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Abstract 

For many real-time applications (e.g. Command, 
Control, and Communications), parallel computers of- 
fer a natural computing platform. However, very lit- 
tle attention has been paid to the specification require- 
ments of real-time systems implemented on parallel ma- 
chines. Towards this end, we propose a specijlcation 
language PRETSEL (Parallel REal-Time SpEcification 
Language). The PRETSEL specification language is 
based on a traditional two-level view of parallel comput- 
ing whereby a parallel computation is viewed as a col- 
lection of interacting (data) parallel algorithms. This 
view is naturally reflected in PRETSEL syntax where 
at the lower level various constructs are provided for 
the specification of a data-parallel real-time algorithm 
(data-parallelism). At the upper level another set of 

constructs is provided to combine such tasks in a variety 
of way (task-parallelism). Furthermore, the PRETSEL 
language allows for the specification of performance re- 
quirements. PRETSEL is currently being evaluated for 
real-time avionics applicaitons. In this paper we de- 
scribe the sysntax and operational semantics of PRET- 
SEL and establish results relating the functional and the 
temporal behaviors. 

1 Introduction 

Real-time systems rnust respond to external 
events/inputs and exert stimulus on their environment 
in form of actuator control, displays, and data/control 
interaction with other subsystems. Some of the com- 
mon tasks in various Air force and Navy systems (e.g., 
EZC, AWACS, Joint STARS) require processing large 
number of targets and manipulating extremely large 
data sets. Future requirements are likely to increase 
the processing demands due to more sensors and more 
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information, thus suggesting the use of parallel comput- 
ers to implement real-time systems. However, the lack 
of software support both in the design as well as in the 
implementation phases has resulted in a slower accep- 
tance of parallel computing than originally expected. 

We believe that complex software systems and espe- 
cially real-time systems can be made truly robust and 
reliable if powerful specification and analysis techniques 
are made available to software developers and maintain- 
ers. In recent years there has been a significant progress 
in the development of formal models for real-time com- 
puting. These include timed automata [l], Timed Petri 
Nets [4], Timed CSP [5], Z and RTL [6], Timed Process 
Algebra [2, 81, ACSR [12], Timed CCS [15], Temporal 
Logic [9, lo]. The model we are proposing here differs 
from these in the following respects. 1) There are no in- 
stantaneous actions in our model-all actions consume 
time. 2) The semantics of parallel operator is must 
synchronize when complementary actions are involved 
as opposed to may synchronize of CCS-like languages. 
Furthermore, this seems to obviate the need for restric- 
tion operator in our language. 3) The timing operators 
are of more general nature assigning a range of time 
values to actions instead of an exact duration. This 
makes our model more close to reality since, for exam- 
ple, in practice execution time of actions depends on 
various factor and will vary. Hence assigning a range 
of values or a bound to an action is more meaningful 
than stipulating it to be an exact value. 4) The choice 
operator in language is biased. It favors the component 
which may finish earlier. This allows us to define, for 
example, multiple versions of the same task for, say, 
different mappings or machines, etc. 5) Our language 
provides an abstraction operator to abstract system de- 
pendent features. This appears useful in defining per- 

formance polymorphism in the sense of [ll]. 6) Finally, 
and most importantly, the existing models do not ad- 
equately address the specification requirements for re- 
alistic real-time system software on parallel computers. 
Our language provides the traditional constructs to de- 
fine a data-parallel algorithm. It should be emphasized 

525 
1060-3425/96 $5.00 0 1996 IEEE 

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29) 
1060-3425/96 $10.00 © 1996 IEEE 



Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996 

that parallel computing adds complexities to a real-time 
system which are normally absent in uniprocessor sys- 
tems. In real-time systems, performance correctness 
(i.e., meeting deadlines etc.) is as important as func- 
tional correctness. However, performance of a parallel 
algorithm on a parallel computer, depends on a num- 
ber of architectural and algorithmic properties, such 
as number of processors, communication, scalability of 
algorithms, overhead of scheduling parallelism and syn- 
chronization. These factors do not arise in sequential 
processes, but must be taken into consideration by any 
specification model for parallel real-time systems. The 
model must also provide features to recognize changes 
in the environment (such as change in input data rate) 
and thereby respond by reallocating resources to meet 
the timing requirements. The necessity of specifying 
some of the parameters described above is illustrated 
by the following examples. 

fiable and verifiable by a specification model. 
The above examples illustrate why the the specifica- 

tion must model the performance (of the algorithm) as 
a function of the system characteristics. In addition, 
the communication requirements in parallel algorithms 
are far more complex than sequential or real-time sys- 
tems. In particular, a number of communication prim- 
itives must be provided by the system and included in 
the specification. The same holds for synchronization 
mechanisms. 

