
10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. I. JANUARY 1989

A Modified Priority Based Probe Algorithm for
D istributed Deadlock Detection and Resolution

ALOK N. CHOUDHARY, STUDENT MEMBER, IEEE, WALTER H. KOHLER, SENIOR MEMBER, IEEE,
JOHN A. STANKOVIC, SENIOR MEMBER, IEEE, AND DON TOWSLEY, MEMBER, IEEE

Abstract-This paper presents a modified priority based probe al-
gorithm for deadlock detection and resolution in distributed database
systems. The original priority based probe algorithm was presented by
Sinha and Natarajan based on work by Chandy, Misra, and Haas.
Various examples are used to show that the original priority based al-
gorithm either fails to detect deadlocks or reports deadlocks which do
not exist in many situations. A modified algorithm which eliminates
these problems is proposed. This algorithm has been tested through
simulation and appears to be error free. Finally, the performance of
the modified algorithm is briefly discussed.

Index Terms-Concurrency control, deadlock detection, distributed
database.

I. INTRODUCTION

T HIS paper presents a modified priority based probe
algorithm for deadlock detection and resolution in

distributed database systems. The original priority based
probe algorithm was presented by Sinha and Natarajan in
[9] based on work by Chandy, Misra, and Haas [3], [4].
Sinha and Natarajan [9] assigned priorities to transactions
and used the priorities to reduce the number of probe mes-
sages that are forwarded. Two variations of the algorithm
were discussed: a basic algorithm to detect deadlocks
when only exclusive lock requests by transactions are al-
lowed and an extended algorithm when shared and mul-
tiple lock requests are allowed. Sinha and Natarajan did
not implement the algorithm, nor prove its correctness.

In this paper we show that in many situations Sinha and
Natarajan’s algorithm either fails to detect a deadlock
cycle or detects a nonexistent (false) deadlock. We also
explain why such situations arise and modify their algo-
rithm in order to make it work correctly. The final result
is a refined priority based probe algorithm to detect and
resolve distributed deadlocks. We have extensively tested

Manuscript received July 31, 1986; revised December 30, 1987. This
work was supported by the National Science Foundation under Grant SDB-
8418216 and by the Naval Underwater Systems Center under Contract
NOO140-84-M-WM07.

A. N. Choudhary was with the Department of Electrical and Computer
Engineering, University of Massachusetts, Amherst, MA 01003. He is now
with the Computer Systems Group, University of Illinois at Urbana-Cham-
paign, Urbana, IL 61801.

W. H. Kohler is with Digital Equipment Corporation, Marlboro, MA
01752.

J. A. Stankovic and D. Towsley are with the Department of Computer
and Information Science, University of Massachusetts, Amherst, MA
01003.

IEEE Log Number 8824597.

this algorithm through simulation without finding any er-
rors.

The rest of this paper is organized as follows. The dis-
tributed database model is briefly discussed in Section II.
For a detailed description of the database model and the
original algorithms the reader is referred to [9]. Section
III contains examples illustrating those situations in which
the original algorithm either fails to detect deadlocks or
detects false deadlocks. Modifications to eliminate these
problems are suggested with each example. Our modified
probe algorithm is then presented in Section IV. The tests
performed on our algorithm are described in Section V.
The impact of the modifications on the performance of the
algorithm is also discussed in Section V. Finally, Section
VI summarizes the paper.

II. THE DISTRIBUTED DATABASE SYSTEM MODEL

A distributed database system is modeled as a collec-
tion of sites (or nodes) which communicate through mes-
sages. The messages arrive at a destination site in the same
order in which they were sent from a source site. Mes-
sages are neither lost nor duplicated and are transmitted
error-free. See Sinha and Natarajan [9] and Chandy,
Misra, and Haas [3], [4] for further details.

Transactions execute concurrently in some globally se-
rializable order [11, [2]. Each site has many data items
which are accessed by transactions. Each data item is
managed by a data manager which has the exclusive right
to operate on it. Transactions use the two phase locking
protocol (2PL) to access data items [6]. If a transaction
wants to lock a data item, it must send a lock request to
the data manager managing that data item. A data man-
ager grants a lock request on a data item if it is free (un-
locked), otherwise it places the request in a queue, called
the Request-Q. A transaction can only access a data item
after it has acquired a lock on the data item. A transaction
which has obtained a lock on a data item is called the
holder of the data item, and a transaction waiting in the
queue for a lock is called a requester. If shared locks are
allowed then there may be more than one holder of a data
item. However we focus only on the basic algorithm by
Sinha and Natarajan which assumes that transactions only
request exclusive locks. Although a data manager may
manage many data items, it is assumed that a data man-
ager manages only one data item [9] in order to simplify
the understanding of the algorithm.

