

Fig. 10. Reliability comparison among DSCCC_i²(10, 8)'s, $1 \le i \le 5$. (The dashed curve denotes the DSCCC(9, 8) result.)

and 2) PE's in dimension *i* are equipped with extra links that emulate dimensions i - 1 and i - 2 connections. The resulting structure is expected to have higher reliability than the DSCCC²_i, but every PE then needs one more extra port, and its layout takes larger area. It may be interesting to contrast the cost-effectiveness of these two structures.

REFERENCES

- J.-J. Shen and I. Koren, "Yield enhancement designs for WSI cube connected cycles," *Proc. Int. Conf. Wafer Scale Integration*, 1989, pp. 289–298.
- [2] F. P. Preparata and J. Vuillemin, "The cube-connected cycles: A versatile network for parallel computation," *Commun. ACM*, vol. 24, pp. 300–309, May 1981.
- [3] M. S. Krishnan and J. P. Hayes, "A normalized-area measure for VLSI layouts," *IEEE Trans. Comput.-Aided Design*, vol. 7, pp. 411–419, Mar. 1988.
- [4] I. Koren, Z. Koren, and D. K. Pradhan, "Designing interconnection buses in VLSI and WSI for maximum yield and minimum delay," *IEEE J. Solid-State Circuits*, vol. 23, pp. 859–866, June 1988.
- [5] P. Banerjee, "The cubical ring connected cycles: a fault-tolerant parallel computation network," *IEEE Trans. Comput.*, vol. 37, pp 632–636, May 1988.
- [6] S.-Y. Kuo and W.K. Fuchs, "Reconfigurable cube-connected cycles architectures," J. Parallel Distrib. Computing, vol. 9, pp. 1–10, May 1990.
- [7] P.R. Lala, Fault Tolerant and Fault Testable Hardware Design. Englewood Cliffs, NJ: Prentice-Hall, 1985.
- [8] N.-F. Tzeng, S. Bhattacharya, and P.-J. Chuang, "Fault-tolerant cubeconnected cycles structures through dimensional substitution," *Proc.* 1990 Int. Conf. Parallel Processing, vol. I, Aug. 1990, pp. 433–440.

Optimal Processor Assignment for a Class of Pipelined Computations

Alok N. Choudhary, Bhagirath Narahari, David M. Nicol, and Rahul Simha

Abstract --- The availability of large-scale multitasked parallel architectures introduces the following processor assignment problem. We are given a long sequence of data sets, each of which is to undergo processing by a collection of tasks whose intertask data dependencies form a seriesparallel partial order. Each individual task is potentially parallelizable, with a known experimentally determined execution signature. Recognizing that data sets can be pipelined through the task structure, the problem is to find a "good" assignment of processors to tasks. Two objectives interest us: minimal response time per data set, given a throughput requirement, and maximal throughput, given a response time requirement. Our approach is to decompose a series-parallel task system into its essential "serial" and "parallel" components; our problem admits the independent solution and recomposition of each such component. We provide algorithms for the series analysis, and use an algorithm due to Krishnamurti and Ma for the parallel analysis. For a p processor system and a series-parallel precedence graph with n constituent tasks, we give a $O(np^2)$ algorithm that finds the optimal assignment (over a broad class of assignments) for the response time optimization problem; we find the assignment optimizing the constrained throughput in $O(np^2 \log p)$ time. Our techniques are applied to a task system in computer vision.

I. INTRODUCTION

In recent years, much research has been devoted to the problem of mapping large computations onto a system of parallel processors. Various aspects of the general problem have been studied, including different parallel architectures, task structures, communication issues, and load balancing [8], [13]. Typically, experimentally observed performance (e.g., speedup or response time) is tabulated as a function of the number of processors employed, a function sometimes known as the *execution signature* [10], or the *response time* function. In this short note, we use such functions to determine the number of processors to be allocated to each of several tasks when the tasks are part of a pipelined computation. This problem is natural, given the growing availability of *multitasked* parallel architectures, such as PASM [29], the NCube system [14], and Intel's iPSC system [5], in which it is possible to map tasks to processors and allow parallel execution of multiple tasks in different logical partitions.

We consider the problem of optimizing the performance of a complex computation applied to each member of a sequence of data sets. This type of problem arises, for instance, in imaging systems, where each image frame is analyzed by a sequence of elemental tasks, e.g., fast Fourier transform or convolution. Other applications include network software, where packets are pipelined through well-defined functions such as check-sum computations, address decoding, and framing. Given the data dependencies between the computation's

Manuscript received August 3, 1991; revised April 27, 1992, and March 6, 1993. This work was supported in part by the National Science Foundation (NSF) under Grants MIP-9110810, ASC-8819393, and NCR-8907909, and in part by the National Aeronautics and Space Administration (NASA) under Grant NAG-1-995.

A.N. Choudhary is with the Department of Electrical and Computer Engineering, Syracuse University, Syracuse, NY 13244.

- B. Narahari is with the Department of Electrical Engineering and Computer Science, George Washington University, Washington, DC 20052.
- D.M. Nicol and R. Simha are with the Department of Computer Science, College of William and Mary, Williamsburg, VA 23185.

