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Abstract

Built upon new data organization and access character-
istics, MEMS-based storage devices have come under con-
sideration as an alternative to disks for large data-intensive
applications. While not already in commercial production,
MEMS-based storage devices have outperformed disks in
device-level simulations. Processor-embedded distributed
disks improved performance of workloads by offloading
application-level processing to the storage. To exploit the
potential benefits offered by these emerging storage tech-
nologies and offloading models, we propose a processor-
embedded distributed MEMS-based storage architecture.
Using validated MEMS device models, we evaluate the pro-
posed architecture with representative database and data
mining workloads. Our results show that MEMS-based
storage improves the overall performance of these work-
loads over disk-based systems. Furthermore, MEMS-based
storage devices transformed the characteristics of several
workloads, indicating a shift of performance bottleneck
from I/O to the interconnect or processing power of the stor-
age system, which can impact the design points for future
storage architectures.

1 Introduction

For data-intensive applications, large disk arrays have
traditionally been employed to provide the required band-
width and reliability via their high level of parallelism.
To further improve the performance of storage systems,
network-attached storage (NAS) [18] and intelligent disk
(IDISK) architectures [13] were proposed to embed user-
level processing directly in the storage device. Recently,
micro-electromechanical systems (MEMS), a chip-level
technology, have come under consideration as an alterna-
tive to disks for mass data storage. The performance gap

between processor and disk storage has grown to six orders
of magnitude due to rapid advancement in processor tech-
nology and VLSI fabrication, and is continuing to widen by
about 50% per year [22]. As a result, MEMS-based storage
is being studied to supplement or even replace disks as the
persistent storage medium for large data sets to overcome
the I/O bottleneck associated with disks.

Because MEMS-based storage devices hold and access
data differently than disks, workloads processed on MEMS-
based storage may exhibit different behaviors than those
with disk-based systems. For example, the work in [9]
described a processor-embedded storage architecture that
offloads processing to an array of distributed disks. This
placed processing close to data and reduced traffic on the
storage network to improve overall performance. But work-
loads processed on this architecture remained I/O-bound
due to the disk’s relatively slow mechanical components
and large positioning delays. In this paper, we investigate
the impact and potential benefits of MEMS-based storage
with a distributed and offloaded processing model by the
design of a processor-embedded MEMS-based architecture.
In addition to performance improvement, we also study the
changes in various components of the total response time
due to the use of MEMS-based storage. We examine such
changes in the characteristics of a workload, e.g. from I/O-
bound to compute-bound, or from I/O-bound to network-
limited, when shifting from disk-based storage to MEMS-
based storage.

Our test results demonstrate that MEMS-based storage
systems improved the overall performance over disk-based
systems, as we had expected from a high-performance I/O
device. MEMS-based storage also changed the characteris-
tics of several workloads. When a workload is transformed
from I/O-bound to compute-bound, it suggests that process-
ing power has become the performance bottleneck. Like-
wise, the shift of a workload from I/O-bound to network-
limited suggests the need for faster storage interconnect.
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Such fundamental changes could significantly influence
storage architecture design. Therefore, we contrast MEMS-
based storage systems with a disk-based system to illustrate
the importance of these changes.

The remainder of this paper is organized as follows.
In Section 2, we review the background work related to
processor-embedded disk storage and MEMS-based storage
devices. Section 3 presents our distributed MEMS-based
storage architecture, and discusses the system architecture
and performance models for this work. Section 4 specifies
the workloads used to evaluate the disk-based and MEMS-
based storage architectures. Section 5 presents our experi-
mental results. Conclusion and future work are provided in
Section 6.

2 Background

2.1 Processor-Embedded Disk Storage Devices

Our earlier work proposed a fully distributed smart disk
architecture [9]. With an embedded processor, on-disk
memory, a network interface controller (NIC), and local
disk space, the ”smart disk” (SD) offloads processing from
the host (or server) processors to reduce data traffic on the
storage network. Each SD would run the Linux kernel
which occupies approximately 450 KB of memory. The
SD’s on-disk OS (called SD OS) would execute the SQL
primitives and parsed queries from a remote client running
a commercial database. For non-database workloads, the
SD OS executes the offloaded and parallelized application
code (in binaries) which are distributed based on the single-
instruction-multiple-data (SIMD) processing model.