0098-5589/89/0100-OOlO$Ol .OO 0 1989 IEEE

CHOUDHARY er al.: ALGORITHM FOR DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 11

A transaction can be in one of two states: active or wait.
If a transaction has a lock request pending then it is in the
wait state, otherwise it is active. A transaction changes
its state from active to wait if its lock request cannot be
granted. Once a transaction enters the wait state, it cannot
request more locks until all of its pending requests are
satisfied.

In Sinha and Natarajan’s algorithm, transactions are as-
signed priorities where each transaction has a distinct
priority. We use the following notation to denote the
priority ordering. For two transactions Tj and q, Prior-
ity (Ti) > Priority (Tj) iff i < j. This will be denoted as
Ti > 7;.

III. ERRORS AND DEFICIENCIES

In this section we discuss the cases in which the algo-
rithm presented by Sinha and Natarajan [9] either fails to
detect a deadlock cycle or detects a false deadlock (a
deadlock which does not exist). We also suggest correc-
tions to the algorithm which will eliminate these prob-
lems. For the convenience of the reader, the basic algo-
rithm [9, pp. 69-701 is included in the Appendix.
However, the reader is refered to [9] for a detailed de-
scription of this algorithm.

There are three basic deficiencies in Sinha and Natara-
jan’s algorithm. First, some deadlocks are not detected
because probes are initiated and transmitted only once.
Second, there are numerous instances when the algorithm
detects false deadlocks or fails to detect some deadlocks
because it overlocks the possibility that transactions may
wait transitively on a deadlock cycle. Third, there are
times when the algorithm detects false deadlocks because
transactions and data managers save old probes.

In order to understand the problems with the Sinha and
Natarajan algorithm and the new algorithm, we introduce
the concept of an antagonist ic conf7ict [9].

Dejinition 1: An antagonistic conflict occurs between
two transactions if one transaction (called the holder)
locks a data item and the other transaction with a higher
priority (called the requester) requests that data item. The
requester is said to face an antagonistic conflict.

A deadlock is detected by circulating a message, called
the probe, through the deadlock cycle. The occurrence of
an antagonistic conflict at a data item triggers the initia-
tion of a probe. A timeout period can also be introduced
to delay the initiation of the algorithm. A probe is an or-
dered pair (initiator, junior), where initiator denotes the
requester which faced an antagonistic conflict and trig-
gered the deadlock detection computation. The element
junior denotes the transaction with the lowest priority from
among the transactions traversed by the probe.

A data manager sends a probe only to the transaction
holding its data, while a transaction sends a probe only to
the data manager from which it is waiting to receive a lock
grant.

The notation

Tj x, lj
. H

means that transaction Ti is waiting for a data item X,,
presently held by transaction 7;. The arc between 7; and
Tj simply denotes the wait-for relationship. Note that T,
does not communicate with q directly. T; sends its request
to the data manager managing data item X,, denoted as
DM(X,). If T > q when DM(X,) initiates a probe (K,
Tj) and sends it to q. Furthermore, DM(Xk) forwards
each probe (initiator, junior) it receives from T; to Tj if
initiator > Tj.

Before we proceed with the different examples of how
Sinha and Natarajan’s algorithm fails, we provide the fol-
lowing concise, high level description of their algorithm.
The algorithm consists of two parts. The first part is con-
cerned with the detection of the deadlock through the
propagation of probes. Throughout this phase, transac-
tions may be required to store some of these probes. The
second part of the algorithm is concerned with resolving
a deadlock. This includes first notifying the lowest prior-
ity transaction within the cycle that it will be the abort
victim and a subsequent phase to remove unnecessary
probes stored by other transactions in the cycle. This last
phase is initiated by the deadlock victim through the prop-
agation of a special clean message. Once again, we refer
the reader to [9] for complete details of the algorithm.

A. Undetected Deadlocks
In this subsection, we describe conditions under which

a deadlock cycle will not be detected by the Sinha and
Natarajan algorithm. We describe how the algorithm can
be modified to avoid this problem.

Consider the example shown in Fig. l(a). Assume that
DM(Xi) initiated a probe (T, , T5) that propagated to T,,
then to T4 and finally to T3. Transactions T,, T4, and T3
each store the probe (T,, T5) in their respective
probe_Q’s. Now suppose T3 commits and releases its
locks. If T2 is first in the request-Q it will be granted the
lock on X3. ’ This situation is shown in Fig. l(b). Now, if
T2 requests a lock for a data item presently held by T,,
say X4 as shown in Fig. l(c) using a dashed line, a dead-
lock cycle will be formed. According to Sinha and Nata-
rajan’s algorithm, this deadlock will never be detected.
DM(X4) will not initiate a probe because T3 does not face
an antagonistic conflict. Even if it faced an antagonistic
conflict and initiated a probe, the probe would stop at T1
because TI is the highest priority transaction in the cycle.
The probe (T, , T,), the only probe which can potentially
detect this deadlock cycle, was not and will never be
propagated to T2.

