on different partitions, one working
on matching models of objects to the models developed
from the image data (a high-level vision task), and the other
working on probing the image data to resolve disambiguities
(using low-level vision tasks, e.g., Hough transform) [38]. For
normal operat ion both tasks can execute within their respective
partitions. But they need to provide feedback to each other as
the computat ion progresses. If partitions are isolated, it will

be very difficult to achieve this cross-communicat ion between
tasks of two partitions. TRAC architecture provides “shuttle-
memory” which can be used for such communicat ions [22],
[21]. In NETRA, cross-partit ion communicat ion is provided
through shared memory for partitions on different clusters,
and through the common data memory if different partitions
are on the same cluster.

C. Flexible Communicat ion
Availability of flexible communicat ion is critical to achiev-

ing high performance. For example, when a partition operates
in a SIMD mode, there is a need to broadcast the programs.
When a partition operates in an MIMD mode, where proces-
sors in the partition cooperate in the execut ion of a task, one
or more programs need to be transferred to the local memories
of the processors. Performing the above justifies the need
for selective broadcast capability. In order to take advantage
of spatial parallelism in vision tasks, processors working
on neighbor ing data need to communicate quickly amongst
themselves in order to obtain high performance. The pro-
grammability and flexibility of the crossbar provides fast local
communicat ion. A large number of vision algorithms need a
broad range of processor connectivit ies for efficient execution.
These connectivit ies include arrays, pipelines, several systolic
configurations, shuff le-exchanges, cubes, meshes, pyramids
etc. Each of these connectivit ies may perform well for some
tasks and badly for others. Therefore, using a crossbar with a
selective broadcast capability, any of the above configurations
can be achieved, and consequent ly, optimal per formance can
be achieved within clusters.

The need for global communicat ion is relatively low and
infrequent. Global communicat ion is needed for intertask
communicat ion in a CVS execut ing on different clusters. It
is also needed to input and output data, to transfer data
within subtasks of a task when a task is executed on more
than one cluster, and finally, it is needed to load programs.
The global communicat ion is performed through the global

CHOUDHARY et al.: NETRA: ARCHITECTURE FOR COMPUTER VISION SYSTEMS 1099

ComputeSystem_Load;

If RDOTSDP
System-Load = 0;
For i = 1 to numzhild(ROfJTSDP) do I* rum-child is the number of children of the

RDOTSDP tf
Receive Load[child(i)l ;
SystemLoad = SystemLoad + Load[child(i)l ;

End_For
Compute AverageLoad;
Broadcast Averagelad;

Else If LEAFSDP /GDP associated with one cluster*/
Send ClusterLoad to Parent SDP;
Recsive AverageLoad;

Else /*Internal SDP*/
Sub-TreeLoad - 0;
For i = 1 to num-child(ThisSDP) /* nun-child ia the no. of children of this

SDP*/
Receive Load[child(i)] ;
Sub-Tree-Load = Sub-TreeLoad + Load[child(i)l ;

EndSor
Send Sub-TrooJnad to Parent SDP;
Receive Averago3.oad;

End ComputeSystem-Load.

Fig. 4. Algorithm for periodic computation of system load.

memory using the interconnection network. Global memory is
used for coarse-grain communicat ion where data is transferred
in blocks as descr ibed below.

D. Load Balancing and Task Schedul ing

In NETRA, a hierarchical load balancing scheme is pro-
posed. Here, a “load balancing system” executes on the SDP-
tree as a hierarchy of identical processes. Two levels of load
balancing are employed, namely, global load balancing and
local load balancing. Global load balancing aids in partitioning
and allocating the resources for tasks as discussed earlier.
Local load balancing is used to distribute computat ions (or
data) to processors execut ing parallel subtasks of a task. Local
load balancing is a central ized scheme in which the cluster
SDP is responsible for local load balancing. The local load
balancing can be either static or dynamic or a combinat ion
of both.

