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Abstract. As compared to a complex single processor based system,
on-chip multiprocessors are less complex, more power efficient, and eas-
ier to test and validate. In this work, we focus on an on-chip multipro-
cessor where each processor has a local memory (or cache). We demon-
strate that, in such an architecture, allowing each processor to do off-chip
memory requests on behalf of other processors can improve overall per-
formance over a straightforward strategy, where each processor performs
off-chip requests independently. Our experimental results obtained using
six benchmark codes indicate large execution cycle savings over a wide
range of architectural configurations.

1 Introduction

A natural memory architecture for an on-chip multiprocessor is the one in which
each processor has a private (on-chip) memory space (in form of either a software-
controlled local memory or a hardware-controlled cache). Consequently, assum-
ing the existence of an off-chip (shared) memory, from a given processor’s per-
spective, we have a two-level memory hierarchy: on-chip local memory and off-
chip global-memory. One of the most critical issues in exploiting this two-level
memory hierarchy is to reduce the number of off-chip accesses. Note that re-
ducing off-chip memory accesses is beneficial not only from the performance
perspective but also from the energy consumption viewpoint. This is because
energy consumption is a function of the effective switching capacitance [2], and
large off-chip memory structures have much larger capacitances as compared to
relatively smaller on-chip memory structures.

In this paper, we focus on such a two-level memory architecture, and pro-
pose and evaluate a compiler-directed optimization strategy which reduces the
frequency and volume of the off-chip memory traffic. Our approach targets array-
intensive applications, and is based on the observation that, in an on-chip mul-
tiprocessor, inter-processor communication is cheaper (both performance and
energy wise) than off-chip memory accesses. Consequently, we develop a strat-
egy which reduces off-chip memory accesses at the expense of increased on-chip
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data traffic. The net result is significant savings in execution cycles. Our ap-
proach achieves its objective by not performing off-chip memory accesses based
on data requirements of each individual processor but based on the layout of
the data in the off-chip memory. In other words, the total data space (array
elements) that will be required considering all processors is traversed (accessed)
in a layout-efficient manner (instead of allowing each processor access off-chip
memory according to its own needs). The consequence of this “collective” mem-
ory access strategy is that each processor gets some data which are, potentially,
required by some other processor. In the next step, the processors engage in a
many-to-many communication (i.e., they access each others local memories) and,
after this on-chip communication step, each processor gets the data it originally
wanted.

We implemented the necessary compilation techniques for this two-step opti-
mization strategy using an experimental compiler, and collected results from this
implementation. Experimental data obtained using six application codes clearly
demonstrate the effectiveness of our strategy. In order to measure the robust-
ness of our approach, we also conducted experiments with different architectural
parameters (due to the space limitation, the results are omitted in this paper).
Based on our experimental data, we believe that the proposed strategy is a much
better alternative to a more straightforward strategy, where each processor per-
forms independent off-chip memory accesses. Our experimental results indicate
large execution cycle savings over a wide range of architectural configurations.
The results also indicate that the proposed approach outperforms an alternate
technique that employs classical locality-oriented loop optimizations.

2 Architecture Abstraction

In this paper, we focus on an architectural abstraction depicted in Figure 1.
In this abstraction, the on-chip multiprocessor contains k CPU-local memory
pairs. There is also an off-chip (shared) global memory. There are two buses: an
on-chip bus that connects local memories to each other, and an off-chip bus that
connects local memories to the off-chip global memory. The other components
of the on-chip multiprocessor (e.g., the clock circuitry, ASICs, signal converters,
etc.) are omitted as they are not the focus of this work. It should be mentioned
that many architectural implementations described by prior research are similar
to this abstraction.

In this architecture, a data item required by CPUj (1 ≤ j ≤ k) can be in three
different locations: local memoryj , local memoryj′ of CPUj′ (where 1 ≤ j′ ≤ k
and j′ �= j), and the global memory. The performance of a given application
executing on such an architecture is significantly influenced by the location of
the data requested. Typically, from the viewpoint of a given processor, accessing
its local memory is much faster than accessing the global memory (and, in fact,
considering current trends, we can expect this gap to be widened in the future).
As compared to accessing its own local memory, accessing the local memory of
some other processor (called “remote local memory,” or “remote memory” for
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Fig. 1. On-chip multiprocessor ab-
straction.