Typically the speedup per processor of a parallel al- 
gorithm, also called the efficiency, decreases with in- 
creasing number of processors (due to more communi- 
cation) and also depends on the input characteristics. 
These scalability parameters must be included in the 
program specification. Different parallel algorithms for 
the same computation can have different efficiency func- 
tions. For example, we may have two algorithms for 
sorting-one which works well for large number of pro- 
cessors and the other that is tailored for coarse grained 
pa.rallelism. As the scalability parameters vary, the spe- 
cific of algorithm to use to meet the performance re- 
quirements may change. Thus, there is a need for pro- 
vision of multiple versions/algorithms to carry out a 
given computation and a specification model must cap- 
ture the scenario described above by specifying these 
multiple versions and the precise metrics used for se- 
lecting each version. Depending on the state of the sys- 
tem and the performance requirement the appropriate 
algorithm is selected. 

In this paper we propose a formal specification lan- 
guage called PRETSEL-Parallel REal Time SpEcifi- 
cation Language- for real-time systems implemented 
on parallel machines. The computation model of 
PRETSEL is based on the view that A parallel real- 
t ime computation is, in general, a collection of interact- 
ing processes, each of which can be a parallel algorithm. 
At this stage in our research, we consider the case where 
each process is a data parallel algorithm. Modell ing 
parallel computations in this manner naturally leads to 
a two-level specification model. At level 2 we provide 
constructs for specifying data parallel algorithms, and 
at level 1 we provide constructs to combine such tasks 
in a variety of ways. Thus, for example parallelism oc- 
curs at two levels - within a task (data parallelism) and 
among tasks (functional or task parallelism). A level 2 
process consists of three activity phases: (1) input and 
distribution of data, including a external synchroniza- 
tion step, (2) compute-communicate cycles, and (3) 
output of data and external synchronization. The dis- 
tribution of data across the processors, and the time 
taken by the algorithm is a function of the number of 
processors and the size of the data. These (number 
of processors and data size) factors themselves can be 
specified as part of the algorithm. It is noted that the 
compute-communicate cycle is a synchronous activity. 

As another example, consider the continuous pro- 
cessing of data arriving at real-time rates (this could be 
considered as a periodic task, since the same computa- 
tions must be performed for different data sets). A sen- 
sor task collects data at some rate and sends it to a task 
that processes the data. For example images received 
and sent to an image processing algorithm. When there 
is a bursty I/O, i.e., data arrives at a more rapid rate, 
the amount of data to be processed may change dras- 
tically and thus the parallel algorithm may no longer 
meet its time deadlines. The system must detect this 
change and a remapping process must be invoked to de- 
termine a parallel algorithm and additional processors 
that. have to be used to meet the deadline. The over- 
head of this process must also be taken into account. 
This entire process of resource allocation must be speci- 

The rest of this paper is organized as follows. The 
next section introduces the syntax of PRETSEL. This 
is followed by semantics of PRETSEL in Section 3. We 
finally conclude in Section 4. 

2 Syntax of PRETSEL 

The PRETSEL specification language is based on 
the computation model described in the previous sec- 
tion. Thus PRETSEL syntax is divided into level 1 
syntax and level 2 syntax. The latter provides various 
constructs to describe a data-parallel algorithm whereas 
the former contains operator to combine such tasks in 
a variety of ways. A PRETSEL specification therefore 
consists of a level 1 process which is a combination of 
level 2 tasks. 