Using the information from local load balancing and other
measures of computat ions, global load balancing is achieved
hierarchically by using the SDP hierarchy. A similar approach
has been proposed in [15]. In this scheme, each controller
SDP maintains the following.

1) A measure of load on the subtree below it. For example,
an average number of processes in the Active Queues of
PE’s and cluster in the subtree can serve as the measure.

2) A measure of average load over the entire system. This is
computed periodically over the entire tree and broadcast
to all the SDP’s.

Each SDP sends its measure of load to its parent SDP
and the root SDP receives the load information for the entire
system. The root SDP then broadcasts the measure of load
of the entire system to the SDP’s. The procedure for periodic
computat ion of system load is illustrated in Fig. 4. When a
task is to be allocated, these measures can be used to select a
subtree for its execut ion as follows:

If any subtree corresponding to the child of the current
SDP has an adequate number of processors, then the task

is transferred to a child SDP with the lowest load, else if
the current subtree has enough resources and the load is not
significantly greater than the average system load, then the
task is al located to the current subtree, else the current SDP
transfers the task to the parent SDP.

In NETRA, a SDP is not confronted with a large volume
of information to schedule a task since it needs to consider
the average load on the subtree below it and the overall
average load of the system. In systems like PASM, REPLICA
or PM4, fragmentation can be minimized only if schedul ing
is static or done considerably in advance of execution. This
is because schedul ing would involve global considerat ions
such as partitionability of the network and availability of
resources. However, since the scheduler cannot determine in
advance, what resources will be available at a later time,
processes cannot be easily prescheduled. NETRA allows for
easy allocation of dynamically created tasks because they
are generated on the basis of load balancing and locality
considerat ions alone.

E. Block-Level Data and Control Flow
A CVS system consists of a collection of tasks, each of

which can be executed in parallel in an SIMD, systolic or
MIMD mode over a number of processors. Each task can
be considered a functional block. A Functional Block thus
corresponds to a block of instructions executed on one or
more clusters, copies of which are broadcast to several PE’s
to be executed as a set of distributed processes. Similarly,
data is also organized as Data Blocks, which represent “units”
of data. For example, in a graph matching algorithm, a
record containing all the information about one node can be
considered a block.

Each function block requires one or more input data blocks
and produces one or more output data blocks. Tokens are used
to specify both function blocks and data blocks. A token is
composed of the following fields:

< Job ID > < Task ID > < Block Number >

1100 IEEETRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,VOL.4,NO.lO,OCTOBER 1993

Since the token corresponding to given tasks will differ in
their less significant bits, these bits are used to specify port
numbers for the global memory. Blocks corresponding to a
task are, thus, uniformly distributed over the global memory,
and therefore, can be accessed with minimal conflicts.

Processes are explicitly assigned to clusters and PE’s.
When a task is to be executed in an SIMD-like mode on
a cluster, the corresponding token is sent to the leaf SDP
controlling the cluster. For MIMD tasks, tokens are assigned
to the individual PE’s. Tokens corresponding to the tasks
are, however, transferred only to an Active Queue at the PE
or the leaf SDP controlling the cluster. Function blocks are
broadcast to the selected PE’s or clusters by parent SDP’s.
Simultaneously, requests for input-data-blocks are issued. The
tokens are moved to the Ready Queue only after all input-
data-blocks are available at the PE or cluster. An explicit
control flow scheme is used here because we believe that at the
function level, control flow is simple and data dependencies are
easily recognized. An interesting approach is that of combining
explicit control flow and block level data flow schemes. The
memory can queue requests for “empty” blocks and service
them when blocks are “full.”

F. Intelligent Memory
NETRA requires that a PE or a cluster issue requests for

input-data-blocks as soon as a process token enters its Active
Queue. The required data may not be available in the global
memory at that time. Instead of waiting for the data, the
processor should proceed with tasks already in the Ready
Queue. Therefore, the memory should be capable of queueing
requests and responding when data is available.