Fig. 2. Independent memory access vs.
optimized memory access and data re-
distribution.

short) is also more costly; however, such remote memory accesses are still much
less expensive in comparison to global memory accesses. Therefore, an impor-
tant issue in compiling applications for running on this chip-scale multiprocessor
environment is to ensure that most of data requests of individual processors are
satisfied from their local memories or remote memories. The goal of this pa-
per is to present and evaluate a compiler-directed optimization strategy along
this direction. It should be emphasized that, in this paper, when we mention
“on-chip communication,” we mean remote memory access. Consequently, when
we say “processors engage in all-to-all (or many-to-many) communication,” we
mean that they access each other’s local memory. We also use the terms “off-chip
memory” and “global memory” interchangeably.

3 Our Approach

Performance of an application executed on an on-chip multiprocessor is closely
tied with the data access pattern. This is because data access pattern is the
primary factor that determines how memory is accessed. Therefore, it is critically
important that an application exhibits a good access pattern, in which data is
accessed with temporal or spatial locality to the highest extent possible. Accesses
with locality tend to frequently reuse the data in the same transfer unit (block),
and this, in turn, reduces the number of off-chip memory accesses.

However, a straightforward coding of many array-intensive applications does
not lead to good memory access patterns. As an example, consider the simple
loop structure given in Figure 2(a). Assuming that we would like to parallelize
the outer loop across four processors (P0, P1, P2, and P3) in our on-chip multipro-
cessor, Figure 2(b) shows the data access pattern exhibited when each processor
performs off-chip accesses independently. It can be seen from this access pattern
that, assuming a row-major array layout in memory, each processor touches only
a small amount of sequential data. In other words, the spatial locality exhibited
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by each processor is very low. To quantify this, let us conduct a simple calculation
to see the memory access cost of this loop nest. Assuming that the granularity
of the data transfers between the off-chip memory and on-chip memory is 4 ar-
ray elements and that the array is stored in a row-major format in the off-chip
memory, each processor will make 8 off-chip requests in the access pattern de-
picted in Figure 2(b). The total volume of the data transferred by each processor
is, therefore, 32 (and, note that only 16 of these are really useful). One simple
strategy that can be adopted by an optimizing compiler is to interchange the
loops. While this may help improve locality in some cases, in many loops, data
dependences can prevent loop interchange (or similar loop transformations [4]).

In this example, our two step solution operates as follows. We first consider
the data layout in memory (which is row-major) and allow each processor access
the data using the best possible access pattern (as depicted in Figure 2(c)).
Now, each processor has some data which are, originally, required by some other
processor. In the next step, the processors engage in an all-to-all (intra-chip)
communication (a special case of many-to-many communication), and data is re-
distributed accordingly. We can calculate the cost of this approach as follows. The
number of off-chip memory accesses per processor is only 4 (as all 16 elements
that need to be read are consecutive in the off-chip memory). In addition, the
total data volume (transferred from the off-chip memory) is 16 (i.e., no unneeded
data is transferred). Note that, as compared to the independent memory access
scenario, here we reduce the number of off-chip accesses (per processor) by half
(which can lead to significant execution cycles savings).

However, in this optimized strategy, we also need to perform inter-processor
data re-distribution (i.e., the second step) so that each processor receives the data
it originally wanted. In our example, each processor needs to send/receive data
elements to/from the other three processors. Let us assume that performing an
off-chip data transfer takes C1 cycles and performing an on-chip communication
(i.e., local memory-to-local memory transfer) takes C2 cycles, the independent
memory access strategy costs 8C1 (per processor) and our optimized strategy
costs 4C1 + 3C2 (again, per processor). Assuming C1 is 50 cycles and C2 is
10 cycles, our approach improves data access cost by 42.5% (170/400). This
small example (with its simplistic cost view) shows that performing off-chip data
accesses on behalf of other processors can actually improve the performance of
the straightforward (independent) memory access strategy.