IEEE Log Number 9215379.

multiple tasks, we may exploit parallelism both by pipelining data sets through the task structure and by applying multiple processors to individual tasks.

There is a fundamental trade-off between assigning processors to maximize the overall throughput (measured as data sets per unit time), and assigning processors to minimize a single data set's response time. We manage the trade-off by maximizing one aspect of performance subject to the constraint that a certain level of performance must be achieved in the other aspect. Under the assumptions that each of n tasks is statically assigned a subset of dedicated processors and that an individual task's responsetime function completely characterizes performance (even when using shared resources such as the communication network), we show that p processors can be assigned to a *series-parallel* task structure in $O(np^2)$ time to minimize response time while achieving a given throughput. We are also able to find the assignment that maximizes throughput while achieving a given minimal response time, in $O(np^2 \log p)$ time.

The assumption of a static assignment arises naturally in real-time applications, where the overhead of swapping executable task code in and out of a processor's memory threatens performance. Without this assumption, the optimization problem becomes much more difficult.

Our method involves decomposing a series-parallel graph into series and parallel components by using standard methods. We present algorithms for analyzing series components and use Krishnamurthy and Ma's [20] algorithm to analyze the parallel components.

We assume that costs of communication between tasks are completely captured in the given response-time functions. Thus, our techniques can be expected to work well on compute-bound task systems. Our example application is representative of this class, having a computation to communication ratio of 100. Our techniques may not be applicable when communication costs that depend on the particular sets of processors assigned to a task (e.g., contention) contribute significantly to overall performance.

A large literature exists on the topic of mapping workload to processors (see, e.g., [1], [3], [4], [6], [15], [17], [18], [23], [24], [26], [27], [31], [33]). A new problem has recently emerged: that of scheduling tasks on multitasked parallel architectures where each task can be assigned a set of processors. Some formulations consider scheduling policies with the goal of achieving good average response time and good throughput, given an arrival stream of different, independent parallel jobs (see, e.g., [28]). Another common objective, exemplified in [2], [11], [20], [25], is to find a schedule of processor assignments that minimizes completion time of a single job executed once. The problem we consider is different from these, specifically because we have a parallel job that is to be repeatedly executed. We consider issues arising from our need to pipeline the repeated executions to get good throughput, as well as apply parallel processing to the constituent tasks to get good per-execution response time. Yet another distinguishing characteristic of our problem is an underlying assumption that a processor is statically assigned to one task, with the implication that every task is always assigned at least one processor.

Two previously studied problems are close to our formulation. The assignment of processors to a set of independent tasks is considered in [20]. The single objective is the minimization of the makespan, which 1) minimizes response time if the tasks are considered to be part of a single parallel computation, or 2) maximizes throughput if the tasks are considered to form a pipeline. The problem of assigning processors to independent chains of modules is considered in [7]. This assignment minimizes the response time if the component tasks are considered to be parallel, and maximizes the throughput if the component chains are considered to form pipelines. Pipeline

 TABLE I

 Example Response Time Functions Showing Tasks'

 Execution Time as a Function of the Number of PROCESSORS USED (in s)

tasks	Number of processors									
	1	2	3	4	5	6	7	8		
t_1	29	16	11	9	7	6	4.5	4		
t_2	90	50	20	15	12	10	9	9.		
t_3	80	43	18	14	11	9	8	8.:		
t_4	20	12	10	9	8	7	6	5		
t_5	15	10	7	5	4	3.5	3	2.:		

computations are also studied in [19], [30]. In [30], heuristics are given for scheduling planar acyclic task structures; in [19], a methodology is presented for analyzing pipeline computations using Petri nets together with techniques for partitioning computations. We have not discovered treatments that address optimal processor assignment for general pipeline computations, though our solution approach (dynamic programming) is related to those in [3] and [33].

This short note is organized as follows. Section II introduces notation and formalizes the response-time problem and the throughput problem. Section III presents our algorithms for series systems, and Section IV shows how to optimally assign processors to series-parallel systems. Section V shows how the problem of maximizing throughput subject to a response-time constraint can be solved by using solutions to the response-time problem. Section VI discusses the application of our techniques to an actual problem, and Section VII summarizes this work.

II. PROBLEM DEFINITION

We consider a set of tasks, t_0, t_1, \dots, t_{n+1} , that comprise a computation to be executed by using up to p identical processors on each of a long stream of data sets. Every task is applied to every data set. We assume that the tasks have a series-parallel precedence relation constraining the order in which we may apply tasks to a given data set. Tasks unrelated in the partial order are assumed to process duplicated copies (or different elements) of a given data set. Under these assumptions, we may pipeline the computation so that different tasks are concurrently applied to different data sets.

Each task is potentially parallelizable. For each t_i , we let $f_i(n)$ be the execution time of t_i using n identical processors. f_i is called a *response-time function* (also known as an *execution signature* [10]). We assume that f_0 and f_{n+1} are dummy tasks that serve, respectively, to identify the initiation and completion of the computation. Correspondingly, we take $f_0(n) = f_{n+1}(n) = 0$ for all n. $f_i(0) = \infty$, however, for all $i = 1, \dots, n$. These conditions ensure that no processor is ever assigned to t_0 or t_{n+1} , and that at least one processor is assigned to every other task.