The following must be added to part A. 1 of Sinha and
Natarajan’s algorithm [9] (see Appendix).

c) When a transaction completes or aborts it re-
leases its locks. The data manager associated with
each released data item assigns the lock for the data
item to some transaction waiting for that data item
(if one exists). Each data manager then requests all

‘The situation is possible no matter what scheme is used for granting a
lock if there is more than one transaction waiting.

12 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING. VOL. 15. NO. I. JANUARY 1989

(a) (b)
Fig. 1. An undetected deadlock. (a) Initial state. (b) State after release by

T3. (c) Resulting undetected deadlock.

remaining transactions waiting on the new lock to
transmit their complete probe-Q’s to itself (The
identities of these transactions are obtained from the
data manager’s request-Q.) The data manager for-
wards each received probe (initiator, junior) to the
new holder of the lock for which initiator exceeds
the priority of the new holder.

Let us return to the example in Fig. 1. At the time that
T, completes, it releases its locks and DM(Xs) grants T2
the lock on Xs. DM(X,) then requests all of the probes in
T4’s probe-Q. Transaction T4 sends probe (T, , T5) to
DM(X,) which DM(Xs) in turn transfers to T2. There-
fore, when the deadlock cycle is formed in Fig. l(c), T2
will send the probe (T, , T,) to DM(X4) and conse-
quently, DM(X4) will detect the deadlock cycle.

Similar examples can be constructed such that a dead-
lock will form which will not be detected following the
abortion of a transaction. Consequently, the above actions
must also be performed when transactions abort.

B. False Deadlocks
In addition to the above mentioned problems, the al-

gorithm detects false deadlocks. “False deadlock” does
not have a universal definition. However, the most widely
accepted definition of a false deadlock is “a deadlock
which does not exist when reported by an algorithm. ” We
present two examples that illustrate cases where false
deadlocks are detected due to external (or transitive)
probes and old probes.

1) A False Deadlock Due to External Probe: Consider
the case shown in Fig. 2(a). In this example, transactions
T, and T2 have locked data items X, (not shown in the
figure because no other transactions are waiting on them)
and X4, respectively, and T4 has locked data items X, and
X,. In addition, T, , T2, and T4 have requested items Xs,
X,, and X4, respectively. Although T, does not form a part
of the deadlock cycle, its probe (T, , T4) will be stored in
the probe-Q of T4 and T2. When the deadlock cycle is
detected by the probe initiated by T2, T4 is chosen as the
transaction to be aborted in order to resolve the deadlock.
Before it aborts, T4 sends a clean (victim, initiator) mes-
sage to the data manager for which it was waiting
(DM(X,) in this case). This message is transferred be-
tween the transactions within the deadlock cycle until it
reaches the initiator, T2, where it is discarded. The pur-
pose of the clean message is to allow transactions to re-
move probes that contain T4. The argument for allowing

Fig. 2. Example of a false deadlock. (a) Initial deadlock. (b) Resolution.
(c) False deadlock.

T2 to discard the clean message is that T2 should not have
any probe in its probe-Q containing the victim, T4, as its
initiator orjunior, because T2 is the highest priority trans-
action in the deadlock cycle. This argument, however, is
valid only when there are no transactions waiting transi-
tively on a deadlock cycle [such as T, waiting on the cycle
T2T4 in Fig. 2(a)]. As we can observe in this example,
T2’s probe-Q contains a probe (T,, T4). After the dead-
lock resolution, both T, and T2 acquire the locks to X, and
X2, respectively, and become active again as illustrated in
Fig. 2(b). Now assume T, requests a data item X, held by
T,. It waits for T, as shown in Fig. 2(c). According to the
algorithm (A.2.b of the original algorithm), T2 will trans-
mit a copy of the probe (T, , T4) to DM(X,), Upon receipt
of this probe, DM(X,) will declare a deadlock with T4 as
the victim. Therefore, we observe that not only is a dead-
lock detected which does not exist but, in this example,
the victim itself does not exist in the system!

The algorithm should be modified in the following way
in order to eliminate the false deadlock in the example.
Once the transaction is chosen to abort, it should initiate
a clean message which should not be discarded until it
returns to the transaction to be aborted. Each transaction
in the cycle, (initiator included) should use the informa-
tion contained in the message to clean its probe-Q.

