
Terascale direct numerical simulations of turbulent combustion using S3D

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 Comput. Sci. Disc. 2 015001

(http://iopscience.iop.org/1749-4699/2/1/015001)

Download details:

IP Address: 129.105.5.125

The article was downloaded on 12/09/2010 at 06:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1749-4699/2/1
http://iopscience.iop.org/1749-4699
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Terascale direct numerical simulations of turbulent
combustion using S3D

J H Chen1, A Choudhary2, B de Supinski3, M DeVries4, E R Hawkes5,
S Klasky4, W K Liao2, K L Ma6, J Mellor-Crummey7, N Podhorszki4,
R Sankaran4, S Shende8 and C S Yoo1

1 Sandia National Laboratories, Livermore, CA, USA
2 Northwestern University, Evanston, IL, USA
3 Lawrence Livermore National Laboratories, Livermore, CA, USA
4 Oak Ridge National Laboratories, TN, USA
5 University of New South Wales, Sydney, Australia
6 University of California at Davis, CA, USA
7 Rice University, Houston, TX, USA
8 University of Oregon, Eugene, OR, USA
E-mail: jhchen@sandia.gov

Received 11 August 2008, in final form 5 December 2008
Published 23 January 2009
Computational Science & Discovery 2 (2009) 015001 (31pp)
doi:10.1088/1749-4699/2/1/015001

Abstract. Computational science is paramount to the understanding of underlying processes
in internal combustion engines of the future that will utilize non-petroleum-based alternative
fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will
attain high efficiency while minimizing emissions of particulates and nitrogen oxides.
Next-generation engines will likely operate at higher pressures, with greater amounts of
dilution and utilize alternative fuels that exhibit a wide range of chemical and physical
properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical
simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in
these relatively uncharted combustion regimes, and in particular, that can discriminate the
effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales
are resolved numerically using high-order accurate numerical algorithms. As a consequence
terascale DNS are computationally intensive, require massive amounts of computing power
and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames
are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted
turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean
turbulent premixed jet flame. Computing at this scale requires close collaborations between
computer and combustion scientists to provide optimized scaleable algorithms and software
for terascale simulations, efficient collective parallel I/O, tools for volume visualization
of multiscale, multivariate data and automating the combustion workflow. The enabling
computer science, applied to combustion science, is also required in many other terascale
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physics and engineering simulations. In particular, performance monitoring is used to identify
the performance of key kernels in the DNS code, S3D and especially memory intensive
loops in the code. Through the careful application of loop transformations, data reuse in
cache is exploited thereby reducing memory bandwidth needs, and hence, improving S3D’s
nodal performance. To enhance collective parallel I/O in S3D, an MPI-I/O caching design
is used to construct a two-stage write-behind method for improving the performance of
write-only operations. The simulations generate tens of terabytes of data requiring analysis.
Interactive exploration of the simulation data is enabled by multivariate time-varying volume
visualization. The visualization highlights spatial and temporal correlations between multiple
reactive scalar fields using an intuitive user interface based on parallel coordinates and time
histogram. Finally, an automated combustion workflow is designed using Kepler to manage
large-scale data movement, data morphing, and archival and to provide a graphical display of
run-time diagnostics.
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1. Introduction

Next-generation alternative-fuel internal combustion engines will operate in non-conventional, mixed-
mode, turbulent combustion under previously uncharted turbulence-chemistry regimes. Compared to current
engines, combustion in next-generation engines are likely to be characterized by higher pressures, lower
temperatures, higher levels of dilution, and may operate overall fuel-lean near combustion limits. Combustion
processes in these environments, combined with new physical and chemical fuel properties associated with
non-petroleum-based fuels, result in complicated interactions that are poorly understood at a fundamental
level. These unknown phenomena in tandem with new fuel parameters pose new demands for innovative
simulations, particularly given the difficulties in obtaining detailed measurements in these adverse high-
pressure environments. Therefore, there is an urgent demand for high-fidelity direct simulation approaches
that capture these ‘turbulence-chemistry’ interactions, and in particular, capture and discriminate the effects
of differences in fuel properties. DNS can uniquely isolate and reveal fundamental causal relationships among
turbulence, turbulent mixing and reaction that are required for physical understanding and to develop predictive
models used in engineering computational fluid dynamics to design and optimize practical devices.