An example of the response-time functions for a computation with five tasks on up to eight processors is shown in Table I. Each row of the table is a response-time function for a particular task. Observe that individual functions need not be convex or monotonic.

We may describe an assignment of *numbers* of processors to each task by a function A. A(i) gives the number of processors statically and exclusively allocated to t_i . A feasible assignment is one where $\sum_{i=1}^{n} A(i) \leq p$ and A(i) > 0 for $i = 1, \dots, n$.

Given A, t_i 's execution time is $f_i(A(i))$, and the maximal data set throughput is $\Lambda(A) = \max_i \{f_i(A(i))^{-1}\}$. The response time for a data set is obtained by computing the length R(A) of the longest

 ∞

50

43

20

80

TABLE II **Response-Time Function** F_1 for Parallel Task τ_1

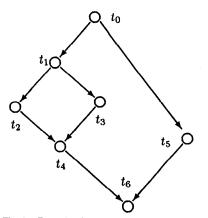


Fig. 1. Example of series-parallel task system T.

path through the graph where each t_i is a node weighted by $f_i(A(i))$ and the edges are defined by the series-parallel precedence relation.

Given some throughput constraint λ and processor count q, we define $\mathcal{T}_{\lambda}(q)$ to be the set of all feasible assignments A that use no more than q processors, and achieve $\Lambda(A) > \lambda$. The response-time problem is to find $\mathcal{F}_{\lambda}(p)$, the minimum response time over all feasible assignments in $\mathcal{T}_{\lambda}(p)$, that is, the response time for which there is an assignment A for which R(A) is minimal over all assignments with p or fewer processors that achieve throughput λ or greater. This problem arises when data sets must be processed at least as fast as a known rate λ to avoid losing data. We wish to minimize the response time among all those assignments that achieve throughput λ . Similarly, given response time constraint γ and processor count q, we define $\mathcal{R}_{\gamma}(q)$ to be the set of all feasible assignments A using no more than q processors and achieving $R(A) \leq \gamma$. The throughput problem is to find $A \in \mathcal{R}_{\gamma}(p)$ for which $\Lambda(A)$ is maximized. This problem arises in real-time control applications, where each data set must be processed within a maximal time frame in order to meet processing deadlines. We focus on solutions to the response-time problem first, and later show how these may be used to solve the throughput problem.

Because a response-time function completely defines a task, elemental or composite, we also use the term "task" to refer to compositions of the more elemental tasks t_i . Let τ_i denote such a composite task, and let F_i be its optimal response-time function. Our general approach is illustrated by an example. Consider the seriesparallel task T in Fig. 1 with the response-time functions given in Table I (here, t_0 and t_6 are dummy tasks). We may think of t_2 and t_3 as forming a parallel subtask. Call it τ_1 . Given the response-time functions for t_2 and t_3 , we will construct an optimal response-time function called F_1 for τ_1 , after which we need never explicitly consider t_1 or t_2 separately from each other; F_1 completely captures what we need to know about both of them. Next we view τ_1 and t_1 as a series task. Call it τ_2 , and compute the optimal responsetime function for τ_2 . The process of identifying series and parallel subtasks and constructing response-time functions for them continues until we are left with a single response-time function that describes the optimal behavior of T. By tracking the processor assignments necessary to achieve the optimal response times at each step, we are able to determine the optimal processor allocations for T. A solution method for parallel tasks has been given in [20]. We present algorithms for series tasks.

18

15

We will assume that every response-time function is monotone nonincreasing, because as argued in [20], any other response-time function can be made decreasing by disregarding those assignments of processors that cause higher response times. Also, observe that response-time functions may include inherent communication costs due to parallelism, as well as the communication costs that are suffered by communicating with predecessor and successor tasks. These assumptions are reasonable when the communication bandwidth is sufficiently high for us to ignore effects due to contention between pairs of communicating tasks. Our methods may not produce good results when this assumption does not hold.

III. INDIVIDUAL PARALLEL TASKS AND SERIES TASKS

The problem of determining an optimal response-time function for parallel tasks has already essentially been solved in the literature [20]. We describe this solution briefly. Let t_1, \dots, t_k be the tasks used to compose a parallel task τ . For each t_i , we know $u_{\lambda}(t_i)$, the minimum number of processors needed so that every elemental task involved in t_i has a response time no greater than $1/\lambda$. We initialize by allocating $u_{\lambda}(t_i)$ processors to each t_i . If we run out of processors first, then no processor allocation can meet the throughput requirement. Otherwise, the initial allocation uses the fewest possible number of processors that do meet this requirement. We then incrementally add the remaining processors to tasks in such a way that at each step, the response time (the maximum of task response times) is reduced maximally. This algorithm has an $O(p \log n)$ time complexity.

Series task structures are interesting in themselves, because many pipelines are simple linear chains [19]. We first describe an algorithm that constructs the optimal response-time function \mathcal{F}_{λ} for a linear task structure T when each function $f_i(x)$ is convex in x. Although convexity in elemental functions is intuitive, nonconvex responsetime functions arise from parallel task compositions. Consequently, a different algorithm for series compositions of nonconvex responsetime functions is developed later.