The scheme employed is similar to the I-structure storage
technique used for dataflow computers [2]. Each block has
associated with it a jklllempty bit. The bit is set to 1 if the
required data has been written into the page and is set to 0
otherwise. When a request is made for the block, this bit is
examined. If the block is marked full, the request is serviced;
otherwise it is queued. There is a controller on each line
called Memory Line Controller (MLC). MLC is responsible
for accepting requests, queueing them if required, and selecting
them for service when appropriate. For this purpose, the MLC
maintains a table containing the following information for each
block on the line:

< Virtual Address > <Length> <full/empty status >

Higher order bits of the block are used to index into the table.
Lower order bits are used to select the global memory port.

G. Distributed Memory Management
The task of managing the global memory is distributed over

the SDP-tree and the MLC’s. Two factors greatly simplify the
memory management task. First, the blocks are distributed
over the memory ports by using LSB’s of tokens to select
the port. This represents block level interleaving of data. For
low-level vision algorithms, where equal blocks of data are
assigned to tasks, data blocks corresponding to a task are
expected to be similar in size, this distribution is expected

to be very even. For other tasks such as high-level vision
tasks, where the distribution of data sets may not be even,
interleaving in the manner described above scatters the data
uniformly among memory modules, thereby reducing the
correlation in access patterns Second, a large locally managed
virtual space is provided at each port. The local controller is
free to place a block anywhere in its virtual space. Specifically,
blocks corresponding to the same task may be allocated in
contiguous virtual space. A request for allocation of storage
for data blocks is made by the SDP that initiates a task. When
the task is complete, requests for deallocation are made.

H. Ability to Tolerate Large Memory Access Latency

A large multiprocessor implies that response times to mem-
ory requests can be large and variable in a nondeterministic
manner due to conflicts. Therefore, it is required that PE’s
in such a multiprocessor be able to issue multiple requests in
advance and accept responses out of order.

NETRA is a multiprogrammed system with a large number
of processes active at any time. A process becomes active
when a token corresponding to the process is entered into the
Active Queue of a PE (MIMD mode) or a cluster (SIMD-like
mode). Data requests for the input-data-blocks are immediately
issued. When all input-data-blocks are available, it is trans-
ferred to the Ready Queue. However, while these requests are
being serviced, the PE continues to execute processes already
in its Ready Queue. Access to memory for one process is thus
overlapped with execution of another.

V. PRELIMINARY RESULTS ON CLUSTER PERFORMANCE

In this section we present initial performance results based
on the implementation of some algorithms on a cluster simula-
tor. The total processing time for a parallel algorithm consists
of the following components: Program load time onto the
cluster processors (tpl), data load and partitioning time (tdl),
computation time of the divided subtasks on the processors
(tcp), which is the sum of the processing time on a processor Pi
and intra-cluster communication time (tcomm), and the result
report time (&). tdl consists of three components: 1) data
read time from the global memory (&) by the cluster SDP,
2) crossbar switch setup time (tsw) and, 3) the data broadcast
and distribution time onto the cluster processors (&). The
total processing time 7(P) of the parallel algorithm on a P
processor cluster is given by

7(P) = t&d + tdl + t, + t,, (1)

where,

tdl = t, + t,, + ttw. (2)

If the computation and communication do not overlap then,

t - max tPi + komm cp - l<=i<=P (3)

else if computation and communication can completely over-
lap then,

t cp = max ((max l<=i<=PtPi), &mm). (4)

CHOUDHARY et al.: NEW ARCHITECTURE FOR COMPUTER VISION SYSTEMS 1101

2 16
2-D FFT

(+) Analysis

-a

-4

II I I I 0

12 4 a 16

Proecssing Time
(In SW.)

Number of Prowsson

Specdw

Fig. 5. Performance of 2D-FFT on a cluster.

In the above equations, t, depends on the effective band-
width of the global interconnection network.