The rapid growth in computational capabilities has presented both opportunities and challenges for DNS
of turbulent combustion. The advent of terascale computing power made it possible to glean fundamental
physical insight into fine-grained ‘turbulence-chemistry interactions in simple laboratory scale, canonical
turbulent flames with detailed chemistry using three-dimensional (3D) DNS. In DNS, the instantaneous
governing equations are solved without averaging or filtering; therefore, all relevant continuum scales are
resolved on the grid without any turbulence closure models using accurate high-order numerical methods
for computational efficiency. Such simulations are costly, requiring several million CPU hours on a terascale
computer, up to several billion grid points, and generating tens of terabytes of data. It is anticipated that
petascale computing will provide access to directly simulating a larger dynamic range of scales and the
transport of greater numbers of species representative of hydrocarbon fuels of practical interest.

In the present case study, we present recent results from terascale DNS of turbulent combustion that are
enabled by collaboration between computer scientists and combustion scientists. First, we present a description
of the governing compressible reactive flow equations, the solution approach in the DNS solver, S3D and
the domain decomposition. Next, we demonstrate how the nodal performance of the DNS code, S3D, is
improved by careful performance analysis on a Department of Energy (DOE) Office of Science supercomputer,
the Cray XT Jaguar, followed by restructuring key data intensive kernels in S3D to reduce its memory
bandwidth requirements. Next, the issue of effective parallel I/O at scale (O(10 000) processors) using MPI-
I/O parallel shared-file I/O is addressed through a file-caching layer in the MPI-I/O library to address the
lock problem. With the optimized code and collective MPI-I/O, recent terascale simulations of an autoigniting
lifted hydrogen/air turbulent jet flame and a turbulent premixed methane–air Bunsen flame are described.
These examples illustrate the role of DNS in elucidating how combustion is stabilized in a hot coflow—with
similarities to stabilization of a lifted diesel jet flame—and understanding how the turbulent burning rate and
flame structure of a premixed flame encountering intense turbulence is affected. These DNS produce tens
of terabytes of raw data that subsequently need to analyzed and visualized to glean physical insight or to
validate models. Next, we describe how multivariate volume visualization of spatially and temporally varying
data is used to understand the correlation of dozens of reactive scalar fields together with the flow field. An
intuitive visualization interface is described along with future requirements for in situ visualization as data
sizes continue to grow. Finally, to reduce the manpower costs of managing the large and complex DNS data,
workflow automation is adopted to manage the data movement, storage and monitoring of production runs.

2. S3D formulation and numerical methods

S3D is a massively parallel DNS solver developed at Sandia National Laboratories [1]. S3D solves the
full compressible Navier–Stokes, total energy, species and mass continuity equations coupled with detailed
chemistry. These governing equations are outlined in section 2.1. The governing equations are supplemented
with additional constitutive relationships, such as the ideal gas equation of state, and models for reaction rates,
molecular transport and thermodynamic properties.

3
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2.1. Governing equations

The equations governing reacting flows may be written in conservative form as

∂ρ

∂t
= −∇β · (ρuβ), (1)

∂(ρuα)

∂t
= −∇β · (ρuαuβ) + ∇β · τ βα − ∇α p + ρ

Ns∑
i=1

Yi fαi , (2)

∂(ρe0)

∂t
= −∇β ·

[
uβ(ρe0 + p)

]
+ ∇β · (τβα · uα) − ∇β · qβ + ρ

Ns∑
i=1

Yi fαi · (Vαi + uα), (3)

∂(ρYi )

∂t
= −∇β · (ρYi uβ) − ∇β · (ρYi Vβi ) + Wi ω̇i , (4)

where ∇β is the gradient operator in direction β, Yi is the mass fraction of species i , Wi is the molecular weight
of species i , τβα is the stress tensor, fαi is the body force on species i in direction α, qβ is the heat flux vector,
Vβ j is the species mass diffusion velocity, ω̇i is the molar production rate of species i and e0 is the specific
total energy (internal energy plus kinetic energy),

e0 =
uα · uα

2
−

p

ρ
+ h (5)

and h is the total enthalpy (sensible plus chemical). Throughout this document, α, β, γ will indicate
spatial indices and i , j will indicate species indices unless stated otherwise. Repeated spatial indices imply
summation. For example, in Cartesian coordinates,