Figure 1 illustrates the software architecture for the SD
system. Based on the Linux kernel, the SD OS provides ser-
vices for parsed SQL (for database queries) or distributed
code, execution initialization, and data communication at
the layer immediately below the user space. These higher
level services are in turn supported by modules that perform
processing control (for synchronization and states of execu-
tion), workload-optimized data access, and memory buffer
management. A NIC driver module provides the TCP/IP,
InfiniBand [12], or some other high-connectivity network
interface. The InfiniBand Architecture (IBA), an emerg-
ing server I/O standard developed by the InfiniBand Trade
Association (IBTA), was designed to overcome the limita-
tions of the shared bus architecture in today’s PCI/PCI-X,
Ethernet, Fiber Channel, and other similar networks. IBA
uses channel-based fabric, host and target channel adapters,
switches and routers to provide simultaneous point-to-point
communications between end nodes.

To minimize the footprint of SD OS, the SCSI (or a
higher performance) disk driver is assumed to be part of
the SD device firmware/hardware layer. Furthermore, to
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Figure 1. Software architecture for distributed
smart storage systems

provide availability and reliability required by I/O-intensive
workloads, several additional modules, while not already
implemented, have also been designed into the SD OS layer.
These include a code and data recovery module which will
work with a disk volume manager to support RAID-like ser-
vices, since a typical SD system will likely employ a large
number of SDs. The SD architecture can also be extended
to more than one group of SDs (called SDGs) for operations
such as the join that process two or more separate database
tables residing on different SDGs.

Work in [13], [18] and [9], along with the device level
models described in [7], have resulted in a well established
disk-based architecture. The processing models proposed
in [15] and [9] provided the necessary architectures and
software designs for processing I/O-intensive workloads on
SDs. These studies have also demonstrated the performance
improvement provided by distributed SD architectures over
traditional host-based and cluster-based architectures.

2.2 MEMS-based Storage Devices

MEMS are micron-sized devices fabricated from pho-
tolithographic (an IC production technique) processes [14].
Instead of using a rotating spindle and dividing a disk into
sectors, tracks and cylinders, MEMS-based storage devices
consist of a moving rectangular media sled and an array of
read/write tips. The media sled is spring-mounted over the
tips and can be moved by actuators in the X, Y and Z di-
rections. While the system ”seeks” in the X direction and
reads/writes data in the Y direction, it also moves in the
Z direction to control the distance between the tips and the
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media sled. In the case of CMU’s CHIPS [1] storage device,
the MEMS-based system contains an array of 80 x 80 tips
with each tip accessing a region of 2,500 x 2,500 bits. Of
the 6,400 tips, only 1,280 tips may be activated at the same
time due to power and heat dissipation constraints. Other
MEMS-based storage projects include those undertaken by
Agilent [2], IBM’s Millipede [3], Kionix [4], and Nanochip
[5], to name a few. The differing characteristics of MEMS-
based storage devices necessitate re-evaluation of several
design issues, as itemized below.

2.2.1 I/O Scheduling Algorithm

Unlike disks, which have been modeled as one-dimensional
devices, MEMS-based storage devices follow a two-
dimensional data layout and access model. Hence, using
the existing disk I/O scheduling algorithms may not fully
realize the potential of MEMS-based storage. The work in
[22] proposed a minimum spanning tree (MST)-based I/O
scheduling algorithm capable of within twice the optimal
time for any workload.

2.2.2 Data Placement Scheme

While many contend that MEMS-based storage can also
adopt existing data layout models for disks, others have ex-
ploited the unique properties of MEMS-based storage with
new data placement designs. A data placement scheme
called Flexible Retrieval Model (FRM) was proposed for
storing relational database tables on MEMS-based storage
devices [21]. In our work, we have used a simplified data
layout as discussed in Section 3. This simplified data layout
policy represents a general-case scenario for many work-
loads, and has been validated for modeling accuracy when
applied to the MEMS-based storage devices used in our
evaluation.