2) False Deadlocks Due to Old Information: We now
consider an example that requires a significant change to
the original algorithm. Consider the example in Fig. 3(a).
A deadlock exists between T2 and T4. Transactions T,, T3,
and T5 wait transitively on T4. Assume T,‘s probe (T,,
Ts) has propagated to T2 and T4 and is stored in their re-
spective probe_Q’s. The cycle contains only two trans-
actions and is detected by T2’s probe. After the resolution,
T2’s probe-Q will be cleaned of any probe containing T4
as a consequence of the modification suggested in Section
III-B-l. However, T2’s probe Q contains the probe (T,,
T5). Fig. 3(b) shows the wait-for relationship after the
resolution. Note that Xs has been granted to T3 and X4 to
T2. Now, assume that T2 requests data item X5 held by T,
as shown in Fig. 3(c). Consequently, DM(X,) will de-
clare a deadlock because it will receive the probe (T, , T5)
stored in T2’s probe-Q. Obviously it is a false deadlock
and T5 will be aborted unnecessarily.

In general, each transaction waiting transitively on a
deadlock cycle can initiate a probe2 (like T, did in this

*Antagonistic conflict criteria has to be satisfied. However,
case it can be satisfied for all but one transaction 191.

in the

CHOUDHARY et 01.: ALGORITHM FOR DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 13

(a) (b) Cc)
Fig. 3. Another false deadlock example. (a) Initial deadlock. (b) After res-

olution. (c) False deadlock.

example) which can potentially declare a false deadlock.
We can think of two alternative solutions to this problem.
The first solution is to ignore this kind of false deadlock
under the assumption that it will rarely occur. The second
solution is to modify the algorithm in order to eliminate
it. If we choose to avoid this type of false deadlock, then
the probe-Q’s of all the transactions involved in a dead-
lock cycle should be cleansed of all the probes upon re-
ceipt of the clean message. Unfortunately, this cleansing
has the following side effect-some future deadlocks may
now remain undetected because of the removal of some
probes during the cleansing. To avoid this situation, all
of the transactions which were involved in the detected
deadlock cycle or were waiting for data items held by the
transactions involved in the deadlock cycle should re-
transmit and/or reinitiate the probes. This change will
generate a larger number of messages than the original
Sinha and Natarajan algorithm thus negating some of the
performance benefits claimed in [9].

C. The Necessity of Probe Retransmission and
Reinitiation

In this subsection we show why reinitiation and re-
transmission of probes by those transactions which were
earlier waiting transitively on a deadlock cycle, is re-
quired. Fig. 4 shows a situation similar to one shown in
Fig. 3. A deadlock cycle exists between transactions T3,
T4, and TX. Transactions T, and T5 wait transitively on the
deadlock cycle. Suppose T, initiated a probe (T,, T5)
which is stored in the probe-Q’s of T,, T4 and T2. After
the deadlock is detected at DM(X,) by the probe (T2, T4),
T4 is aborted as the deadlock victim. The modified reso-
lution step cleans the probe-Q’s of T3 and T2 of all the
probes including the probe (T,, T5). Fig. 4(b) shows the
situation after the deadlock is resolved. Now, if T3 starts
waiting for T,, a deadlock will be formed as shown in Fig.
4(c). Since T3’s probe-Q is empty and T3 is not the high-
est priority transaction, this deadlock will not be detected
unless either T=, retransmits its probe-Q or DM(X,) rein-
itiates a probe on behalf of T,.” Therefore, we observe
that after a deadlock resolution, retransmission and rein-
itiations of probes by those transactions which are waiting
transitively on the deadlock cycle is needed.

‘If T, was directly waiting on the deadlock cycle then reinitiation would
be necessary; in this example retransmission of probes by T5 is sufficient.

(a) (b) Cc)
Fig. 4. An example illustrating the necessity of reinitiating and retrans-

mitting probes. (a) Initial deadlock. (b) After resolution. (c) Undetected
deadlock.

D. Summary of Dejciencies
We have presented examples illustrating those cases

where either the Probe Algorithm [9] fails to detect dead-
locks, or detects false deadlock. Let us summarize the
reasons for such deficiencies in the algorithm. First, the
major cause for detecting false deadlock or failing to de-
tect some deadlocks is that the algorithm overlooks the
possibility that transactions may wait transitively on a
deadlock cycle. Second, the algorithm fails to include
those cases in which, after a transition releases locks, new
transactions which now acquire those locks may get in-
volved in a deadlock. This is because probes are either
not initiated or transmitted more than once. Third, there
are times when the algorithm detects false deadlocks be-
cause transactions and data managers save old probes in
probe-Q’s in order to reduce message overhead. This un-
fortunately introduces the possibility of retaining old
probes, which may later result in false deadlocks. All three
of these problems were illustrated by the examples in Sec-
tion III-B through Section 111-B-2. The next section con-
tains the statement of the modified priority based probe
algorithm in which these problems do not arise.

IV. MODIFIED PROBE ALGORITHM

In this section we present a modified probe algorithm
which incorporates all the modifications we have sug-
gested in the previous section. We keep the basic struc-
ture of the original algorithm presented by Sinha and Na-
tarajan [9] and incorporate the changes at the appropriate
places. The changes are highlighted using boldface text.
The algorithm makes no assumptions about the schedul-
ing policy of a data manager. When two or more trans-
actions simultaneously wait for a data item, the data man-
ager may assign the lock for that data item to any
transaction. In the case that the owner of a lock, holder
releases the lock and it is assigned to some other trans-
action, we shall refer to the second transaction as new
holder.