∇β · (ρuβ) =
∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
,

where u, v and w are the velocity components in the x-, y- and z-directions, respectively. Only (Ns − 1)

species equations are solved because the sum of the Ns species equations yields the continuity equation. The
mass fraction of the last species is determined from the constraint

Ns∑
i=1

Yi = 1. (6)

Assuming an ideal gas mixture, the equation of state is given as

p =
ρRuT

W
, (7)

where Ru is the universal gas constant and W is the mixture molecular weight given by

W =

(
Ns∑

i=1

Yi/Wi

)−1

=

Ns∑
i=1

X i Wi . (8)

The species mass fractions (Yi ) and mole fractions (X i ) are related by
Yi

X i
=

Wi

W
. (9)

Relevant thermodynamic relationships between enthalpy and temperature for an ideal gas mixture include

h =

Ns∑
i=1

Yi hi , hi = h0
i +

∫ T

T0

cp,i dT,

cp =

Ns∑
i=1

cp,i Yi , cp − cv = Ru/W,
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where hi is the enthalpy of species i , h0
i is the enthalpy of formation of species i at temperature T0, and cp and

cv are the isobaric and isochoric heat capacities, respectively.

2.2. Constitutive relationships

The stress tensor, species diffusion velocities and heat flux vector in equations (2)–(4) are given by [2–4]

τβα = ταβ = µ
[
∇αuβ + ∇βuα

]
− δαβ

( 2
3µ − κ

)
∇γ · uγ , (10)

Vαi =
1

X i

Ns∑
j=1

Y j

X j
Di j dα j −

DT
i

ρYi
∇α(ln T ), (11)

qα = −λ∇αT +
Ns∑

i=1

hi Jαi −

Ns∑
i=1

p

ρYi
DT

i dα j , (12)

where µ is the mixture viscosity, κ is the bulk viscosity, Di j are the multicomponent diffusion coefficients,
DT

i is the thermal diffusion coefficient for species i , λ is the thermal conductivity, Jαi = ρYi Vαi is the species
diffusive flux and dαi is the diffusion driving force for species i in direction α, given by [2–4]

dαi = ∇α X i︸ ︷︷ ︸
1

+ (X i − Yi )∇α(ln p)︸ ︷︷ ︸
2

+
ρYi

p

fαi −

Ns∑
j=1

Y j fα j


︸ ︷︷ ︸

3

. (13)

The driving force vector involves thermodynamic forces generated by gradients in concentration (term 1),
gradients in pressure (term 2) also called ‘barodiffusion’, and due to any body force such as an electrical
or gravitational field (term 3). Equation (13) allows for the possibility that the force on each species, fαi , is
different, though in the case of a gravitational field, fα j = gα, and term 3 is identically zero. In the following
sections, we will consider the fluxes given in equations (10)–(12) in more detail.

2.3. Stress tensor

For monatomic gases, κ is identically zero, and it is often neglected for polyatomic gases as well [2–4]. It will
be neglected in all discussion herein. This simplifies (10) to

τβα = ταβ = µ
(
∇αuβ + ∇βuα −

2
3δαβ∇γ · uγ

)
, (14)

which is the form that will be used for this work.