It is worthwhile to point out that one of the design 
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goals of PRETSEL has been that it be usable by even 
a non-expert. To this end, PRETSEL provides familiar 
programming language like constructs to define a data- 
parallel at level 2. Furthermore, at the present stage 
of design, PRETSEL does not support recursion as it 
makes it hard to obtain reasonable time bounds. 

To define PRETSEL, we stipulate a set of action 
symbols Act.Our time domain 7 is the set of natural 
numbers plus infinity, that is, 7 = N U {co}. Since 
all our actions consume time, it would be convenient to 
think of an action as a tuple ((label), (time-spec)) where 
the first component denotes the name of the action and 
the second component describes its timing specification 
(described below). Furthermore, we assume two map- 
pings X : Act -+ String and 6 : Act + I to extract 
the name and the timing constraint of an action. For 
example, if an action a = (a,&) then x(a) = a and 
6(a) = t. w e a so 1 assume that Act is partitioned into 
Act, for pure computation actions, Acta for internal 
(i.e. level 2) communication actions, Act, for external 
communication actions, and Act, for special actions. 
We also assume that Acti and Act, can be partitioned 
into two equinumerous sets with a complementation bi- 
jection, denoted Y, between them satisfying tk = a. Note 
that a and 6 must have the same timing constraint. The 
set of PRETSEL level 1 processes Proc is given by the 
grammar in Figure 1 where min-time and mux-time 
range over the time domain 7. The syntax of Level 2 
tasks is shown in Figure 2.. 

at duration interval, between tl and t2, for the com- 
putation. Note that we can define exact timing using 
the duration operator as in A[t, t]. This specifies that 
the computation time be exactly t. A process may op- 
tionally be explicitly t imed using the timing constraint 
operators as in Rt : P. This expression is only mean- 
ingful if P is time correct (this will become clear when 
we present the temporal rules in the next section). The 
periodic operator Il can be used to define a periodic 
process at level 1. For example, lIiP is a process that 
does P every t time units. 

We let P, T, and t, possibly subscripted, range over 
the process expressions at level 1, task expressions at 
level 2, and time domain, respectively. The informal 
meaning of various operators at level 1 is as follows. 
The parallel composition PI 11 P2 denotes a process 
where two components PI and Pz proceed in time in- 
dependently of each other except for synchronizations. 
Only the external communication actions may partici- 
pate in these synchronizations. The sequential compo- 
sition PI 3 P2 denotes a process where the initiation 
of the second component Pz takes place only after the 
successful termination of the first component PI. The 
choice operator + in the expression PI + P2 allows the 
computation to proceed according to either PI or Pz, 
however if PI can finish before P2 then PI is selected 
and vice versa. In this way the choice operator allows 
us to specify different versions of an algorithm to per- 
form the same computation, such that the algorithm 
that meets the deadlines ,will be selected. 

Currently, we have three types of timing constraints 
(or specifications): (1) cli min-time, (2) Q  mux-time, 
and (3) A [tl , tz]. The first one specifies the minimum 
time, i.e., lower bound requirement, for the computa- 
tion. The second specifies the maximum time, i.e., up- 
per bound, for the computation. The third specifies 

Now consider the level 2 syntax which specifies the 
data parallel algorithms. At this level a task may be ab- 
stracted (or parameterized) by the system specification. 
This will allow, for example, scalability parameters to 
be captured by the model. The system specification can 
include system specific information such as the architec- 
ture characteristics (number, type and speed of proces- 
sors), input characteristics (size and type of data), the 
mapping function to illustrate how data is distributed 
across the processors, and the execution time charac- 
teristics which can be the execution time as a function 
of the scalability parameters. At level 2 our basic unit 
of computation is an action. Actions may be combined 
in several ways to form a composite action or a task. To 
model real-time behavior a timing constraint is associ- 
ated with each action. For example (add, Q2) describes 
a basic action that takes a maximum of two units of 
t ime to complete. As mentioned above, basic actions 
can be categorized as pure computations, pure internal 
communication (communication within the algorithm), 
external communication (for synchronization) and, in 
addition, some special actions such as termination and 
7- action. The first three form the three phases of data 
parallel algorithms defined by our model of computa- 
tion. The computations can be arithmetic operations. 
The internal communications would include commu- 
nication primitives such as the send-receive primitive, 
barrier synchronization, broadcast, etc. The external 
communications would include communication needed 
with other tasks to exchange data, for I/O activities, 
and pure synchronization with other tasks. The ba- 
sic actions can be combined in parallel using the syn- 
chronous parallel operator & or in sequence using the ; 
operator. The if operator allows a deterministic choice 
to be made based on the boolean expression. The while 
operator allows iterative computations. The time taken 
by a while operator is derived from the length of the it- 
erations. The within operator defines a temporal scope 
which is meaningful if its body is time correct. The ev- 
ery operator is used to define a periodic task at level 2. 
These operators have been adopted from [13]. Similar 
time scoping constructs and actions that consume time 
have been used in [7]. It should be noted that the oper- 
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(process) ::= (task) 
( (process) 11 (process) 
( (process) + (process) 
1 (process} =S (process) 
1 (time-spec) : (process) 
1 IPm-pr) (process) 