A. Cluster Simulator
A cluster was simulated on the Intel iPSC/2 hypercube

multiprocessor. In order to obtain accurate computat ion results,
the processors (Intel 80386 processors) of the hypercube were
used as the cluster processors. The crossbar communicat ion
was explicitly simulated in which communicat ion cost was
computed based on the amount of data transferred between
nodes. Note that since there are no conflicts in the cross-
bar (because the switch must be set before communication),
the amount of data transferred between nodes can provide
sufficient information to simulate the communicat ion in the
crossbar. Each crossbar link was assumed to provide 20
Megabytes/s using 8-bit wide data paths. Details are presented
in [9].

B. Two-Dimensional Fast Fourier Transform
Two-Dimensional Fast Fourier Transform (2D-FIT) was

implemented on a 16 processor cluster simulator. For a P
processor cluster and N x N image, the steps of the algorithm
were as follows: 1) Each processor was assigned N/P rows
of input data. Each processor computed the one-dimensional
transform of each row of its own partition. 2) The intermediate
results were t ransposed by all processors communicat ing with
each other. This step required P - 1 switch settings of the
crossbar. 3) Each processor computed the column transform
on the intermediate results producing the 2D-FIT of the
input image. It should be noted that in step 2) each switch
setting permits P parallel communicat ions. Hence, the entire
t ranspose can be achieved in P - 1 distinct switch settings.

Fig. 5 shows the performance results for a 2D-FFT on a
cluster varying in size up to 16 processors. Both analytical
and implementation results are shown. As we can observe,
analytical and implementation results are very close to each
other. Almost linear speedups can be obtained for the 2D-FIT.

Fig. 6 shows the communicat ion time as a function of number
of processors in a cluster. An important observat ion from the
figure is that the communicat ion time decreases as the number
of processors increases. This is very important to obtaining al-
most linear speedups. The communicat ion time decreases as a
function of number of processors because there are no conflicts
in the crossbar for the t ranspose phase of the algorithm, and
hence, as the number of processors increases, each processor
communicates smaller amount of data in each switch setting.
Specifically, each processor communicates (P - 1) x N2 /P”
amount of data in the t ranspose phase. Therefore, since there
are no conflicts in communicat ion, the communicat ion time is
a decreasing function of the number of processors.

C. Median Filtering
Median filtering of an image using a w x w filter involves

replacing each pixel of the image with the median of its w x w
neighborhood window. Median filtering was implemented in
the MIMD mode on the test data provided with the DARPA
Image Understanding Benchmark [37]. Table I shows the
performance results for the data set “test” of the benchmark.
Each component of program execut ion such as processing
time, data load time, result output time, program load time,
and total time is shown. It can be observed that almost linear
speedups can be obtained after incorporating all the overheads
of various phases of program execution.

D. Sobel Edge Detection
Sobel edge detection was also implemented using the data

from the Image Understanding Benchmark. Sobel edge de-
tection essentially involves comput ing a 3 X 3 convolut ion
of the image. The results are shown when implementation
on the simulator is done in a SIMD mode, but computat ion
and communicat ion are not over lapped. Table II shows the
performance results for the data set “test.” Only subl inear
speedups are obtained for sobel edge detection. This occurs
due to the following reason. The amount of computat ion

1102 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 10, OCTOBER 1993

0.008

Comm. Ti imoo4
(In Sets.)

2-D FFI.
(+)&!~%%%ioR Time I’ ,,:’

.I 1’

012 4 8

Number of Processors
Fig. 6. Communicat ion time for 2D-FFT on a cluster.