2.4. Mass diffusion flux

It should be noted that all diagonal components of the multicomponent diffusion coefficient matrix (Di i ) are
identically zero [2]. Also, the diffusive fluxes and driving forces for all species must sum to zero,

Ns∑
i=1

Jαi =

Ns∑
i=1

ρYi Vαi = 0,

Ns∑
i=1

dαi = 0. (15)

Equation (11) is often approximated as [2–5]

Vαi = −
Dmix

i

X i
dαi −

DT
i

ρYi
∇αln T , (16)

5
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where Dmix
i are ‘mixture-averaged’ diffusion coefficients given in terms of the binary diffusion coefficients

(Di j ) and the mixture composition as

Dmix
i =

1 − X i∑
j 6=i X j/Di j

, (17)

where the binary coefficient matrix is symmetric (Di j = D j i ), and the diagonal elements are zero (Di j = 0).
If we assume that body forces act in the same manner on all species and baro-diffusion (term 2 in (13) is
negligible, then (13) becomes dαi = ∇α X i . If we further neglect the Soret effect, (the second term in (11) and
(16), then (16) reduces to

Vαi = −
Dmix

i

X i
∇α X i , (18)

which, using (9), can be expressed in terms of mass fractions as

Vαi = −
Dmix

i

Yi

[
∇αYi +

Yi

W
∇αW

]

= −
Dmix

i

Yi

∇αYi − Yi W
Ns∑

j=1

∇αY j

W j

 . (19)

Studies on the effects of thermal diffusion suggest that the Soret effect is much more important for premixed
flames than for non-premixed flames, the Dufour effect is of little importance in either premixed or non-
premixed flames [6].

2.5. Heat flux

The heat flux vector is comprised of three components representing the diffusion of heat due to temperature
gradients, the diffusion of heat due to mass diffusion and the Dufour effect [2, 4–7]. In most combustion
simulations, the Dufour effect is neglected, and (12) may be written as

qα = −λ∇αT +
Ns∑

i=1

hi Jαi . (20)

All treatment here will be restricted to adiabatic systems. Although it is certainly true that radiation and other
heat-loss mechanisms are important in many combustion applications, this complication will not be considered
here.

2.6. Numerical methods

S3D is based on a high-order accurate, non-dissipative numerical scheme. The governing equations are solved
on a structured 3D Cartesian mesh. The solution is advanced in time through a six-stage fourth-order explicit
Runge–Kutta method [8]. The solution is spatially discretized using an eighth-order central differencing
scheme and a tenth-order filter is used to remove any spurious high-frequency fluctuations in the solution [9].
The spatial differencing and filtering require nine and eleven point stencils, respectively. CHEMKIN and
TRANSPORT software libraries [10, 11] were linked with S3D to evaluate reaction rates, thermodynamic
and mixture-averaged transport properties. Navier–Stokes characteristic boundary conditions (NSCBC) were
used to prescribe the boundary conditions. Non-reflecting characteristic inflow/outflow boundary conditions
[12, 13] are typically prescribed in stationary DNS configurations.

S3D is parallelized using a 3D domain decomposition and MPI communication. Each MPI process is
in charge of a piece of the 3D domain. All MPI processes have the same number of grid points and the

6
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Figure 1. Weak scaling performance of S3D on a Cray XT3 + XT4 hybrid at NCCS.

same computational load. Inter-processor communication is only between nearest neighbors in a 3D topology.
The messages for a typical problem are approximately 80 kB. A ghost-zone is constructed at the processor
boundaries by non-blocking MPI sends and receives among the nearest neighbors in the 3D processor topology.
All-to-all communications are only required for monitoring and synchronization ahead of I/O.

S3D shows good parallel performance on several architectures and can make effective use of
a large fraction of the Office of Science leadership computing platforms [14]. The rapid growth of
computational capabilities has presented significant opportunities for DNS of turbulent combustion. Increases
in computational power allow for increased grid size and/or a larger number of time steps in the simulation.
Both of these are favorable to the scientific goals by helping achieve higher Reynolds numbers, a larger
sample of turbulent structures for better statistical measures and a longer simulation time to obtain a more
complete temporal development of the turbulent flame. Increases in computational power also allow for the
solution of a larger number of species equations, thereby allowing the simulation of fuels with higher chemical
complexity. Recently, S3D has been used to perform several hero simulations of combustion problems ranging
from premixed flames (200 million grid points, 18 variables) [15], non-premixed flames (500 million grid
points, 16 variables) [16], to lifted jet flames (1 billion grid points, 14 variables) [17].