(time-spec) :I= fl max-time 
1 @  m&-time 
1 A [ min-time , max-time 

Figure 1: Level 1 Syntax 

at,or & is similar to the binary case of forall of [3]. Since 
such foralls are so pervasive in parallel programming 
that we define the following derived operator: 

n 

where n is intended to range over the number of pro- 
cessors. 

3 Semantics of PRETSEL 

The above discussion provided an informal view of 
the semantics of PRETSEL, and we now discuss the 
operational semantic rules for PRETSEL. The opera- 
tional meaning of PRETSEL operators may depend on 
temporal correctness of processes and tasks. To capture 
temporal correctness we define a set of temporal rules. 
For sake of brevity and simplicity, we shall restrict our- 
selves only to R constraints here. Figure 3 and Figure 4 
give the temporal rules for level 1 and level 2, respec- 
tively. Both the operational rules and the temporal 
rules are presented in a natural deduction style. These 
rules are to be read as follows: if the transition(s) above 
the line can be inferred, then we can infer the transi- 
tion below the line. A special case is when there is 
nothing above the line. In this case, the transition be- 
low the line can be inferred unconditionally. Such rules 
are also called axioms. 

The temporal rules define a relation between the pro- 
cesses and time domain, that is, :c Proc x 1. The 

temporal semantics are then defined by the least such 
relation. Just as typing rules in a typed language assign 
meaningful types to objects in the language, the tem- 
poral rules may be thought of assigning temporal in- 
formation to expressions. In the case where we restrict 
ourselves to Q, this semantics associates the maximum 
execution time to each process expression. In addition, 
these rules also provide the temporal meaning to the 
various operators as follows. According to rule (l), a 
parallel composite of two processes PI I( P2 completes 
when both its components have completed and hence 
the time taken is the maximum of the time taken by 
either component. Rule (2) says that the choice com- 
posite of two processes PI + P2 finishes as soon as 
one of them is done. Rule (3) says that for sequential 
composition Pi=+Pz the maximum time requirement to 
complete is the sum of the times required by its com- 
ponents. According to rule (4), a process may be con- 
strained by a time operator only if the corresponding 
value is time compatible with the execution time of the 
component process. Rule (5) says that the execution 
of a periodic task may not be bounded and that the 
period must be compatible with the execution time re- 
quirement of the body process. Rule (6) is an axiom. 
Rule (7) is analogous to rule (3) for processes. Rule (8) 
captures the synchronous nature of the components of 
& operator. Thus, it requires that both Tl and T2 in 
Tl & Tz have the same timing behavior. Rule (9) says 
that the time to complete an if operation is the maxi- 
mum of the time taken to complete the consequent and 
the alternative. Since we cannot a priori determine the 
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(tusk) ::= (basic-task) / [(sys-specs)](busic&sk) 

(sys-specs) ::= (sys-spec), 

(sys-spec) ::= num-proc 1 

(basic-task) ::= (action) 

(sys-specs) 

input-spec 1 exec-time-spec 1 map-spec 1 arch-spec 

1 (basic-tusk) & (basic-task) 
I (basic-tusk) ; (basic-tusk) 
) if (bool-ezpr)(busic-tusk)(busic-task) 

while (booLexpr)(busic-tusk) 
every (time-expr)(busic-tusk) 
within (time-expr)(busic-tusk) 