Like the parallel composition algorithm, we first assign the minimal number of processors needed to meet the throughput requirement. The mechanism for this is identical. Suppose that this step does not exhaust the processor supply. Define x_i to be the number of processors currently assigned to t_i , initialize $x_i = u_\lambda(t_i)$, and define $y = \sum_{i=1}^{n} x_i$ to be the total number of processors already allocated. We then set $\mathcal{F}_{\lambda}(x) = \infty$ for all x < y to reflect an inability to meet the throughput requirement, and set $\mathcal{F}_{\lambda}(y) = \sum_{i=1}^{n} f_{i}(x_{i})$. Next, for each t_i , compute $d(i, x_i) = f_i(x_i + 1) - f_i(x_i)$, the change in response time achieved by allocating one more processor to t_i . Build a max-priority heap [16] where the priority of t_i is $|d(i, x_i)|$. Finally, enter a loop where, on each iteration, the task with highest priority is allocated another processor, its new priority is computed, and the priority heap is adjusted. We iterate until all available processors have been assigned. Each iteration of the loop allocates the next processor to the task that stands to benefit most from the allocation. When the individual task response functions are convex, then the response-time function \mathcal{F}_{λ} greedily produced is optimal: The algorithm above is essentially one due to Fox [12] as reported in [32]. Simple inspection reveals that the algorithm has an $O(p \log n)$ time complexity. Unlike the similar algorithm for parallel tasks, correctness here depends on convexity of component task response times.

The need to treat nonconvex response-time functions arises from the behavior of composed parallel tasks. Return to our example in Fig. 1, and consider the parallel composition τ_1 of elemental tasks t_2 and t_3 , with throughput requirement $\lambda = 0.01$. The response-time function F_1 is shown in Table II. Note that F_1 is not convex, even though f_2 and f_3 are. This nonconvexity is due to the peculiar nature of the maximum of two functions and cannot be avoided when dealing with parallel task compositions. We show below that nonconvexity can be handled, with an additional cost in complexity.

We begin as before, allocating just enough processors so that the throughput constraint is met. Assuming so, for any $j = 1, \dots, n$, we denote the subchain comprised of t_1, \dots, t_j as task T_j , and compute its optimal response-time function, C_j , subject to throughput constraint λ . By using the principle of optimality [9], we write a recursive definition for $u_{\lambda}(T_j)$ and $C_j(x)$.

$$\begin{split} u_{\lambda}(T_j) &= \\ \begin{cases} u_{\lambda}(t_1) & \text{if } j = 1 \\ u_{\lambda}(t_j) + u_{\lambda}(T_{j-1}) & \text{otherwise} \end{cases} \\ C_j(x) &= \\ \begin{cases} f_1(x) & \text{if } j = 1 \\ u_{\lambda}(t_j) \leq i \leq x - u_{\lambda}(T_{j-1}) \end{cases} \{f_j(i) + C_{j-1}(x-i)\} & \text{otherwise} \end{cases} \end{split}$$

The dynamic programming equation is understood as follows. Suppose that we have already computed the function C_{j-1} . This implicitly asserts that we know how to optimally allocate any number $y \leq p$ processors to T_{j-1} . Next, given x processors to distribute between tasks t_j and T_{j-1} , we try every combination subject to the throughput constraints: *i* processors for t_j , and x - i processors for T_{j-1} . The principle of optimality tells us that the least-cost combination gives us the optimal assignment of x processors to T_j . Because the equation is written as a recursion, the computation will actually build response time tables from the bottom up, starting with task t_1 in the first part of the equation.

This procedure requires $O(np^2)$ time. We have been unable to find a solution that gives better worst-case behavior in all cases. Some of the difficulties one encounters may be appreciated by study of our previous example. Consider the construction of τ_2 , comprised of the series composition of t_1 and τ_1 . As before, let F_1 denote the responsetime function for τ_1 . Table III gives the values of $f_1(u) + F_1(v)$ for all $1 \le u, v < 8$ with $u + v \le 8$. The set of possible sums associated with allocating a fixed number of processors x lie on an assignment diagonal moving from the lower left (assign x - 1processors to τ_1 , and assign one to t_1) to the upper right of the table (assign one processor to τ_1 , and assign x - 1 to t_1), illustrated by use of a common typeface on a diagonal. Brute force computation of $\tau_2(x)$ consists of generating all sums on the associated diagonal and choosing the allocation associated with the least sum. In the general case, this is equivalent to looking for the minimum of a function known to be the sum of a function that decreases in i (e.g., $f_1(i)$) and one that increases (e.g., $F_1(x-i)$). Unlike the case when

TABLE III Sum of Response Time Functions f_1 and F_1									
	$f_1(1)$ 29	$f_1(2) \\ 16$	$f_1(3)$ 11	$f_1(4)$ 9	$f_1(5) = 7$	$f_1(6) = 6$	$f_1(7)$ 4.5		
$F_1(1) = \infty$	∞	∞`	∞	∞	∞	∞	∞		
$F_1(2) = 90$	119*	106*	101	99	97	96			
$F_1(3) = 80$	109	96	91	89	87				
$F_1(4) = 50$	79*	66*	61	59					
$F_1(5) = 43$	72	59	54						
$F_1(6) = 20$	49*	36*							
$F_1(7) = 18$	47								

* = minimum value on each assignment diagonal.

these functions are known to be convex as well, in general, their sum does not have any special structure that we can exploit; the minimum can be achieved anywhere, implying that we have to look for it everywhere. It would seem, then, that dynamic programming may offer the least-cost solution to the problem.