3. NCCS Cray XT platform

The NCCS Cray XT (Jaguar) in 2007 is a hybrid platform that consists of a mix of Cray XT3 and Cray
XT4 nodes. The system currently has a total of 11 706 nodes, with 11 508 configured as compute nodes.
Each compute node has a 2.6 GHz dual core AMD Opteron processor with 4 GB of memory. The remaining
198 nodes are used as service nodes. Each service node has a 2.6 GHz dual core AMD Opteron processor and
8 GB of memory. Of Jaguar’s compute nodes, 6214 are XT3 nodes, which have a peak memory bandwidth of
6.4 GB s−1. The remaining 5294 compute nodes are XT4 nodes, which are populated with 667 MHz DDR2
memory that provides a peak memory bandwidth 10.6 GB s−1.

4. S3D performance

S3D uses almost no collective communication; almost all communication is nearest neighbor point-to-point
non-blocking operations with the opportunity to overlap message communication. Thus, S3D exhibits excellent
weak scaling performance.9 Figure 1 shows results from running a model problem that uses a 50 × 50 × 50
grid per core on Jaguar. Runs exclusively on XT4 nodes consistently take approximately 55 ms per grid point

9 Weak scaling is when the problem size is directly proportional to the number of processors.
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Figure 2. Distribution of exclusive time among S3D’s procedures and loops for selected processes in a
6400 core execution.

per time step as the computation is scaled from 2 to 8192 cores, as shown by the red curve in the figure. While
runs exclusively on XT3 nodes yield similar flat weak scaling, the runs take slightly longer—approximately
68 ms per grid point per time step—due to the lower memory bandwidth of the XT3 nodes. The blue curve in
figure 1 shows the performance of the XT3 nodes.

With Jaguar’s current configuration, runs on more than 8192 cores must use a combination of XT4 and
XT3 nodes. S3D also exhibits outstanding weak scaling performance on such heterogeneous configurations,
as shown by the green curve in figure 1. However, performance is dominated by the memory bandwidth limita-
tions of the XT3 nodes when a constant problem size per core is used. Thus, the cost per grid point per time step
from 12 000 to 22 800 cores is approximately 68 ms, matching the computation rate on the XT3 cores alone.

We performed a detailed performance analysis of runs on heterogeneous allocations using TAU [18].
Figure 2 shows a quantitative breakdown of execution time among loops and procedures for two representative
processes, along with the average breakdown, in a 6400 core execution. The processes exhibit two general
equivalence classes of performance. One class, as represented by the blue bars, spends substantially longer in
MPI Wait, than the other class, as represented by the orange bars. Analysis of the metadata associated with
the execution confirmed that the processes in the first class were mapped to XT4 nodes, whereas those in the
second were mapped onto XT3 nodes. Close examination of the figure shows that some of the activities, such
as the second (REACTION RATE BOUNDS), take nearly identical time in both classes, whereas for others, such
as the third (COMPUTESPECIESDIFFFLUX), the processes on XT3 nodes take noticeably longer. Further study
of these data showed that CPU-bound computations take approximately the same time on both XT3 and XT4
nodes, whereas memory-intensive loops take longer on the XT3 nodes. Overall, these results show that overall
application performance on the hybrid system is limited by the memory bandwidth of the XT3 nodes. The
slower performance of the XT3 nodes on memory-intensive loop nests causes the XT3 nodes to arrive late at
communication events, which is reflected by the longer waiting time on XT4 nodes.

As part of the 2007 Joule metric, S3D will run a large problem on the full Jaguar installation. The
overall goal is to run a very large problem that demonstrates the addition of new chemistry capabilities to
S3D. However, completion of that problem will require outstanding single node and scaling performance.
Although S3D already performs very well on the combined machine, the clear performance limitation of the
XT3 nodes on overall performance suggests a straighforward mechanism to improve overall performance.

8
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Figure 3. Predicted average cost per grid point when balancing computational load between Cray XT3
and XT4 nodes on a hybrid system.