3 Distributed Smart MEMS System

3.1 System Architecture

Compared to disk-based storage systems, MEMS-based
storage systems can provide greater potential to integrate
computation with mass storage to create a complete system-
on-chip [8]. Therefore, it would be logical to consider
the processing of large data- and I/O-intensive workloads
on a distributed system of processor-embedded MEMS, or
”smart MEMS” (SM) with the same processing models as
discussed in [9]. Lightweight and distributed data-intensive
applications that involve PDAs, tablet PCs, mobile sensors,
or ubiquitous active storage nodes represent just some of the
potential opportunities for this SM storage system.
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Figure 2. Multiple-SMG architecture over IBA-
based network

Figure 2 depicts a distributed MEMS-based architecture
in ”multiple-SMG” configuration, similar to the multiple-
SDG model proposed in [9]. While the overall architecture
and storage interconnect remain the same as the disk-based
system, the local disk storage has now been replaced with
the MEMS-based storage device discussed in Section 2.2.
The InfiniBand-based network as specified in [9] is assumed
to be the storage interconnect for this proposed multiple-
SMG architecture.

3.2 Performance Modeling

The system-level models for the MEMS-based storage
proposed in this work is based on the MEMS device per-
formance model used in [19], as well as the specifications
used by the DiskSim 3.0 [7] simulator. At the device level,
the MEMS G1 model approximates the storage device in
[10] with a larger per-sled capacity (2.56 GB vs. 2.1 GB)
and half the number of simultaneously active tips (640 vs.
1280). On the other hand, the MEMS G2 model represents
an overall performance level equivalent to that evaluated in
[8]. A data organization scheme similar to those specified
in [8] and [10] is employed, except for the access method,
which is discussed below. While the work in [22] proposes
a more advanced I/O scheduling approach, no optimization
beyond that provided by DiskSim’s SCSI-based block level
scheduling is performed during our simulations.

3.2.1 Storage Device Models

Table 1 presents the essential parameters for three genera-
tions of MEMS-based storage devices as specified in [19].
Generation 1 (G1) model represents the most conservative
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Table 1. Parameters for MEMS-based storage
devices G1, G2 and G3 (see also [19])

Parameter G1 G2 G3

bit width (nm) 50 40 30
sled acceleration (g) 70 82 105

access speed (Kbits/s) 400 700 1000
X settling time (ms) 0.431 0.215 0.144
total number of tips 6400 6400 6400

number of active tips 640 1280 3200
max throughput (MB/s) 25.6 89.6 320
number of media sleds 1 1 1
per-sled capacity (GB) 2.56 4.00 7.11
bi-directional access no yes yes

of the three– a per-tip data rate of 400 Kbits/s with unidi-
rectional access for both reads and writes. The G2 model
contains several enhancements over G1, including bidirec-
tional (+Y and -Y) access and a 700 Kbits/s per-tip data rate.
The G3 model represents the most advanced device with
a 1000 Kbits/s data rate, the most active tips, and a much
larger throughput. A validated DiskSim module for the HP
C2490A hard disk is used for our comparison on MEMS-
based and disk-based devices. Performance characteristics
of HP C2490A are specified in Table 2.

3.2.2 Data Layout and Access

The media sled of the MEMS-based storage is divided into
rectangular regions of M x N bits. Each of these regions
is accessed by one probe tip. The media sled moves in
the X direction (seek), then performs read or write access
in the Y direction after the Z actuator makes the sled con-
tact the probe tips. We have used a ”streaming” data layout
model for the MEMS-based storage, i.e., all the data are
placed continuously on the media sled. This data layout
policy is an integral part of the validated MEMS modules
in DiskSim 3.0. Figure 3 depicts the data organization for
these MEMS storage device modules. Therefore, unlike the
work in [8] and [10], the layout policy makes no attempt to
map disk-based device characteristics, i.e. cynliders, tracks
and sectors, to the MEMS probe tip sweep area. Since our
evaluation considers the SDs and SMs to be distinct storage
devices, no such mapping is deemed necessary.

3.2.3 Simulation Models

To help conduct our experiments, a simulation environment
was developed to model the SD and SM architectures. It is
capable of simulating the computation, communication and
I/O behaviors given different system parameters, such as
disk and MEMS modules. The simulation environment uses

Table 2. Parameters for HP C2490A
Parameter Value

RPM 6,400
max bandwidth (MB/s) 10
avg seek time R/W (ms) 9.2/17
number of data surfaces 18

number of cylinders 2630
sector size (bytes) 512
diameter of disk 3.5”
height of disk 1.63”

the DiskSim 3.0 simulator to estimate the cost of access-
ing disk-based or MEMS-based devices. Computation and
communication times are directly measured by performing
the actual tasks as required by the workload on synthetic
data in order to provide accurate measurement for all three
components of the total execution time. This simulation en-
vironment processes the workload and takes measurements
for the computation, communication and I/O times, where
message passing protocol (MPI) is used for communication
among the SDs or SMs.