TABLE I
PERFORMANCE FOR MEDIAN FILTERING

16

8 Speedup

Medinn Filterlag (Tat)
No.Ra. Roe. Data Iowl Result Output Rq. Load Data Input Total Speed up

Timtiser) Tim&c.) Timc(sec.) Timefsce) Timcfm.) Time(sec.)
: 60.36 30.17 0 0.056 i.056 0 0.001 0.008 0.008 60.37 30.30 1

1.99
4 15.19 0.056 0.056 0.001 0.008 15.31 3.94
8 7.72 0.056 0.056 0.001 0.008 7.85 7.70

16 3.99 0.056 0.056 0.001 0.008 4.11 14.68
32 1 1.90 t 0.056 1 0.056 1 0.001 1 0.008 1 2.02 / 29.93

TABLE II
PERFORMANCE FOR SOBEL EDGE DETECTION

8obel (Test)
No.Roc. Rot. Data load Result Output Rag. Loed Data Input Total Speed up

TimeCw.) Time@ec.) Tiie(sec.) Tim&c.) Time(sec.) Time&c.)

: 4.04 2.M 0 0.056 0 0.014 &Ql Ei 4.05 2.1 1 1.92
4 1.01 0.056 0.014 0.001 Oh08 1.09 3.70
8 0.5 1 0.056 0.014 0.001 0.008 0.589 6.91

0.26 0.056 0.014 0.001 0.008 0.33 12.13
0.13 0.056 0.014 0.001 0.008 021 19.71

per pixel is small, and amount of computat ion per processor
decreases linearly as the number of processors decreases. At
the same time, other measures such as data load time, data
input-output time remain constant, and hence, the overhead as
a fraction of total time increases. Further details are presented
in [9].

VI. SUMMARY AND CONCLUSIONS
NETRA is a hierarchical and partit ionable architecture for

computer vision systems. NETRA is a recursively def ined
tree-type hierarchical architecture whose leaf nodes consist of
cluster of processors connected with a programmable crossbar
with selective broadcast capability to provide for desired
flexibility. W e presented a qualitative evaluation of NETRA.
The programmable crossbar has been implemented and is
currently being tested. Furthermore, some preliminary results
on the performance of a cluster of NETFLA were presented

using 2D-FFT, median filtering, and sobel edge detection
algorithms. W e have done extensive performance evaluation
of clusters as well as inter-cluster communicat ion of NETFL4.
The details are presented in [9].

NETRA also provides a control hierarchy that can be
employed to develop heterogeneous architectures for computer
vision systems. In such architectures, some clusters can be
replaced by special purpose processors (as briefly p roposed
below) and machines to perform specific tasks efficiently. Most
parallel architectures provide a host interface and an at tached
multiprocessor. The leaf SDP can provide the functions of
the a host processor with all the responsibilities descr ibed in
the paper. Therefore, a mix of special purpose processors and
clusters proposed in the paper can synergistically provide a
powerful and flexible architecture in which the SDP hierarchy
will provide a hierarchical control and system management
functions.

CHOUDHARY et al.: NETRA: ARCHITECTURE FOR COMPUTER VISION SYSTEMS 1103

ACKNOWLEDGMENT

We would like to thank M. Sharma and J. Simonson for
their contributions. We would also like to thank the referees
for their comments which have helped improve this paper.

PI

PI

[31

[41

151

161

I71

PI

[91

P31

[I41

P51

1161

[I91

PI

v41

v51

PI

REFERENCES

N. Ahuja and S. Swamy, “Multiprocessor pyramid architectures for
bottom-up image analysis,” IEEE ?rans. Pattern Anal. Machine Intell.,
vol. PAMI-6, pp. 463-475, July 1984.
Arvind and A:-Ianucci, “A crtique of multiprocessing von Neumann
style,” in Proc. 10th Int. Symp. Comput. Architecture, 1983, pp. 426-437.
K. Batcher, “Design of a massively parallel processor,” IEEE Trans.
Comput., vol. C-29, pp. 836-840, 1980.
S. Borkar et al., “Supporting systolic and memory communication in
iwarp,” in Proc. 17th Annu. Int. Svmo. Comout. Architecture. Mav
28-31, 1990, pp. 70-81.