Specifically, we can run a smaller problem size on the XT3 nodes than on the XT4 nodes, compensating for
the approximately 24% performance degradation caused by the lower memory bandwidth of the XT3 nodes.
Overall, we conservatively estimate that a 50×50×40 grid size on the XT3 nodes will take no longer than the
50 × 50 × 50 problem takes on the XT4 nodes. By only reducing one dimension, we will minimize the coding
effort required to support heterogeneous problem sizes per task in S3D. The resulting time per grid point per
time step will then depend on the proportion of XT4 nodes to XT3 nodes, as shown in figure 3. In the current
configuration, 46% of the nodes are XT4 nodes, leading to a predicted performance of 61 ms per grid point per
time step when averaged across all of the processors in the hybrid system.

4.1. Improving the node performance of S3D

Data-intensive codes such as S3D tax the capabilities of microprocessor-based computer systems. The memory
subsystem of Jaguar’s XT3 compute nodes can deliver less than 3 B per clock cycle from memory to the
Opteron processor. For this reason, the speed of computations that do not reuse data in registers or cache is
limited by the machine’s memory bandwidth; without careful optimization, scientific codes often achieve
as little as 5–10% of peak performance on microprocessor-based systems. Therefore, restructuring S3D’s
data-intensive kernels to reduce their memory bandwidth requirements offers an opportunity for boosting
application performance.

Another motivation for restructuring S3D to reduce its memory bandwidth demands is that the XT3
and XT4 nodes in Jaguar differ in the maximum memory bandwidth that they support. Because of their
faster memory, the XT4 nodes are 24% faster, as shown in figure 1. Restructuring S3D to reduce its memory
bandwidth needs will reduce the performance disparity between the XT3 and XT4 nodes in the hybrid system.

To investigate the node performance of S3D, we used Rice University’s HPCToolkit performance
tools [19] to study a single-processor execution of a pressure wave test on a 503 domain. For the study, we
used a single node of a Cray XD1 with a 2.2 GHz Opteron 275 processor and DDR 400 memory, which
provides 6.4 GB s−1 of memory bandwidth (as on Jaguar’s XT3 nodes). For the model problem, S3D achieved
0.305 FLOPs cycle−1, which represents 15% of peak.

Using HPCToolkit, we pinpointed several data-intensive kernels in S3D that did not fully exploit the
memory hierarchy. Figure 4 shows S3D’s diffusive flux computation, which was the most costly loop nest
in the execution. The loop nest updates a 5D data structure. Two loops over the direction and the number of
species appear explicitly in the source code; other 3D loops are implicit in the Fortran 90 array operations. For

9



Computational Science & Discovery 2 (2009) 015001 J H Chen et al

Figure 4. S3D’s diffusive flux computation annotated with opportunities for reusing data values.

the model problem, this 5D loop nest accounts for 11.3% of S3D’s execution time on a Cray XD1 node. By
comparing the FLOPs executed by the loop nest and the cycles spent in it, we found that the loop nest achieves
only 4% of the theoretical peak performance.

In figure 4, the code for the diffusive flux computation is overlaid with colored markings that indicate data
reuse. Definitions and uses of the diffFlux array are underlined in red. The red arrows show how definitions
of values are reused by later statements within the DIRECTION and SPECIES loops. The outer loops also
offer a myriad of other opportunities for reusing data. References underlined in green will be used by every
iteration of the DIRECTION loop since they lack an m subscript. References underlined in blue will be used
by every iteration of the SPECIES loop since they lack an n subscript. If the code is executed as naturally
written, almost all of the values will be evicted from cache rather than being reused because each 503 slice of
the diffFlux array almost completely fills the 1 MB secondary cache.

To restructure the diffusive flux computation to exploit the potential reuse, we used Rice University’s
LoopTool utility [20], which supports source-to-source restructuring of loop nests written in Fortran. To apply
LoopTool, we outlined the loop nest into a separate file, and marked up the code with directives indicating
the transformations that it should perform. Figure 5 provides a pictorial rendering of the code restructuring
performed with LoopTool. The left side of the figure shows a diagram that represents the structure of the
original code. The green and brown arcs represent the DIRECTION and SPECIES loops. The two conditionals
are shown explicitly, though the logical predicate variables have been abbreviated. The thick red, purple, blue
and black lines represent the code’s Fortran 90 array statements.