Figure 2: Level 2 Syntax 

number of iterations, according to rule (10) the max- 
imum time taken by a while construct is bounded by 
co. Rule (11) is analogous to rule (5) for processes. 
Rule (12) says that the temporal scope of a task must 
be compatible with the timing requirement of its body. 
Rule (13) requires a bit explanation. We assume the ex- 
istence of a value space I/al,,, for all the system related 
parameters. In practice this space would be finite and 
could be maintained as a, lookup table. The rule says 
that the timing requirement of a parameterized task is 
nothing but the timing requirements inferred after sub- 
stituting values for each of the system parameters in the 
task abstraction. Thus, an abstracted task represents 
a collection of timing requirements. This allows multi- 
ple versions of an algorithm to be defined each having a 
possibly different performance characteristics. This has 
been termed performance polymorphism in [ll]. As an 
example, consider a simple task consisting of just one 
action T = add, This action may take different time 
to execute depending on the underlying architecture. 
To capture this variation, we may abstract away this 
information and define T’ = [arch-spec]T. The task 
T’ may now be instantiated with different architecture 
specifications that will in turn set the execution time of 
the add operation as given by the mapping S. 

The aforementioned temporal rules can be used to 
either verify or infer useful temporal information. As a 

small example, consider a simple process that does the 
add operation and then sends a signal. Thus P = add ; 
send. Let us further suppose that on a given machine 
we know how long the add operation is going to take, 
say, 6(add) = 2 but we do not know how long the send 
operation takes. Furthermore let us suppose that we 
want P to finish in 10 time units, that is, 010 : P is 
what we want. Using rules(4), (6), and (7) it is easily 
deduced that the send operation must be completed 
within 8 units of time. This is depicted in the deduction 
tree below: 

rule 6 ~ send : x 

The desired deduction follows in trying to build 
(backwards) a proof-tree of the goal (RlO : add ; send) : 
10. From the application of rule 4, it can be deduced 
that the desired goal is provable if we can establish that 
(add ; send) : y and y < 10 for some y. From rule 7, 
it can be deduced that this y must be 2 + x, where x 
is the unknown timing requirement for the send oper- 
ation. From the constraint y < 10, it is immediately 
deduced that z 5 8. This kind of information can be 
statically deduced and can be used at compile time for 
scheduling etc. 
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PI :t1 Pz : t2 
P1llP2 : max(tl,tz) 

PI :t1 P2 : t2 
Pl-+Pz : min(tl, t2) 

PI : tl P2 : t2 
Pl=sP2 : (t1 + t2) 

P:t t <_t’ 
(nt’ : P) : t’ 

P :t tit’ 
IF’P : 03 

(1) 

(2) 

(3) 

(4) 

(5) 

Figure 3: Level 1 Temporal Rules 

Tl : t Tz : t 
Tl & T2 : t 

TI : tl T2 : tz b : t3 
if 6 Tl T2 : muz(tl + t3, t2 + t3) 

T:t b : tl 
while b T : CO 

T : tl t1 It 
every t T : 0;) (11) 

T :< tl t1 Lf 
within t T : t 

T[V’IZj : t 
[Z-jT : t where v” E Vul,,, 

Figure 4: Level 2 Temporal Rules 
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Next we turn our attention to operational rules. The 
operational rules for level 1 and level 2 are contained 
in Figure 5 and Figure 6, respectively. The operational 
rules are transition based. In giving these rules, we 
let a range over Act, i raage over Acti, and e range 
over Act,. Also, the specia.1 action done is only present 
in the semantic domain, that is, it cannot be used to 
construct process expressions. It is used to flag the ter- 
mination of a process activity. The operational rules 
define a relation -C_ Proc x Act x Proc. The oper- 
ational semantics are then defined by the least such 
relation. The notation P -% P’ means that the pro- 
cess P behaves like process P’ after doing action a and 
in doing so, it consumes (i(u) time. Thus operational 
rules allow us to record wh.at actions a process can per- 
form and how much time it takes. It should be noted 
that since we are not separating time from action, we 
do not need to define two separate transition relations 
as has been done in 1151; rather our approach is similar 
to that of [12] though differs from it in that the timing 
requirements of an action are explicit instead of being 
implicit. 