It should be noted that, depending on whether the local memory space is a
software-managed local memory or hardware-managed cache, it might be neces-
sary (in our approach) to interleave off-chip data accesses with on-chip commu-
nication. If the local memory is software-managed and is large enough to hold
the entire set of elements that will be transferred from the off-chip memory, it is
acceptable to first perform all off-chip accesses and, then, perform on-chip com-
munication. On the other hand, if the on-chip local memory is not large enough
to hold all the required elements, then we need to “tile” the computation. What
tiling means in this context is that we first transfer (from the off-chip memory)
some data elements (called “data tile”) to fill the local memory, then perform
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Benchmark Brief Description Cycles
Atr Network IP address translator 11,095,718
SP Computing the all-nodes shortest paths on a given graph 13,892,044

Encr Secure digital signature generator and verifier 30,662,073
Hyper Multiprocessor communication activity simulator 18,023,649
Wood Color-based visual surface inspector 37,021,119
Usonic Feature-based object estimation 46,728,681

Fig. 3. Brief Description of our benchmarks.

on-chip communication, and then perform the computation on this data tile (and
write back the tile to the global memory if it is modified). After this, we transfer
the next set of elements (i.e., the next data tile) and proceed the same way, and
so on. It should be observed that if the on-chip memory space is implemented as
a conventional cache, tiling the computation might be very important as there
is no guarantee that all the data transferred from the off-chip memory will still
remain in the cache at the time we move to the on-chip communication phase.

Note that, in a straightforward off-chip memory access strategy, each pro-
cessor accesses its portion of an array without taking into consideration of the
storage pattern of the array (i.e., how the array is laid out in memory). In con-
trast, in our approach, the processors first access the data using an access pat-
tern, which is the “same” as the storage pattern of the array. This helps reduce
the number of off-chip memory references. After that, the data are redistributed
across processors so that each array element arrives in its final destination. In
general, the proposed strategy will be useful when access pattern and storage
pattern are different.

4 Experiments

4.1 Setup

We used six applications to test the success of our optimization strategy. The
brief descriptions of these benchmarks are presented in Figure 3. While we have
also access to pointer-based versions of these applications, in this study, we only
used their array-based versions. These applications are coded in such a way that
their input sizes can be set by the programmer. In this work, the total data sizes
manipulated by these applications range from 661.4KB to 1.14MB.

We simulated execution of an on-chip multiprocessor with local and global
memories using a custom simulator. Each processor is a simple, single-issue ar-
chitecture with a pipeline of five stages. Our simulator takes an architectural
description and an executable code. The architectural description indicates the
number of processors, the capacities of on-chip and off-chip memories, and their
relative access latencies. We refer to the relative access latencies of local, remote,
and global memories as the “access ratio”. For example, an access ratio of 1:10:50
indicates that a remote memory access is ten times as costly as a local memory
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Fig. 4. Execution cycle breakdown for
the default mode of execution.

Fig. 5. Normalized number of off-chip
accesses, transfer volume, and overall
execution cycles.

access, and that a global memory access is five times as costly as a remote mem-
ory access. We ran the optimized code on a Sun UltraSparc machine. By default,
we assume that the system has 8 processors (runnig at 250MHz) on the chip.
Each processor has 4KB local memory. These processors share a 32MB global
memory. The access ratio (i.e, the relative access latencies of local, remote and
global memories) is 1:10:50.

In order to evaluate the effectiveness of our approach, we compare it to a
“default mode of execution.” In this mode, each processor performs independent
off-chip memory accesses. However, before going to the off-chip memory, it first
checks its local memory, and then checks all remote memories. Consequently,
if the requested data item is available in either local memory or remote mem-
ories, the off-chip memory access is avoided. As discussed earlier in detail, our
approach tries to improve over this default mode of execution by performing
off-chip memory accesses in a coordinated fashion. In this strategy, each proces-
sor performs off-chip accesses in a way which is most preferable from the data
locality viewpoint. After this, processors exchange data so that each data item
arrives in its final destination. The last columns of Figure 3 gives the execution
cycles obtained under this default mode of execution. Execution cycles reported
in the rest of this paper are values normalized with respect to these numbers. In
comparing our optimization strategy to the default mode of execution, we used
three different metrics. The first metric is the number of off-chip accesses. The
second metric is the transfer volume, which is the amount of data transferred
from the off-chip memory. As discussed earlier in the paper, our approach is
expected to transfer fewer data items (as it exploits spatial locality in off-chip
accesses) than the default mode of execution. While reductions in these two
metrics indicate the effectiveness of our approach, the ultimate criterion is the
reduction in overall execution cycles, which is our third metric.