4 Benchmark Workloads

We selected basic database scan, join, sort, associa-
tion rules mining, and high-dimensional data clustering
for our evaluation. We also adopted the application-level
processing algorithms and input data as described in [9].
Since we are interested in comparing between disk-based
and MEMS-based storage, we applied equal amount of the
workloads on both the SD and SM architectures.

4.1 Database Scan, Join, and Sort

We offloaded scan, join and sort to the SDs and SMs, and
assumed that database tables are evenly distributed across
all SDs/SMs initially. Each SD or SM executes the same
code on its own local data, which is sent by the client during
system initialization.

The scan primitive sequentially retrieves and evaluates
each tuple in the locally stored data. Results from scan are
sent back to the remote client from the SDs or SMs. The
sort implements a parallel out-of-core sampling bucket sort
and consists of 4 stages: sampling, re-distribution, internal
sort, and external merge. The join utilizes 2 SDGs or SMGs
to perform a database join using a nested loop-based algo-
rithm. While scan involves only local storage access, join
and sort could require communication between individual
SDs/SMs or SDGs/SMGs, or both.
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Figure 3. Data organization for MEMS-based
storage devices

4.2 Association Rules Mining (ARM)

Association rules mining (or ARM) has historically been
employed in the so-called Market-Basket Analysis. Given a
collection of transactions T and each transaction contains
items from an itemset I, an association rule takes on the ex-
pression X⇒Y, where X ⊆ I and Y ⊆ I. An association rule
X⇒Y holds in T with a confidence C and a support S, if
at least C% of all the transactions (in T) containing X also
contain Y, and X⇒Y exists in at least S% of all the transac-
tions in T [11] [17]. An ARM process consists of two major
phases. In the first phase, a set of frequent itemsets is found.
Then, in the second phase, the rules that satisfy the mini-
mum support S and the minimum confidence C are identi-
fied. The first phase, which performs frequent set counting
(FSC), tends to be much more expensive than the second
phase, since I usually contains a large number of distinct
items. Based on the work proposed in [11], we developed

a FSC primitive to evaluate our SD and SM systems. The
Count Distribution (CD) method uses the Apriori algorithm
proposed in [6], while the Hybrid Distribution (HD) method
partitions the frequent itemsets into sufficiently large grids
(or sections), then assigns a set of SDs/SMs to each section.

4.3 MAFIA Data Clustering

Data clustering techniques help discover the interesting
patterns (also called clusters) from large data sets. These
patterns often exist in high-dimensional data space. An effi-
cient data clustering technique will address both data and
noise existent in high-dimensional spaces and subspaces,
which could result in an exponential growth of the search
space for clusters. Our data clustering primitive is based
on the parallel adaptive-grid and density-based algorithm
(hence MAFIA, standing for Merging of Adaptive Finite
Intervals Algorithm) proposed in [16]. The primitive com-
putes the histogram for each attribute, adaptively setting the
bin size, then builds candidate dense cells and performs
subspace clustering on the local records to compute local
dense cells. Finally, reduction is performed to obtain global
data on the histogram, dense cells, and bounds for the dense
cells. Out-of-core I/O access strategy is used to model our
SD and SM systems.

5 Experiments and Results

We evaluated the performance of disk-based distributed
storage and that of MEMS-based storage, using scan, join,
sort, association rules mining, and high-dimensional data
clustering as the workloads. Our simulation platform con-
sists of 32 Pentium III Linux PCs running at 500 MHz and
each with up to 512 MB of physical memory and 9 GB of
disk storage. The PCs are interconnected with fast Ether-
net to model a low-latency high-bandwidth network such
as IBA. Thus, the embedded processor is assumed to have
a 500 MHz clock speed, and a 64MB maximum on-device
memory is configured for our simulation environment. For
scan, join and sort, we used TPC-H database generator [20]
to populate synthetic data into tables with a scale factor of
1.0, denoting a 1 GB size for the populated data (for the
Lineitem table). Data generators for producing compati-
ble synthetic input data were used for the ARM FSC and
MAFIA (clustering) workloads.