The operational rules give meaning to the various 
operators as follows. Accclrding to rules (14) and (15), 
a sequential composition PI =S P2 can only engage in 
the actions of PI as long as: it is not finished. It can only 
start to engage in actions of P2 after PJ, has terminated. 
Rules (16) and (17) define the meaning of the choice op- 
erator. Thus in PI + P2 .if PI can finish first then ac- 
cording to rule (16) P i will get selected. If, however, P2 
can beat PI then rule (17) applies and P2 gets selected. 
In case both have exactly the same requirements, the 
choice becomes nondeterministic. Rules (18)-(20) as- 
sign meaning to the parallel operator ]I. According to 
rule (18), if in the composite PI I( P2, the process PI is 
ready to engage in an action and P2 is not ready to en- 
gage in the complementary action, then the only action 
possible for the composite is that of PI. Similarly, ac- 
cording to rule (19), if P2 is ready to engage in an action 
and PI is not ready to engage in the complementary ac- 
tion, then the only action possible for the composite is 
that of P2, However, if PI and P2 are ready to engage in 
complementary actions, they must synchronize. This is 
the essence of rule (20) and this is what we call the must 
synchronize semantics of ]I which differs from what may 
be called the may synchronize semantics of CCS [14]. 
Because of this, CCS provides another operator called 
restriction to force synchronization. Our choice of must 
semantics then obviates the need for a restriction-like 
operator-at least for synchronization purposes. 

We should point out th,at PRETSEL in fact provides 
a variety of communication primitives each with its own 
set of rules. Thus, for example, for non-blocking send 
and complementary recv the following rule would be 

applicable: 

send(v) 
PI - Pi p2 

=eyx) p, 
2 

4 II p2 Lp: II m /4 
It should also be noted that in PRETSEL there is not 

just one 7 action, in fact there are a family of them- 
one for each possible time constraint. These r-actions 
capture the time required to perform the communica- 
tion. 

Next consider rule (21). According to it, a tempo- 
rally constrained process is capable of doing the same 
action as its component process as long as it is con- 
strained meaningfully. Furthermore, in this case the 
temporal constraint of the resulting process is reduced 
by the execution time of the action involved. Rule (22) 
is similar, that is, a periodic process does the actions of 
its body process as long as the period is meaningful and 
it repeats forever. Rule (23) is an action axiom. Ac- 
cording to it the computation terminates once the only 
action has occured. Rule (24) says that the operator 
& is a synchronous parallel combinator and thus both 
components must be willing to engage in the same ac- 
tion (which need not be a communication). Rules (25) 
and (26) are similar to rules (14) and (15). The describe 
the meaning of sequential composition at the task level. 
Rule (27) is similar to rule (22) at the process level. 
Rules (28)-(31) g ive the familiar operational meaning 
to the Zf and the while operator. Rule (32) is similar 
to rule (21) at the process level. Rule (33) is similar to 
the usual operational semantics of value-passing. Al- 
though, unlike value-passing, the value space Vu&,, of 
system dependent parameters will normally be finite in 
practice. 

In the above we described temporal rules to capture 
the timing requirements of a given process or a task 
and we also gave a transition relation that describes 
how a process executes and how much time it takes 
in its execution. The following proposition relates the 
temporal rules to the transition rules. 

Proposition 1 Let P be a process and let P : t. If 
p%p,% a + S -% done then Cyzl s(ui) 5 t. 