_ 1 , ,

F. A. Brings and E. S. Davidson. “Oreanization of semiconductor --
memories for parallel-pepelined processors,” IEEE Trans. Comput., pp.
162-169, Feb. 1977.
V. Cantoni, S. Levialdi, M. Ferretti, and F. Maloberti, “A pyramid
project using integrated technology,” Integrated Technology for Parallel
Image Processing, pp. 121-132, 1985.
A. N. Choudhary and J. H. Pate], Parallel Architectures and Paral-
lel Algorithms for Integrated Vision Systems. Boston, MA: Kluwer
Academic, 1990.
A. N. Choudhary and S. Ranka, “Parallel processing for computer vision
and image understanding,” IEEE Computer, vol. 25, no. 2, pp. 7-10,
Feb. 1992.
A. N. Choudhary, “Parallel architectures and parallel algorithms for
integrated vision systems,” Ph.D. dissertation, Univ. of Illinois, Urbana-
Champaign, Aug. 1989.
D. Degroot, “Partitioning job stractures for SW-banyan networks,” in
Proc. Int. Cant Parallel Processing, 1979, pp. 106-113.
B. A. Draper et al., “The Schema System,” Int. J. Comput. vision, vol.
2, pp. 207-218, Jan. 1989.
M. J. B. Duff, “CLIP 4: A large scale integrated circuit array parallel
processor,” in Proc. IEEE Int. Joint Conf: Pattern Recognition, Nov.
1976, pp. 728-733.
T. L. Casavant E. C. Bronson, and L. H. Jamieson, “Experimental
application-driven architecture analysis of an SIMD/MIMD parallel
processing system,” IEEE Trans. Parallel Distributed Syst., vol. 1, no.
2, pp. 195-205, Apr. 1990.
M. Annaratone et al., “The Warp computer: Architecture. implementa-
tion, and performance,” IEEE Tians. domput., Dec. 1987. ’
D. G. Feitelson and L. Rudolph, “Distributed hierarchical control for
parallel processing,” IEEE Computer, vol. 23, no. 5, pp. 65-77, May
1990.
A. R. Hanson and E. M. Riseman, “A methodology for the develop-
ment of general knowledge-based vision systems,” vision, Brain, and
Cooperative Computation, 1986.
D. Hillis, The Connection Machine. Cambridge, MA: MIT Press, 1985.
M. Denneau J. Beetem, and D. Weingarten, “The GFll Parallel Com-
puter,” in Experimental Parallel Computing Architectures, J. J. Don-
garra, Ed. Amsterdam: North-Holland, 1987.
M. Jeng and H. J. Seigel, “A distributed management scheme for
partitionable parallel computers,” IEEE Trans. Parallel Distributed Syst.,
vol. 1, no. 1, pp. 120-126, Jan. 1990.
D. Kuck, E. Davidson, D. Lawrie, and A. Sameh, “Parallel supercom-
puting today and the Cedar approach,” Science, vol. 231, pp. 967-974,
1986.
G. J. Lipovski, private communication on shuttle memory, Sept. 1990.
G. J. Lipovski and M. Malek, Parallel Computing: Theory and Com-
parisons. New York: Wiley, 1987.
Y. W. Ma and R. Krishnamurti, “The architecture of REPLICA-A
special-purpose computer system for active multi-sensory perception of
3-dimensional objects,” in Proc. Int. Co@ Parallel Processing, 1984,
pp. 30-37.
A. Merigot, B. Zavidovique, and F. Devos, “SPHINX, A pyramidal ap-
proach to parallel image processing,” in Proc. IEEE Workshop Computer
Architecture for Pattern Analysis and Image Database Management,
Nov. 1985, pp. 107-111.
D. Rana and C. Weems, “The ICAP Parallel Processor Communication
Switch,” COINS Tech. Rep. 8942, Univ. of Massachusetts, Amherst,
1989.
A. Rosenfeld, private communication, Nov. 1990.