5.1 Database Scan, Join, and Sort

The scan, join and sort primitives discussed in Section
4.1 were evaluated for disk-based systems (represented by
the HP C2490A) and MEMS-based systems (represented
by the G1, G2 and G3 devices). For all the storage systems
under test, the simulation environment was configured to
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Figure 4. Performance of the scan. Each group
of four bars represents the respective SD or
SM system of sizes 4, 8, 16 and 32.

use 8 KB as the data page size and 64 MB of on-device
memory, a scale factor of 1.0 for the TPC-H data, and the
other platform parameters as specified in this section.

Figure 4 presents the performance results of scan on four
different systems constructed with disks and MEMS G1,
G2 and G3, respectively. For each system, the group of
four bars in the Figure represents the total response times
for system sizes of 4, 8, 16 and 32, from left to right as
marked. These results show that for each system, increas-
ing the system size reduces the total response time, due
to increased parallelism available from the larger system.
Looking across the four systems, we also observed that
MEMS-based systems exhibit higher performance than the
disk-based system, with the G3 system providing the overall
smallest total response time for any given system size. Al-
though the use of MEMS-based devices improved system
performance, scan remained an I/O-bound workload, i.e.,
the performance of scan is dominated by the I/O time. This
characteristic of scan is the main motivation for offloading
scan to the storage device in [9] and in this work.

The performance results of join, arranged similarly as
those for scan, are shown in Figures 5 and 6. There are 3
main stages in join: hash, re-distribution, and local nested-
loop join. Due to the inefficiency of the last stage, as re-
ported in [9], join is considered I/O-bound. However, this
problem can be remedied if the nested-loop is enhanced
with more efficient algorithms. Figure 6 shows the I/O
dominance exhibited by the last stage of join, particularly
when a disk-based system of smaller size, e.g. 4 SDs, is
employed. The I/O cost diminishes rather quickly both as
we increase the system size, and as we switch from disk-
based systems to MEMS-based systems. Given the best-
performing system size for all the systems in this study, i.e.
32 SDs or 32 SMs, the I/O and computation costs by the
last stage of join are shown in Table 3. Note that our 32-
SM G3 storage reduced the I/O cost by more than 10 folds,

JOIN, Page Size = 8 KB  Memory Size = 64 MB
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Figure 5. Performance of the join during the
hash and re-distribution stages for the SD and
SM systems of sizes 4, 8, 16 and 32.

Table 3. I/O vs. computation times: local
nested-loop join (system size: 32 SDs/SMs)

Storage Device I/O (sec) Computation (sec)

HP C2490A 8207.20 2.03
MEMS G1 1656.78 2.13
MEMS G2 1097.25 2.54
MEMS G3 812.04 2.05

compared to the HP C2490A disk-based system.
While overall time reductions are clearly visible as our

storage systems changed from disk-based to MEMS-based,
there exist other changes in the characteristics of join
when MEMS-based storage devices are employed instead
of disks. The G2 MEMS-based system with 4 SMs recorded
a hash I/O time of 219.45 sec and a re-distribution commu-
nication time of 272.59 sec. Likewise, another G3 MEMS-
based system with 16 SMs incurred a hash I/O time of 41.96
sec and a re-distribution communication time of 50.77 sec.
These compared with the disk-based system which always
exhibited a difference in the range of one order of magni-
tude between the large hash I/O and small re-distribution
communication times. The implication of this could result
in potentially significant change in characteristics of work-
loads that contains join as a component, e.g. full TPC-
H queries. The use of MEMS-based storage devices is
a major reason for such changes in the workloads, which
in our study resulted in certain network-limited stages of
the processing becoming dominant over other I/O-bound
stages. While this dominance may be small compared to
other stages of the processing, such effect would not have
existed with disk-based storage systems.

Figure 7 presents our results of executing sort on the
SD/SM systems. In the case of sort the proportions of
I/O vs. the other two components (i.e. computation and
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Figure 6. Performance of the join during the
local nested-loop join stage for the SD and
SM systems of sizes 4, 8, 16 and 32.