We note in passing that a straightforward optimization may reduce the running time, but does not have a better asymptotic complexity. If both functions being summed are convex, then the minimum values on adjacent assignment diagonals must be adjacent in a row or column. This fact can considerably accelerate the solution time, because, given the minimum on the x-processor assignment diagonal, we can find the minimum on the (x + 1)-processor diagonal by generating and comparing only two additional entries, (This is a consequence of the greedy algorithm described earlier.) Although we cannot, in general, assume that both functions are convex, we can view them as being piecewise convex. Thus, if t_1 is convex over [a, b], and if τ_1 is convex over [c, d], then $t_1 + \tau_1$ is convex over $[a, b] \times [c, d]$, and we can efficiently find minima on assignment diagonals restricted to this subdomain. Working through the details, which are straightforward, one finds that the complexity of this approach is O(rnp), where r is the maximum number of convex subregions spanned by any given assignment diagonal. Of course, in the worst case r = O(p), leaving us still with an $O(np^2)$ algorithm.

IV. SERIES-PARALLEL TASKS

Algorithms for the analysis of series and parallel task structures can be used to analyze task structures whose graphs form seriesparallel directed acyclic graphs. We show that the response-time function for any such graph (with n nodes) can be computed in $O(np^2)$ time. A number of different but equivalent definitions of series-parallel graphs exist. The one we use is taken from [34], in which a series-parallel directed acyclic graph (DAG) can be parsed as a binary decomposition tree (BDT) in time proportional to the number of edges. The leaves of such a tree correspond to the DAG nodes themselves, and internal tree nodes describe either parallel (P) or series (S) compositions. Fig. 2 illustrates the BDT (labeling S and P nodes by task names used in discussion) corresponding to the task in Fig. 1.

The structure of a BDT specifies the precise order in which we should apply our analyses. The idea is to build up the overall optimal response-time function from the bottom up. Conceptually, we mark every BDT node as being computed or not, with leaf nodes being the only ones marked initially. We then enter a loop where in each iteration, we identify an unmarked BDT node, whose children are both marked. We apply a series composition or parallel composition to those childrens' response-time functions, depending on whether the node is of type S or P, and mark the node. The algorithm ends when the root node is marked.

Number of _ Processes	Response times for individual tasks									
	Task 1	Task 2	Task 3	Task 4	Task 5	Task 6	Task 7	Task 8	Task 9	
1	109.00	6.15	0.32	24.67	109.0	6.15	0.320	129.02	18.20	
2	54.76	3.07	0.16	12.52	54.76	3.07	0.160	67.70	9.15	
4	27.51	1.58	0.081	6.32	27.51	1.58	0.081	34.22	4.58	
8	13.88	0.81	0.042	3.22	13.88	0.81	0.042	17.50	2.39	
16	7.07	0.40	0.022	1.76	7.07	0.40	0.042	10.30	1.52	
32	3.78	0.20	0.012	1.01	3.78	0.20	0.012	6.36	1.01	
64*	2.12	0.11	0.007	0.61	2.12	0.11	0.007	4.13	0.71	
128*	1.25	0.06	0.004	0.38	1.25	0.06	0.004	2.81	0.52	
256*	0.77	0.04	0.002	0.26	0.77	0.77	0.040	0.002	0.40	

TABLE IV COMPLETION TIMES FOR INDIVIDUAL TASKS ON THE INTEL iPSC/2 OF VARIOUS SIZES (in s)

* indicates extrapolated values.

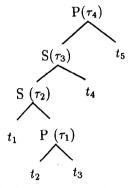


Fig. 2. Binary decomposition tree.

In the example, τ_1 's response-time function is generated by using the parallel algorithm on t_2 and t_3 ; the series composition is applied to t_1 and τ_1 (for composite task τ_2), which is then composed via another series composition with t_4 , creating τ_3 ; and, finally, t_5 is combined via a parallel composition with τ_3 to create the responsetime function for the overall task structure. At each step, one must record the actual number of processors assigned to each task in order to compute the optimal assignment. This is straightforward and needs no discussion.

From the above, we see that the cost of determining the optimal assignment from a BDT is $O(np^2)$, because every response-time function composition has a worst-case cost of $O(p^2)$ and there are n-1 such compositions performed.

V. THE THROUGHPUT PROBLEM

Real-time applications often require that the processing of every data set meet a response-time deadline. At system design time, it becomes necessary to assess the maximal throughput possible under the constraint. This is our throughput problem. In this section, we show how solutions to the response-time problem can be used to solve this new problem in $O(np^2 \log p)$ time. Our approach depends on the fact that minimal response times behave monotonically with respect to the throughput constraint.

Lemma 5.1 For any pipeline computation, let $\mathcal{F}_{\lambda}(p)$ be the minimal possible response time using p processors, given throughput constraint λ and the assumption of static processor-to-task mapping. Then, for every fixed p, $\mathcal{F}_{\lambda}(p)$ is a monotone nondecreasing function of λ .