A. The Revised Basic Deadlock Detection Algorithm
The basic deadlock detection algorithm now has the fol-

lowing steps.
1) A data manager initiates, propagates, or reinitiates

a probe in the following situations.
a) When a data item is locked by a transaction, if a

lock request arrives from another transaction, and re-

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 1. JANUARY 1989

quester > holder, the data manager initiates a probe and
sends it to the holder.

b) When the current holder releases a data item, the
data manager schedules a “waiting lock request.” If there
are more lock requests still in the request-Q, then for each
lock request for which requester > new holder, the data
manager initiates a probe and sends it to the new holder.

When a data manager initiates a probe it sets

initiator : = requester;
junior : = holder;

c) When a transaction completes or aborts it re-
leases its locks. The data manager associated with each
released data item assigns the lock for the data item to
some transaction (heretofore referred to as new holder)
waiting for that data item (if one exists). Each data
manager then requests all remaining transactions
waiting on the new lock to transmit their complete
probe-Q’s to itself. (The identities of these transac-
tions is obtained from the data manager’s request Q.)
The data manager forwards each received probe&i-
tiutor, junior) to new holder the lock for which initiator
> new holder.

2) Each transaction maintains a queue, called a
probe-Q, where it stores all probes received by it. The
probe-Q of a transaction contains information about the
transactions which wait for it directly, or transitively.
Since a transaction follows 2PL, the information con-
tained in the probe-Q of a transaction remains valid until
it aborts or commits.

After a transaction enters the second phase of the
2PL, it does not discard the probe-Q. However, dur-
ing the second phase, any probe received is ignored.

Otherwise, a transaction sends a probe or a copy of its
probe-Q to the data manager, where it is waiting in the
following three cases.

a) When a transction T receives probe (initiator,
junior), it performs the following.

if (junior > T)
then junior : = T,
save the probe in the probe-Q;
if T is in wait state
then transmit a copy of the saved probe to the data

manager where it is waiting;

b) When a transaction issues a lock request to a data
manager and waits for the lock to be granted (i.e., it goes
from active to wait state), it transmits a copy of each probe
stored in its probe-Q to that data manager.

c) If a transaction is waiting and receives a re-
quest for its probe-Q from the data manager where it
is waiting, it sends a copy of its probe-Q to the data
manager. (This may occur as a consequence of part
A.1.c.)

3) When a data manager receives probe (initiator, jun-
ior) from one of its requesters, it performs the following.

if holder > initiator
then discard the probe

else if holder < initiator
then propagate the probe to the holder
else declare deadlock and initiate deadlock resolu-

tion;

When a deadlock is detected, the detecting data manager
has the identities of two members of the cycle, initiator
and junior, i.e., the highest and lowest priority transac-
tions, respectively. The junior is chosen as the deadlock
victim.

B. The Deadlock Resolution and Post Resolution
Computation

This consists of the following three steps.
1) To abort the victim, the data manager that detects

the deadlock sends an abort signal to the victim. The iden-
tity of the initiator is also sent along with the abort signal:
abort (victim, initiator). Since victim is aborted, it is nec-
essary to discard those probes (from the probe-Q of var-
ious transactions) that have victim as their junior or ini-
tiator. Hence, on receiving an abort-signal, the victim
does the following.

a) It initiates a message, clean (victim, initiator),
sends it to the data manager where it is waiting.

b) The victim enters abort phase only when its
clean message returns to itself. Once it enters the abort
phase, the victim releases all the locks it held, with-
draws its pending request, and aborts. During this
phase, it discards any probe or clean message that it
receives.

2) When a data manager receives clean (victim, initi-
ator) message, it does the following.

a) It propagates the clean message to its holder.
b) It reinitiates probes for each requester for

which requester > holder.
c) It requests each transaction in the request-Q to

retransmit its probe-Q. This corresponds to part c) of
A.l.

3) When a transaction T receives clean (junior, initi-
ator) message, it acts as follows.

purge every probe from its probe-Q;
if T is in wait state

then if T = junior
then enter the abort phase and release all

locks
else propagate the clean message to the data man-

ager where
T is waiting
else discard the clean message.

V. COMMENTS ON THE PERFORMANCE AND

CORRECTNESS OF THE ALGORITHM

The performance of the modified algorithm will be de-
graded compared to the original algorithm by Sinha and
Natarajan [9] because additional overhead is incurred in
order for the algorithm to work correctly. We briefly dis-
cuss the impact of the modifications on the message over-
head and the delay involved for detecting deadlocks.