Also our transition relation combines both the ‘func- 
tional’ behavior and the ‘temporal’ behavior. For non- 
real-time applications one may just be interested in only 
the functional behavior. It is clear that there are ex- 
tra overheads involved in the combined behavior as one 
must ascertain, for examples, that the processes are 
time correct. So, the question is whether we can ‘turn- 
off’ the temporal behavior and use the operational rules 
for just the functional behavior without the overhead. 
It turns out that the answer to this question is affirma- 
tive and is summed up in the proposition below. The 
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PI A Pi 
PI * Pz A Pi * P2 (14) 

PI A done 
PI + P2 5 P2 (15) 

PI : t1 P2 : t2 PI APi (t1 I t2) 

PI + P4+Pl (16) 

PI : t1 P2 : t2 P@+Pi (tz 5 t1) 

PI + P2-5+Pi (17) 

PI -L Pi P2& 

9 II p2 Api II p2 
(18) 

9 ++ P2 -L Pz’ 

9 II p2-59 11 p; 
(19) 

Pg+P{ P2 5 Pi 

4 II p2 1, Pf II pi 
(20) 

PAP’ P:i! t < t’ 
Rt’ : P-L R(t’ - 6(e)) : P’ (21) 

PAP’ P:t t 5 t’ 
IIf’P 2 P’ j IIl’P (22) 

Figure 5: Level 1 Functional Rules 
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a 4 done 

TI &done 
TI ;T2-%T2 

TAT’ T:t t 5 t’ 
every t’ T 5 T’ ; every t’ T’ 

b E false 
while b T -nil 

b z true T&T’ 
while b TAT’ ; while b T 

b E true TI AT,’ 
if bT1 T2AT{ 

b E false T2 AT; 
if bT1 TzAT{ 

TAT’ T:t t <t’ 
within t’ T 5 within (t’ - 6(a)) T’ 

T[v’lZJ s, T’ 
[zlT-%T’ 

where GE Val,,, 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

Figure 6: Level 2 Functional Rules 

answer relies on an erasure mapping that erases all the 
timing information and what we are left with is only 
the functional part. Details of this erasure mapping 
8 will be presented elsewhere. Just to give an idea of 
E, we fist define a erasure on actions that strips off the 
timing information. This is then extended to terms and 
the rules. 

Proposition 2 Let P be a process and E be the erasure 
mapping described above. If P terminates so does 8(P). 

It is worth noting that the converse of the above 
statement may not hold in general. This is because, 
in the presence of time, t,he operator + behaves ‘more 
deterministically’ than in the absence of it. 

4 Conclusion and Future Work 

This paper discussed the problem of formal specifi- 
cation of real-time systems implemented on a parallel 
machine. Towards this end we proposed the PRET- 
SEL specification language which allows specification 
of functional, timing, and performance requirements. 
PRETSEL takes a two level approach and explicitly 
addresses parallelism issues at a higher and more re- 
alistic level, and reflects the computation model used 
commonly in the parallel processing community. We 
described the syntax and formal semantics of PRET- 
SEL. In defining the formal semantics, two classes of 
rules were given for expressions at each level. These 
were classified as temporal rules and operational rules. 
Temporal rules assign temporal attribute to expressions 
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much the same as the typing rules of a typed language 
assigns types to programs. Furthermore, just as (most) 
typing is a static property, so is the temporal attribute 
in our case. Also, just as type information can be 
utilized in a useful way during compilation, we illus- 
trated by means of a simple example that the tempo- 
ral attributes given by temporal rules can be used for 
scheduling, etc. The operational rules capture the ‘ex- 
ecution’ of processes. Our operational rules combine 
both the functional behavior and the temporal behavior 
into one relation. We also establish that the temporal 
attribute assigned by temporal rules is consistent with 
the temporal behavior of the process involved. This was 
summarized in proposition 1. We also showed that pure 
functional behavior, without the overhead of temporal 
constraint checking, can be obtained from our opera- 
tional rules and that the resulting functional behavior 
would be correct in the sense that if the timed process 
terminates than so does its purely functional counter- 
part. This was contained in proposition 2. 

Our current work is towards evaluating the expres- 
sivity and naturalness of PRETSEL. Towards this end, 
we are using PRETSEL for specifying large real-life sys- 
tems [16]. This exercise may force us to modify/extend 
PRETSEL. One possible extension of PRETSEL would 
be to include exception handling. There has already 
been significant work done in this direction by other re- 
searchers in this area-most notably the one reported 
in [12]-and we hope to capitalize on it. Another direc- 
tion that we would like to pursue is the design and de- 
velopment of a (semi) automated verification/synthesis 
tool based on PRETSEL. 
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