Proof: Let p be fixed. As before, let $u_{\lambda}(t_i)$ be the minimum number of processors required for all elemental tasks comprising t_i to meet throughput constraint λ . For every t_i , $u_{\lambda}(t_i)$ is clearly a monotone nondecreasing function of λ . Recall that $\mathcal{T}_{\lambda}(p)$ is the set of all assignments that meet the throughput constraint λ using no more than p processors. Whenever $\lambda_1 < \lambda_2$, we must have $\mathcal{T}_{\lambda_2}(p) \subseteq$ $\mathcal{T}_{\lambda_1}(p)$, because of the monotonicity of each $u_{\lambda}(t_i)$. Because $\mathcal{F}_{\lambda}(p)$ is the minimum cost among all assignments in $\mathcal{T}_{\lambda}(p)$, we have $\mathcal{F}_{\lambda_2}(p) \leq \mathcal{F}_{\lambda_1}(p)$. This result can be viewed as a generalization of Bokhari's [4] graph-based argument for monotonicity of the minimal "sum" cost, given a "bottleneck" cost.

Suppose that for a given pipeline computation, we are able to solve for $\mathcal{F}_{\lambda}(p)$, given any λ . The set of all possible throughput values is $\{1/f_i(x)|\ i = 1, \dots, n; x = 1, \dots, p\}$. $O(pn \log(pn))$ time is needed to generate and sort them. Given response time constraint $\hat{\gamma}$ and tentative throughput λ , we may determine whether $\mathcal{F}_{\lambda}(p) \leq \hat{\gamma}$. Because $\mathcal{F}_{\lambda}(p)$ is monotone in λ , we use a binary search to identify the greatest $\lambda = \lambda^*$ for which $\mathcal{F}_{\lambda^*}(p) \leq \hat{\gamma}$. The associated processor assignment maximizes throughput (by using p processors), subject to response-time constraint $\hat{\gamma}$. Because there are $O(\log p)$ solutions of the response-time problem, the complexity for the throughput problem is $O(np^2 \log p)$.

VI. AN APPLICATION

In this section, we report the results of applying our methods to a motion estimation system in computer vision. Motion estimation is an important problem in which the goal is to characterize the motion of moving objects in a scene. From a computational point of view, continually generated images from a camera must be processed by a number of tasks. A primary goal is to ensure that the computational throughput meets the input data rate. Subject to this constraint, we desire that the response time be as small as possible. The application itself is described in detail in [8], [21]. It should be noted that there are many approaches to solving the motion estimation problem. We are interested only in an example, and therefore the following algorithm is not presented as the only or best way to perform motion estimation. A comprehensive digest of papers on the topic of motion understanding can be found in [22]. The following subsection briefly describes the underlying computations.

A Motion Estimation System

Our example problem is a linear pipeline with nine stages, with each stage being a task. The data sets input to the task system are a continuous stream of stereo image pairs of a scene containing the moving vehicles. The tasks perform well-known vision com-

Task Number	Multiprocessor size (number of processors)										
	32		6	4	1	28	256				
	Processor assignment	Time (in s)	Processor assignment	Time (in s)	Processor assignment	Time (in s)	Procesor assignment	Time (in s)			
1	8	13.88	16	7.07	32	3.78	64	2.12			
2	1	6.15	2	3.07	8	0.81	16	0.40			
3	1	0.32	1	0.32	1	0.32	2	0.16			
4	2	12.52	6	4.77	8	3.22	16	1.76			
5	8	13.88	16	7.07	32	3.78	64	2.12			
6	1	6.15	2	3.07	6	1.19	12	0.60			
7	1	0.32	1	0.32	1	0.32	2	0.16			
8	8	17.50	16	10.30	32	6.36	64	4.13			
9	2	9.15	4	4.58	8	2.39	16	1.52			
MRT		79.87		40.57		22.18	·····	12.98			

TABLE V AN EXAMPLE PROCESSOR ALLOCATION FOR MINIMIZING RESPONSE TIME FOR SEVERAL SIZES OF INTEL iPSC/2

MRT = minimum response time.

Specified throughput = 0.05 frames/s.

Number of processors allocated to individual tasks are shown.

putations such as 2-D convolution, extracting zero crossings and feature matching, similar to computations in the Image Understanding Benchmark [35]. All nine tasks were implemented on a distributed memory machine, the Intel iPSC/2 hypercube [5]. We applied the system above to a problem using outdoor images [8]. The relevant response-time functions are shown in Table IV for selected processor sizes. Measurements include all overheads, computation times, and communication times.

Experimental Results

We applied the series task algorithm using Table IV, for a range of possible throughput constraints. As an example of the output generated by the algorithm, Table V shows the processor assignment for individual tasks for various sizes of the Intel iPSC/2. The last row of the table also shows the minimum response time, given constraint $\lambda = 0.05$ frames/s. The response times shown are those *predicted* by our algorithms. Nevertheless, *observed* response times using the computed allocations were observed to be in excellent agreement with these figures: The relative error rate was less than 5% in all measurable cases.