I) Message Overhead: The message overhead is the

CHOUDHARY PI al.: ALGORITHM FOR DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 15

number of messages that must be sent in order to perform
deadlock detection. It is no longer true that if a deadlock
was detected and resolved and, if later another deadlock
forms involving all or a subset of the members of the first
cycle, it will be detected using fewer messages as claimed
in [9]. The reason is that after a deadlock is resolved, all
members of the cycle discard all the probes from their
probe_Q’s. Therefore, to detect the second deadlock in-
volving the same transactions or a subset of these trans-
actions, the number of messages are not reduced because
probes need to be retransmitted. In fact, the number of
messages to detect the second deadlock can be greater than
the number required to detect the first deadlock. Trans-
actions waiting transitively also have to send probes again,
even though they were not a part of the cycle earlier and
may not be a part of a cycle in the future.

2) Delay: The delay denotes the time required to de-
tect a deadlock once the deadlock is formed. This also
increases over that in the original algorithm because
probes need to be retransmitted. Since the probe initiated
on behalf of the highest priority transaction detects a
deadlock, the delay depends on when the highest priority
transaction enters the wait state. However, if the highest
priority transaction has to retransmit or reinitiate a probe,
the delay can be large even if the highest priority trans-
action entered the wait state much earlier than the other
members of the cycle. Fig. 4(c) is a good example of this
situation. For the second deadlock in Fig. 4(c) it does not
matter when T, entered the wait state. It has to retransmit
its probe because the earlier probe was cleaned by all the
transactions when the first deadlock was resolved.

In addition to the delay introduced due to reinitiation
and retransmission, another form of delay is incurred in
aborting a transaction. Part B 1 .a of the modified algo-
rithm suggests that a deadlock victim releases its re-
sources only after its clean message returns to itself.
Therefore, transactions waiting on resources held by the
victim can not acquire the resources even though the dead-
lock has been detected and resolved. This is not exactly
a delay for detecting a deadlock but a delay in the sub-
sequent processing by transactions. This delay will al-
ways be proportional to the deadlock cycle length.

We do not have a formal proof of correctness for the
modified probe algorithm. Lacking a formal proof, the
algorithm has been extensively tested through simulation.
In fact, we discovered the deficiencies of the Sinha and
Natarajan algorithm for exclusive locks while imple-
menting that algorithm in a distributed database simula-
tor. As we discovered the deficiencies described in Sec-
tion III, we modified the algorithm until it became the
algorithm found in Section IV. After this point in time,
the algorithm neither failed to discover a deadlock nor
detected a false deadlock. The algorithm has been tested
by simulation for a distributed database system on five
nodes each containing 1000 data items. The number of
users on the system ranged from 2 to 200. Each user re-
peatedly executed transactions until approximately 20 000
transactions were committed. Each transaction requested
on the average 16 exclusive locks. The number of users

on the system was used to control the frequency of dead-
lock occurrence. When the number of users was large
(-2OO), the probability that a transaction conflicts with
another transaction on one data item request was 0.3. In
this case, the probability of a transaction becoming part
of a deadlock cycle on a single data item request lock was
as high as 0.02. In these cases, the probability that a
transaction would become part of a deadlock during its
lifetime was approximately 0.3. These simulations pro-
duced many deadlock cycles with an average length of
ten. In addition many situations arose where transactions
waited on deadlock cycle transitively. In each of these
cases the modified algorithm performed correctly. The
reader is referred to [5] for further details on the simula-
tion study.

VI. CONCLUSIONS

In this paper we presented a modified probe algorithm
based on priorities to detect and resolve deadlocks in dis-
tributed database systems. We illustrated through various
examples how the algorithm presented by Sinha and Na-
tarajan [9] failed to work correctly in many situations. We
observed that the major cause for detecting false deadlock
or failing to detect some deadlocks is that the algorithm
overlooks the possibility of transactions waiting transi-
tively on a deadlock cycle. Also, the algorithm fails to
include those cases in which, after a transaction releases
locks, new transactions which now acquire those locks
may get involved in a deadlock. We also suggested mod-
ifications to the algorithm to eliminate the errors. Al-
though we have not formally proven that the modified al-
gorithm works in all possible cases, extensive simulation
evidence leads us to believe that it is correct.

We would like to point out that the modifications we
suggested for the basic algorithm are also required for the
extended algorithm proposed by Sinha and Natarajan to
detect deadlocks when shared and multiple lock requests
are allowed. Since the Sinha and Natarajan extended al-
gorithm includes the basic algorithm in its entirety, and
those extensions do not resolve the deficiencies, all the
modifications we suggested apply. A detailed discussion
can be found in [5].

Finally, we would like to point out that it is important
to implement and test a distributed algorithm in order to
gain a high degree of confidence in whether it performs
correctly if no formal proof of correctness is developed.
This was apparently not done for the original Sinha and
Natarajan algorithm.