[271

PI

[291

[301

[311

[321

[331

[341

[351

[361

I371

[381

[391

[401

D. H. Schaefner, D. H. Wilcox, and G. C. Harris, “A pyramid of MPP
processing elements - experience and plans,” in Proc. Hawaii Int. Conf
Syst. Sci., 1985, pp. 178-184.
M. Sharma, J. H. Pate], and N. Ahuja, “NETRA: An architecture for a
large scale multiprocessor vision system,” in Proc. Workshop Computer
Architecture for Pattern Analysis ans Image Database Management,
Nov. 1985, pp. 92-98.
D. E. Shaw, “Organization and operation of a massively parallel
machine,” in Parallel Computing: Theory and Comparisons, G. J.
Lipovski and M. Malek, Eds. New York: Wiley, 1987.
H. J. Siegel, “Partitioning permutation networks: The underlying the-
ory,” in Proc. Int. Conf: Parallel Processing, 1979, pp. 175-184.
H. J. Siegel et al. “PASM: A reconfigurable parallel system for image
processing,” in Parallel Computing: Theory and Comparisons, G. J.
Lipovski and M. Malek, Eds. New York: Wiley, 1987.
J. Simonson, “A programmable crossbar switch for multiprocessor
systems,” in preparation. Master’s thesis, Univ. of Illinois, Urbana-
Champaign, Feb. 1991.
L. Snyder, “Organization and operation of a massively parallel ma-
chine,” in Parallel Computing: Theory and Comparisons, G. J. Lipovski
and M. Malek, Eds. New York: Wiley, 1987.
M. H. Sunwoo and J. K. Aggarwal, “A vision tri-architecture (VISTA)
for an integrated computer vision system, ” in Proc. Image Understand-
ing Benchmark Workshop, 1988.
S. L. Tanimoto, T. J. Ligocki, and R. ling, “A prototype pyramid ma-
chine for hierarchical cellular logic, ” in Parallel Hierarchical Computer
vision, L. Uhr, Ed., 1987.
L. W. Tucker, “Architecture and application of the Connection Ma-
chine,” IEEE Computer, pp. 26-38, Aug. 1988.
C. Weems et al., “A report on the results of the DARPA integrated image
Understanding benchmark exercise,” in Proc. Image Understanding
Workshop, 1989, pp. 165-183.
C. Weems, A. Hanson, E. Riseman, and A. Rosenfeld, “An integrated
image understanding benchmark: Recognition of a 2 l/2 d mobile,” in
Pro; Int. Conf CoGput. vision and Paytern Recognition, June 1988.
C. C. Weems, S. P. Levitan, A. R. Hanson, E. M. Riseman, J. G. Nash,
and D. B. Shu, “The image understanding architecture,” Int. J. Comput.
vision, vol. 2, pp. 251-282, 1989.
A. S. Youssef and B. Narahari, “The banyan-hypercube networks,” IEEE
Trans. Parallel Distributed Systems, vol. 1, no. 2, pp. 160-169, Apr.
1990.

Alok N. Choudhary received the Ph.D. degree in
electrical and computer engineering from the Uni-
versity of Illinois, Urbana-Champaign, in 1989, the
M.S. degree from the University of Massachusetts,
Amherst, in 1986, and the B.E.(Hons.) degree from
the Birla Institute of Technology and Science, Pilani,
India, in 1982.

He joined the faculty of the Department of Elec-
trical and Computer Engineering at Syracuse Uni-
versity in 1989. He was a visiting scientist at IBM
T. J. Watson Research Center during the summers

of 1987, 1988, and 1991. He was a research and teaching assistant with
the Electrical and Computer Engineering Department and the Center for
High Performance and Reliable Computing at the University of Illinois,
Urbana-Champaign, from 1986 to 1989. He worked as a system analyst
and designer from 1982 to 1984. His main research interests are in parallel
computer architectures, software development environments, and applications
for parallel computers, computer vision, and performance evaluation. He
has co-authored a book Parallel Architectures and Parallel Algorithms for
Integrated Vision Systems (Boston, MA: Kluwer Academic). In addition, he
has written two book chapters on parallel architectures and algorithms.