The processor allocation behavior is intuitive. Tasks t_1 , t_5 , and t_8 have much larger response times than the others. As increasingly more processors are allocated to the problem, these three tasks receive the lion's share of the additional processors.

Fig. 3 illustrates the tension between response time and throughput by plotting the minimal response-time function for the entire pipeline computation as a function of the throughput constraint. For any problem, there will be a throughput λ_{\min} achieved when processors are allocated entirely to minimize response time. The flat region of the curve lies over throughput constraints $\lambda \leq \lambda_{\min}$. The response-time curve turns up, sometimes dramatically, as the throughput constraint moves into a region where response time must be traded off for increased throughput.

VII. SUMMARY

In this short note, we consider performance optimization of seriesparallel pipelined computations. The problem arises when a system of individually parallelizable tasks is to be applied repeatedly to a long sequence of data sets. Given a large supply of processors, parallelism

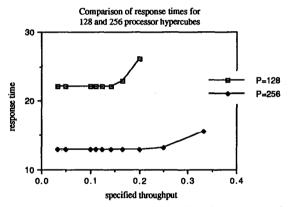


Fig. 3. Minimal response time as a function of the throughput constraint.

can be exploited, both by pipelining the data sets through the task structure and by allocating multiple processors to individual tasks. We treat the dual problems of minimizing response time subject to a throughput constraint and maximizing throughput subject to a response-time constraint.

We showed that problems with p processors and n tasks satisfying series-parallel precedence constraints can be solved in low-order polynomial time: response time (subject to a throughput constraint) is minimized in $O(np^2)$ time, and throughput (subject to a response time constraint) is maximized in $O(np^2 \log p)$ time. To place the work in a realistic setting, we evaluated the performance of our assignment algorithms on the problem of stereo image matching. The results predicted by our analysis were observed to be very close to results measured on actual systems.

Future endeavors include the provision of algorithms for general task structures and investigation of dynamic assignment algorithms. Also, we believe that our results can be extended to task models that include "branching," such as those encountered with CASE statements. This feature essentially forces us to treat response times and throughputs as being stochastic. We also believe that our approach can be extended to consider the effects of certain types of communication contention.

REFERENCES

- [1] M.J. Berger and S.H. Bokhari, "A partitioning strategy for nonuniform problems on multiprocessors," IEEE Trans. Comput., vol. C-36, pp. 570-580, May 1987.
- [2] J. Blazewicz, M. Drabowski, and J. Welgarz, "Scheduling multiprocessor tasks to minimize schedule length," IEEE Trans. Comput., vol. C-35, pp. 389-393, May 1986.
- [3] S. H. Bokhari, "A shortest tree algorithm for optimal assignments across space and time in a distributed processor system," IEEE Trans. Software Eng., vol. SE-7, no. 6, pp. 583-589, Nov. 1981.
- , "Partitioning problems in parallel, pipelined, and distributed [4] computing," IEEE Trans. Comput., vol. 37, pp. 48-57, Jan. 1988.
- [5] L. Bomans and D. Roose, "Benchmarking the {iPSC/2} hypercube multiprocessor," Concurrency: Practice and Experience, vol. 1, pp. 3-18, Sept. 1989.
- [6] M.Y. Chan and F.Y.L. Chin, "On embedding rectangular grids in hypercubes," IEEE Trans. Comput., vol. 37, pp. 1285-1288, Oct. 1988.
- [7] H-A. Choi and B. Narahari, "Algorithms for mapping and partitioning chain structured parallel computations," Proc. 1991 Int. Conf. Parallel Processing, 1991, pp. 625-628.
- [8] A.N. Choudhary and J.H. Patel, "Parallel architectures and parallel algorithms for integrated vision systems" (video images obtained from the Army Research Office). Boston: Kluwer, 1990.
- [9] E. Denardo, "Dynamic Programming: Models and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1982
- [10] K. Dussa, B. Carlson, L. Dowdy, and K.-H. Park, "Dynamic partitioning in a transputer environment," Proc. 1990 ACM SIGMETRICS Conf., 1990, pp. 203–213.
- [11] J. Du and Y-T. Leung, "Complexity of scheduling parallel task systems," SIAM J. Discrete Math. vol. 2, pp. 473-487, Nov. 1989.
- [12] B. Fox, "Discrete optimization via marginal analysis," Management Sci., vol. 13, pp. 909-918, May 1974.
- [13] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems on Concurrent Processors, Vols. I and II. Englewood Cliffs, NJ: Prentice-Hall, 1990.
- [14] J.P. Hayes, T.N. Mudge, Q.F. Stout, and S. Colley, "Architecture of a hypercube supercomputer," Proc. 1986 Int. Conf. Parallel Processing, 1986, pp. 653-660.
- [15] C.-T. Ho and S. L. Johnsson, "On the embedding of arbitrary meshes in Boolean cubes with expansion two dilation two," Proc. 1987 Int. Conf. Parallel Processing, 1987, pp. 188-191.
- [16] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Ch. 2. New York: Computer Science Press, 1985.
- [17] O.H. Ibarra and S.M. Sohn, "On mapping systolic algorithms onto the hypercube," IEEE Trans. Parallel Distrib. Syst., vol. 1, pp. 48-63, Jan. 1990
- [18] R. Kincaid, D. M. Nicol, D. Shier, and D. Richards, "A multistage linear array assignment problem," Operations Res., vol. 38, pp. 993-1005, Nov.-Dec. 1990
- [19] C.-T. King, W.-H. Chou, and L. M. Ni, "Pipelined data-parallel algorithms," IEEE Trans. Parallel Distrib. Syst., vol. 1, pp. 470-499, Oct. 1990
- [20] R. Krishnamurti and Y.E. Ma, "The processor partitioning problem in special-purpose partitionable systems," Proc. 1988 Int. Conf. Parallel Processing, 1988, vol. 1, pp. 434-443.
- [21] M.K. Leung and T.S. Huang, "Point matching in a time sequence of stereo image pairs," Tech. Rep., CSL, Univ. of Ill. at Urbana-Champaign, Urbana, IL, 1987.
- [22] W.N. Martin and J.K. Aggarwal, Eds. Motion Understanding, Robot and Human Vision. Boston: Kluwer, 1988.
- [23] R.G. Melhem and G.-Y. Hwang, "Embedding rectangular grids into square grids with dilation two," IEEE Trans. Comput., vol. 39, pp. 1446-1455, Dec. 1990,
- [24] D. M. Nicol and D. R. O'Hallaron, "Improved algorithms for mapping parallel and pipelined computations," IEEE Trans. Comput., vol. 40, pp. 295-306, Mar. 1991.
- [25] C.D. Polychronopoulos, D.J. Kuck, and D.A. Padua, "Utilizing multidimensional loop parallelism on large scale parallel processor systems," IEEE Trans. Comput., vol. 38, pp. 1285-1296, Sept. 1989. [26] P. Sadayappan and F. Ercal, "Nearest-neighbor mapping of finite