4.2 Results

Figure 4 gives the execution cycle breakdown when each processor accesses the
global memory independently (default mode of execution). In this graph, ex-
ecution cycles are divided into three parts: (1) cycles spent in executing code
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Fig. 6. Normalized execution cycles of different versions.

(including local memory accesses); (2) cycles spent in performing remote mem-
ory accesses; and (3) cycles spent in performing global memory accesses (i.e.,
off-chip accesses). Our first observation is that, on the average, 56.3% of cy-
cles are expended in waiting for off-chip data to arrive. This observation clearly
underlines the importance of reducing the number of off-chip data requests. In
comparison, the cycles spent in remote memory accesses constitute only 8.75%
of total cycles.

The graph in Figure 5 shows the number of off-chip memory accesses, transfer
volume, and execution cycles resulting from our strategy, each normalized with
respect to the corresponding quantity incurred when the default execution mode
is used. We see that the average reductions in the number of off-chip memory
accesses and transfer volume are 53.66% and 38.18%, respectively. These reduc-
tions, in turn, lead to 23.45% savings in overall execution cycles. As a result, we
can conclude that our approach is much more successful than the default mode
of execution. Execution cycle savings are lower in Encr and Usonic as the orig-
inal off-chip access patterns exhibited by these applications are relatively good
(as compared to the access pattern of the other applications under the default
mode of execution).

One might argue that classical loop transformations can be used for achieving
similar improvement to those provided by our optimization strategy. To check
this, we measured performance of the loop optimized versions of our benchmark
codes. The loop transformations used here are linear transformations (e.g., loop
interchange and scaling), iteration space tiling, and loop fusion. To select the
best tile size, we employed the technique proposed by Coleman and McKinley
[3]. The first bar of each benchmark in Figure 6 gives the execution cycles of
this version, normalized with respect to the original codes (note that both the
versions use the default mode of execution). The average improvement brought
by this loop-optimized version is 11.52%, which is significantly lower than the
average improvement provided by our approach, which is 23.45% (the results of
our approach are reproduced as the third bar in Figure 6). The reason that our
approach performs better than classical loop transformations is related to data
dependences [4]. Specifically, a loop transformation cannot be used if it violates
the intrinsic data dependences in the loop being optimized. In many of the loops
in our benchmark codes (specifically, in 45% of all loop nests), data dependences
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prevent the best loop transformation from being applied. However, this result
does not mean that our optimization strategy cannot take advantage of loop
transformations. To evaluate the impact of loop optimizations on the effective-
ness of our approach, in our next set of experiments, we measured the execution
cycles of a version that combines our approach with loop optimizations. The
loop optimizations employed are the ones mentioned earlier. Specifically, we first
restructured the code using loop transformations such that spatial locality is im-
proved as much as possible. We then applied our approach in performing off-chip
data accesses. The last bar in Figure 6 for each application gives the normalized
execution cycles for this version. One can observe that average improvements
due to this enhanced version is 26.98% (a 3.53% additional improvement over
our base strategy). It is also important to see how close our optimization comes
to the optimal in reducing execution cycles. In order to see this, we performed
experiments with a hand-optimized version that reduces the off-chip activity to
a minimum. It achieves this using a global optimization strategy which consid-
ers all nests in the application together and by assuming an “infinite amount”
of on-chip storage. In other words, for each data item, if possible, an off-chip
reference is made only once (and since we have unlimited on-chip memory, no
data item needs to be written back – even if it is modified). The second bar for
each application in Figure 6 presents the behavior of this strategy. We see that
the average execution cycle improvements is around 31.77%, indicating that our
approach still has a large gap to close to reach the optimal.

5 Concluding Remarks

On-chip multiprocessing can be aimed at systems that require high performance
in either instruction-level parallelism (ILP) or thread-level parallelism, since ad-
ditional threads can be run simultaneously on other CPU cores within the chip,
and therefore, is expected to have a clear advantage over traditional architec-
tures that concentrate on ILP. In this paper, we demonstrate how a compiler can
optimize off-chip data accesses in an on-chip multiprocessor based environment
by allowing collective off-chip accesses, whereby each processor performs off-chip
accesses on behalf of other processors. Our results clearly show the benefits of
this approach.
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