SORT, Page Size = 8 KB  Memory Size = 64 MB
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Figure 7. Performance of the sort for the SD
and SM systems of sizes 4, 8, 16 and 32
throughout all the processing stages.

communication) changed from disk-based to the MEMS-
based systems. Table 4 shows some such changes in pro-
portions during various stages of sort. For example, dur-
ing the sampling stage, both disk-based and MEMS-based
”size-32” systems incurred virtually identical cost in com-
munication, yet the ratio of I/O vs. communication differs
significantly between the two systems, i.e. 90.09/0.22 as
compared to 10.53/0.21 due to the reduced I/O cost. While
no changes similar to those observed in join were noted,
the results for sort could still impact database-related work-
loads, since data sizes often vary both statically and dynam-
ically in more complex workloads, such as the TPC-H full
queries in commercial DSS systems.

5.2 Association Rules Mining

The frequent set counting (FSC) primitive and synthetic
transaction database as discussed in [9] were used. The
transaction database had an average transaction size of 20
with each transaction containing up to 25 distinct items.
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Figure 8. Performance of ARM on the SD and
SM systems with the HD method
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Figure 9. Scalability of ARM with the CD and
the HD methods

100,000 transactions were generated for each SD/SM, and
the minimum support is 5%. Both the CD and HD methods
were implemented. The default platform parameters were
used, including the 8 KB page size and 64 MB of on-device
memory.

Figure 8 illustrates the compute-bound characteristic of
the ARM FSC workload, using the HD method. Although
the I/O component of the total response time decreased from
disk-based system to G3 MEMS-based system, computa-
tion time continued to dominate the overall performance.
These results are consistent with our expectation that FSC
is a compute-intensive operation. Thus, while the use of
MEMS-based storage helped reduce the I/O cost, the on-
device embedded processor remains the deciding factor in
achieving better overall performance.

Figure 9 demonstrates that the FSC primitive exhibits
scalable performance on the disk-based as well as MEMS-
based systems with increasing data size. Note that since
100,000 transactions were generated for each SD/SM, data
size was increasing linearly with respect to the number of
SDs/SMs. Therefore, keeping the response times constant
demonstrates scalability. We observed similar scalability
behaviors by both the disk-based and MEMS-based archi-
tectures, with disk-based systems taking larger response
times primarily due to their higher I/O costs.
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Table 4. I/O vs. computation and communication times (in sec) for sort stages
System, Size Phase I/O Compute Communication

HP C2490A, 4 Re-distribution 573.77 – 49.18
MEMS G3, 4 Re-distribution 72.58 – 49.02

HP C2490A, 8 Internal Sort 501.43 37.65 –
MEMS G2, 8 Internal Sort 77.35 37.87 –

HP C2490A, 4 External Merge 1060.52 36.17 –
MEMS G3, 4 External Merge 121.50 35.62 –

HP C2490A, 32 Sampling 90.09 – 0.22
MEMS G3, 32 Sampling 10.53 – 0.21

HP C2490A, 16 Re-distribution 195.07 – 11.72
MEMS G2, 16 Re-distribution 32.14 – 10.91

5.3 High-Dimensional Data Clustering

The MAFIA primitive discussed in Section 4.3 was exe-
cuted over a data set of 4,281,782 records (> 342 MB input
data size), which contains 20-dimensional data with 5 clus-
ters and each cluster is of 5 dimensions. We measured the
performance of MAFIA with system sizes of 1, 2, 4, 8, 16
and 32 for both the SD and SM architectures, using data
page sizes of 8K, 16K, 32K, and 64K bytes, and 64 MB of
on-device memory. While 8 KB page size represents the
default for a PostgreSQL database, we also simulated with
the larger page sizes to explore future and more aggressive
architectures.

Figure 10 presents the performance results of MAFIA
with data page size fixed at 8 KB. The results indicate that
both the computation time for populating candidate dense
cells and the I/O time required for data access decreased
when the number of SDs/SMs was increased. Furthermore,
we observed a noticeable change in the workload charac-
teristics between the two systems– MAFIA changed from
being I/O-dominant to compute-dominant. In other words,
when MEMS-based devices are employed in lieu of disk-
based devices, MAFIA is transformed from I/O-bound to
compute-bound. Comparisons conducted with other page
sizes reflected the same characteristic change of MAFIA.
Note that we have used a 500 MHz clock speed for the on-
device embedded processor for the SDs/SMs, representing
a relatively advanced performance level for an embedded
processor given current state of technology.