element graphs onto processor meshes," IEEE Trans. Comput., vol. 36, no. 12, pp. 1408-1424, Dec. 1987.

- [27] D.S. Scott and R. Brandenburg, "Minimal mesh embeddings in binary hypercubes," IEEE Trans. Comput., vol. 37, pp. 1284-1285, Oct. 1988.
- [28] K. Sevcik, "Characterizations of parallelism in applications and their use in scheduling," Proc. 1989 ACM SIGMETRICS Conf., 1989, pp. 171 - 180
- [29] H.J. Siegel, L. J. Siegel, F.C. Kemmerer, P.T. Mueller, H.E. Smalley, and S.D. Smith, "PASM: A partitionable SIMD/MIMD system for image processing and pattern recognition," IEEE Trans. Comput., vol. C-30, no. 12, pp. 934-947, Dec. 1981.
- [30] C.V. Stewart and C.R. Dyer, "Scheduling algorithms for PIPE (pipelined image-processing engine)," J. Parallel Distrib. Computing, vol. 5, pp. 131-153, 1988.
- [31] H. Stone, "Multiprocessor scheduling with the aid of network flow algorithms," IEEE Trans. Software Eng., vol. SE-3, no. 1, pp. 85-93, Jan. 1977.
- [32] H.S. Stone, J. Turek, and J.L. Wolf, "Optimal partitioning of cache memory," IEEE Trans. Comput., vol. 41, pp. 1054-1068, Sept. 1992.
- [33] D. Towsley, "Allocating programs containing branches and loops within a multiple processor system," IEEE Trans. Software Eng., vol. SE-12, no. 10, pp. 1018-1024, Oct. 1986.
- [34] J. Valdes, R.E. Tarjan, and E.L. Lawler, "The recognition of series parallel digraphs," SIAM J. Comput., vol. 11, no. 2, pp. 298-313, May 1982
- [35] C. Weems, A. Hanson, E. Riscman, and A. Rosenfeld, "The DARPA image understanding benchmark for parallel computers," J. Parallel Distrib. Computing, vol. 11, no. 1, pp. 1-7, Jan. 1991.

Allocating Tree Structured Programs in a Distributed System with Uniform Communication Costs

Alain Billionnet

Abstract-We study the complexity of the problem of allocating m modules to n processors in a distributed system to minimize total communication and execution costs. When the communication graph is a tree, Bokhari has shown that the optimum allocation can be determined in $O(mn^2)$ time. Recently, this result has been generalized by Fernández-Baca, who has proposed an allocation algorithm in $O(mn^{k+1})$ when the communication graph is a partial k-tree. We show that in the case where communication costs are uniform, the module allocation problem can be solved in O(mn) time if the communication graph is a tree. This algorithm is asymptotically optimum.

Index Terms-Algorithm, complexity, computer network, distributed system, optimization, task allocation, tree

I. INTRODUCTION

An important problem arising in distributed computer systems is the so-called task allocation problem. We are given a program with m modules, each of which must be assigned to one of n nonidentical processors. We assume that modules are numbered from 1 to mand that processors are numbered from 1 to n. Together with the set of modules, we have an undirected, connected graph called the communication graph, whose vertices are the modules of the program and which is such that there is an edge between two vertices if the corresponding modules communicate.

Manuscript received February 9, 1993.

The author is with CEDRIC, Institut d'Informatique d'Enterprise, 91025 Evry ccdcx, France.

IEEE Log Number 9215380.