APPENDIX
THE PRIORITY BASED PROBE ALGORITHM

The following is a description of the basic deadlock de-
tection algorithm reported by Sinha and Natarajan [9, pp.
69-701.

A. The Basic Deadlock Detection Algorithm
The basic deadlock detection algorithm has three steps.
1) A data manager initiates a probe in the following

two situations.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. I. JANUARY 1989

a) When a data item is locked by a transaction, if a
lock request arrives from another transaction, and re-
quester > holder, the data manager initiates a probe and
sends it to the holder.

b) When a holder releases the data item, the data
manager schedules a waiting lock request. If there are
more lock requests still in the request-Q, then for each
lock request for which requester > new holder, the data
manager initiates a probe and sends it to the new holder.

When a data manager initiates a probe it sets

initiator : = requester;
junior := holder;

2) Each transaction maintains a queue, called a
probe-Q, where it stores all the probes received by it. The
probe-Q of a transaction contains information about the
transactions which wait for it directly, or transitively.
Since a transaction follows 2PL, the information con-
tained in the probe-Q of a transaction remains valid until
the transaction aborts or commits.

After a transaction enters the second phase of the 2PL,
it can never get involved in a deadlock. Hence, when it
enters the second phase, it discards the probe-Q. During
the second phase, any probe received is ignored.

A transaction sends a probe to the data manager, where
it is waiting in the following two cases.

a) When a transaction T receives probe (initiator,
junior), it performs the following.

if (junior > T)
then junior : = T,
save the probe in the probe-Q;
if T is in wait state
then transmit a copy of the saved probe to the data

manager where it is waiting;

b) When a transaction issues a lock request to a data
manager and waits for the lock to be granted (i.e., it goes
from active to wait state), it transmits a copy of each probe
stored in its probe-Q to that data manager.

3) When a data manager receives probe (initiator, jun-
ior) from one of its requesters, it performs the following.

if holder > initiator
then discard the probe
else if holder < initiator

then propagate the probe to the holder
else declare deadlock and initiate deadlock resolu-

tion;

When a deadlock is detected, the detecting data manager
has the identities of the two members of the cycle, initi-
ator and junior, i.e., the highest and lowest priority trans-
actions, respectively. The junior is chosen as the dead-
lock victim.

B. The Deadlock Resolution and Post Resolution
Computation

This consists of the following three steps.
1) To abort the victim, the data manager that detects

the deadlock sends an abort signal to the victim. The iden-

tity of the initiator is also sent along with the abort signal:
abort (victim, initiator). Since victim is aborted, it is nec-
essary to discard those probes (from the probe-Q of var-
ious transactions) that have victim as their junior or ini-
tiator. Hence, on receiving an abort-signal, the victim
does the following.

a) It initiates a message, clean (victim, initiator),
sends it to the data manager where it is waiting, and enters
the abort phase. Since the initiator is the highest priority
transaction of the deadlock cycle, its probe-Q will never
contain any probe generated by the other members of the
cycle. Consequently, probe-Q’s of transactions, from in-
itiator to victim in the direction of the probe traversal,
will not contain a probe having victim as junior or initi-
ator. And hence, the clean message carries the identity of
the initiator beyond which it need not traverse.

b) In abort phase, the victim releases all the locks it
held, withdraws its pending request, and aborts. During
this phase, it discards any probe or clean message that it
receives.

2) When a data manager receives clean (victim, initi-
ator) message, it propagates the message to the holder of
its data.

3) When a transaction T receives clean (victim, initi-
ator) message, it acts as follows.

purge from the probe-Q every probe that has victim as
its junior or initiator of that probe;

if T is in wait state
then if T = initiator

then discard the clean message
else propagate the clean message to the data man-

ager where it is waiting
else discard the clean message;

A transaction discards the clean message in the follow-
ing two situations: 1) the transaction is in active state or,
2) the transaction is the same as the initiator of the clean
message received.

After “cleaning up” its probe-Q as described above,
each member transaction of the deadlock cycle retains the
remaining probes in its probe-Q. In the future, if the re-
maining members (or any subset of them) get involved in
a deadlock cycle, it will be detected with fewer number
of messages, since probes have already traversed some
edges of the cycle.

ACKNOWLEDGMENT

We would like to acknowledge M. Roesler for pointing
out an error in the algorithm in an earlier version of this
paper.

REFERENCES

[I] P. Bernstein and N. Goodman, “Concurrency control in distributed
database systems,” ACM Compur. Surveys, vol. 13, no. 2, pp. 185
221, June 1981.

[2] -, “A sophisticates’s introduction to distributed database concur-
rency control,” in Proc. 8th Int. Conf. Very Large Data Bases, Sept.
1982.