The scalability of MAFIA was also evaluated for all four
types of SD/SM systems, with data page sizes including 8K,
16K, 32K and 64K bytes. Based on the results in Figure
11, we observe improved performance as we increased the
data page size, and similar scalability behavior between the
three MEMS-based systems. It is noted, however, that the
disk-based architecture tends to provide better scalability at
smaller system sizes, i.e., between 1 and 4, despite its lower
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Figure 10. MAFIA performance on the SD and
SM (MEMS G3) systems
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Figure 11. MAFIA scalability with 8KB and
64KB page sizes

performance than the MEMS-based architecture. When
system size exceeds 8, this effect diminishes. Although
MEMS-based devices differ significantly from disks, both
our SD and SM storage systems exhibited similar behaviors
in scalability.

5.4 Summary of Workloads

Table 5 summarizes the characteristics of our workloads
as processed on the SD and SM systems. We observed
that as the underlying storage system shifted from disks to
MEMS-based devices, scan remained I/O-bound, join and
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Table 5. Workloads on the SD/SM systems. I: I/O-bound, C: compute-bound, N: network-limited
Workload Disk-Based MEMS G1 MEMS G2 MEMS G3 Comments on Workload Characteristics

scan I I I I remains I/O-bound for both disk-based
and MEMS-based storage systems

join I I,N I,N I,N I/O-bound for disk-based storage system, but
network-limited during re-distribution phase if
efficient algorithm is used in lieu of local NL

sort I I I I I/O-bound for disk-based storage system, but
ratios of I/O vs. computation and communication
decreased significantly for MEMS-based systems

ARM FSC C C C C remains compute-bound for both disk-based
and MEMS-based storage systems

Clustering I C C C I/O-bound for disk-based storage system, but
compute-bound for MEMS-based storage systems

sort exhibited potential to transform complex queries from
I/O-bound to either compute-bound or network-limited.
The ARM FSC workload remained compute-bound, and
clustering (MAFIA) changed from being I/O-bound to
compute-bound. These characteristic changes suggest the
need for improved storage architectures to address the new
and specific performance bottlenecks of a workload.

6 Conclusion and Future Work

MEMS-based storage devices, with their differing two-
dimensional way of holding and accessing data, have signif-
icantly changed the characteristics of I/O-intensive work-
loads compared to those processed with disk-based stor-
age. The work in [9] demonstrated that for disk-based
storage systems, offloading user-level processing on to the
storage device improved overall performance. Evaluation
conducted in this work extended the concept to emerging
MEMS-based storage based on the pioneering research in
[8], [10], [19], [21] and [22]. Exploiting excess proces-
sor cycles available from the embedded peripheral systems
(such as storage devices) by taking application processing
closer to data has been a trend in computer architecture.
Both the SD and SM models investigated in this work are a
continuation of this trend. Our experiments demonstrated
that MEMS-based storage can provide significant perfor-
mance improvement over traditional disk-based systems for
several representative workloads while exhibiting similarly
desirable scalability. These results suggest that MEMS-
based storage can be a highly viable option for large data-
and I/O-intensive applications.

Given the rapid advancement of MEMS technology, it
is conceivable that an integrated MEMS-based processor-
memory-storage chip could soon be realized. With such a
hardware platform, the processing models introduced in [9]

and evaluated in this work are expected to further improve
the performance of large data-intensive workloads, altering
their basic characteristics in many cases. Although MEMS-
based storage devices occupy a higher level than disks in
the cost structure of storage media, the performance im-
provement provided by MEMS-based devices makes them
a desirable alternative when configuring high-performance
storage systems. When considering the design of offloading
user-level processing, the feasibility of computation-storage
integration of MEMS-based devices becomes increasingly
attractive compared to disks.

Future work includes complex queries, e.g. TPC-H full
queries built on the basic database primitives. Besides
performance-related issues, our work-in-progress items also
include availability and reliability schemes, since these are
no less critical than performance designs for large data-
intensive distributed storage systems. Of significant value
is the possibility of offloading I/O scheduling optimization
to the device, especially for MEMS-based storage. The de-
sign of hybrid disk- and MEMS-based storage architectures
adds yet another dimension to current processing models.
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