Dr. Choudhary was awarded an IEEE Engineering Foundation Award
for research in parallel processing. He served as a guest editor for IEEE
COMPUTER Special Issue on Parallel Processing for Computer Vision and
Image Understanding, published in February 1992. He is also a guest editor of
Journal of Parallel and Distributed Computing for a Special Issue on Parallel
I/O Systems published in January 1993. He is a member of the IEEE Computer
Society and the Association for Computing Machinery. He is a subject area
editor of JPDC. He received the NSF Young Investigator Award in 1993.

1104 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 10, OCTOBER 1993

Janak H. Pate1 (S’73-M’76-SM’S7-F’89) was
born in Bhavanagar, India. He received the B.Sc.
degree in physics from Gujarat University, India,
the B.Tech. degree from the Indian Institute of
Technology, Madras, India, and the MS. and Ph.D.
degrees from Stanford University, Stanford, CA, all
three in electrical engineering.

He is with the University of Illinois at Urbana-
Champaign, where he is currently a Co-Director of
the Center for Reliable and High Performance Com-
puting and a Professor of Electrical and Computer

Engineering and Computer Science, and a Research Professor with the Coor-
dinated Science Laboratory. He has made seminal contributions in the areas
of multiprocessor cache memories, pipeline processing, and multiprocessor
interconnections. His cache coherence protocol, the Illinois protocol, is used in
several commercial multiprocessors. His pipeline schedul ing methods are now
being appl ied in super-scalar compilers. He is currently engaged in research,
teaching, and consult ing in the areas of cache performance, architecture based
automatic test generation, and synthesis for testability.

Narendra Ahuja (S’79-M’79-SM’SS-F’92) re-
ceived the B.E. degree with honors in electronics
engineering from the Birla Institute of Technology
and Science, Pilani, India, in 1972, the M.E. de-
gree with distinction in electrical communicat ion
engineering from the Indian Institute of Science,
Banglaore, India, in 1974, and the Ph.D. degree in

,:
computer science from the University of Maryland,

..” ::“_ ,a.“% College Park, in 1979.
‘T From 1974 to 1975 he was Scientific Officer in

the Department of Electronics, Government of India,
New Delhi. From 1975 to 1979 he was at the Computer Vision Laboratory,
University of Maryland, Col lege Park. Since 1979 he has been with the
University of Illinois at Urbana-Champaign where is currently (since 1988)
a Professor in the Department of Electrical and Computer Engineering, the
Coordinated Science Laboratory, and the Beckman Institute. His interests
are in computer vision, robotics, image processing, image synthesis, and
parallel algorithms. He has been involved in teaching, research, consulting,
and organizing conferences in these areas. His current research emphasizes
integrated use of multiple image sources of scene information to construct
three-dimensional descriptions of scenes, the use of integrated image analysis
for realistic image synthesis, the use of the acquired three-dimensional
information for navigation, and multiprocessor architectures for computer
vision.

Dr. Ahuja was selected as a Beckman Associate in the University of
Illinois Center for Advanced Study for 1990- 1991. He received University
Scholar Award (1985), Presidential Young Investigator Award (1984), National
Scholarship (1967-1972) and President’s Merit Award (1966). He has co-
authored the books Pattern Models (New York: Wiley, 1983), with Bruce
Schachter, and Motion and Structure from Image Sequences (Springer-Verlag,
io be published) with Juyang Weng and Thomas Huang. He is Associate Editor
of the journals IEEE TRANSACXONS ON PATFERN ANALYSIS AND MACHINE
INTELLIGENCE, Computer vision, Graphics, and Image Processing, Journal
of Mathematical Image and vision, and Journal of Information Science and
Technology. He is a fellow of the American Association for Artificial
Intelligence, and a member of the Association for Comput ing Machinery and
the Optical Society of America.