[3] K. M. Chandy and J. Misra, “A distributed algorithm for detecting
resource deadlocks in distributed systems,” in Proc. ACM SIGACT-

CHOUDHARY of al.: ALGORITHM FOR DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 17

141

[51

161

I71

WI

191

SIGOPS Svmp. Principles of Distributed Computing. Ottawa, Ont.,
Canada, Aig: 1982.
K. M. Chandv. J. Misra, and L. M. Haas, “Distributed deadlock de-
tection,” ACM Trans. Comput. Syst., vol. 1. pp. 144-156. May 1983.
A. N. Choudhary. “Two distributed deadlock detection algorithms and
their performance, ” Master’s thesis, Dep. ECE, Univ. Massachusetts.
Amherst. Feb. 1986.
K. P. Eswaran. J. N. Gray, R. A. Lorie. and 1. L. Traiger. “The
notion of consistency and predicate locks in a database system,” Com-
mun. ACM, vol. 19, pp. 624-633. Nov. 1976.
V. Gligor and S. H. Shattuck, “On deadlock detection in distributed
systems, ” IEEE Truns. So&vat-e Eng.. vol. SE-6, no. 5, Sept. 1980.
R. Obermarck. “Distributed deadlock detection algorithm,” ACM
Trans. Database SW., vol. 7, pp. 187-208. June 1982.
M. K. Sinha and N. Natarajan. *‘A priority based distributed deadlock
detectIon algorithm,” IEEE Trans. Software Eng.. vol. SE-11. no. 1.
pp. 67-80, Jan. 1985.

Alok N. Choudhary (S’88) received the B.E.
(Hans.) degree in electrical engineering from Birla
Insiitute of Technology and Science, Pilani, In-
dia, in 1982. He worked as a Systems Analyst and
Designer from 1982 to 1984. He received the M.S.
degree in electrical and computer engineering from
the University of Massachusetts. Amherst. in
1986.

He is currently with the Coordinated Science
Laboratory. University of Illinois. Urbana-Cham-
paign, where he is working toward the Ph.D. de-

gree. He was a Visiting Scientist at IBM. T. J. Watson Research Center.
Yorktown Heights, NY. during the summers of 1987 and 1988. His re-
search interests include computer architecture. parallel processing, parallel
architectures for integrated vision systems. high speed transaction proces\-
ing. and distributed computing.

Mr. Choudhary is a student member of the Association for Computing
Machinery.

Walter H. Kohler (S’66-M’73-SM‘86) received
the B.S.E.. M.S.. M.A., and Ph.D. degrees in
electrical engineering from Princeton University.
Princeton, NJ.

From 1968 to 1969 he was a member of the
Technical Staff of Bell Telephone Laboratories,
Holmdel. NJ. Since 1972 he has been with the
Department of Electrical and Computer Engineer-
ing, University of Massachusetts. Amherst. He
has also been a consultant to research and devel-
opment groups within the Digital Equipment Cor-

poration since 1979. His research interests include the design, measure-
ment, and modeling of distributed computer systems.

Dr. Kohler is a member of the IEEE Computer Society and the Asso-
ciation for Computing Machinery.

John A. Stankovic (S’77-M’79-SM’86) re-
ceived the B.S. degree in electrical engineering
and the M.S. and Ph.D. degrees in computer sci-
ence from Brown University, Providence, RI. in
1970, 1976, and 1979, respectively.

He is currently an Associate Professor in the
Department of Computer and Information Sci-
ence, University of Massachusetts at Amherst. His
current research interests include investigating
various approaches to distributed scheduling on
general-purpose but highly integrated distributed

systems, developing means for controlling and scheduling tasks on distrib-
uted hard real-time systems, and developing database partitioning proto-
cols.

Prof. Stankovic received an Outstanding Scholar Award from the School
of Engineering, University of Massachusetts. He has recently published a
tutorial text entitled Reliable Distributed System Softwwre (IEEE Computer
Society), and was the General Chairman for the 1986 Real-Time Systems
Symposium.

Don Towsley (M’78) received the B.A. degree in
physics and the Ph.D. degree in computer sci-
ences from the University of Texas at Austin in
1971 and 1975, respectively.

From 1976 to 1985 he was a member of the
faculty of the Department of Electrical and Com-
puter Engineering at the University of Massachu-
setts, Amherst, where he achieved the rank of As-
sociate Professor. He is currently an Associate
Professor of Computer and Information Science at
the University of Massachusetts. During 1982-

1983, he was a Visiting Scientist at the IBM Thomas J. Watson Research
Center, Yorktown Heights. NY. His research interests are in computer net-
works, distributed computer systems. and performance evaluation.

Dr. Towsley is currently an Associate Editor of Networks and IEEE
TRANSACTIONS ON COMMUNICATIONS. He is also a member of the Associa-
tion for Computing Machinery and the Operations Research Society of
America.