The right side of the figure shows a diagram that represents the code after LoopTool applied the
transformations listed in the figure. Unswitching the two conditionals out of the original loop nest yields
four loop nests, each customized for a particular setting of the switches. The gray arcs in the transformed
code represent the loops over the first three dimensions of the diffFlux array that arise when LoopTool
scalarizes the Fortran 90 array notation. Within each of the four customized loop nests, all of the colored lines
representing statement instances have been fused into a single set of triply nested loops. The arc for the green
m loop is not present in the transformed code. Instead, the code has been unrolled three times; replications of
the inner loop resulting from this unrolling are indicated by the green shading. Similarly, the brown n loop has
been unrolled by two, which causes an orthogonal duplication of each of the three copies of the innermost loop
body present after unrolling the m loop. This additional duplication is shown by the left-to-right duplication
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Figure 5. Using LoopTool to optimize S3D’s diffusive flux computation on a 503 domain.

of statements shaded in brown. This figure conveys some of the complexity of the resulting code following
LoopTool’s transformations. The LoopTool-generated code for this loop nest runs 2.94 times faster than the
original. This change alone reduced the entire program’s execution time by 6.8% for a 503 problem size.

Further analysis of S3D’s node performance with HPCToolkit, tuning loops with LoopTool, and some
manual adjustment of procedure argument passing conventions to avoid copying 4D slices of a 5D array
yielded an aggregate improvement of roughly 12.7% for the 503 problem size on the Cray XD1.

5. Parallel I/O enhancement

Modern parallel file systems employ multiple file servers and disk arrays in order to sustain the high data
throughput requirement from today’s I/O intensive applications [54]. In theory, this strategy allows the
aggregate I/O bandwidth to scale as the number of storage devices increases. However, some factors both
in hardware and software prevent one from observing data transfer rates that are close to the I/O system’s
peak performance. First of all, the access granularity of a disk drive is the size of a disk sector. It is the file
system’s responsibility to enforce atomic access to disk sectors. Traditionally, file systems adopt file locking to
accomplish this task. File locking is also used for data consistency and cache coherence controls when multiple
processes operate on a shared file in parallel [55]. Obviously, when the file ranges of two lock requests conflict,
I/O must be carried out in sequence. As file systems enforcing the sector’s I/O atomicity, parallel I/O can also
be serialized when the requests conflict at the sector boundaries, even if the requests do not conflict in bytes. In
real world, parallel applications’ I/O is seldom aligned with the disk sector size and thus the I/O performance
hardly reaches the hardware potential.

It is important to address this lock contention problem particularly in the parallel environments where
applications employ multiple processes to solve a single problem. In parallel applications, the problem domain
is usually represented by a set of global data structures, such as multi-dimensional arrays, which are partitioned
among the processes. When writing the global data structures to files, it is desirable to maintain the global
canonical order. Combining the partitioned data structures from multiple clients involves concurrent write
operations to a shared file. We developed a file-caching layer in MPI-I/O library to face the lock problem
in parallel shared-file I/O [56]. This layer acts as a buffer zone between applications and the underlying file
system, providing an opportunity to reorganize the I/O requests among the MPI processes so that requests
from each process can be aligned with the system lock boundaries. We refer to this work as MPI-I/O caching.
The goal is through process collaboration to achieve better, effective client-side file caching. One immediate
benefit is to relieve the cache coherence control workload from I/O servers. While the MPI-I/O caching
handles general I/O patterns that can consist of mixed read and write operations, we have also designed a
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two-stage write-behind buffering scheme to specifically address the write-only I/O pattern, where majority of
the I/O operations in today’s parallel applications are write-only.

5.1. MPI-I/O caching

As it is designed for MPI applications, our caching system uses the MPI communicator supplied to the file
open call to identify the scope of processes that will collaborate with each other to perform file caching. To
preserve the existing optimizations in ROMIO, like two-phase I/O and data sieving, we incorporate our design
in the Abstract Device IO (ADIO) layer where ROMIO interfaces with underlying file systems [57]. To enable
the collaboration of MPI processes, the caching system needs a transparent mechanism in each process that
can run independently and concurrently with the main program. We create a thread in each MPI process when
the first file is opened and keep the threads alive until the last file is closed. With the I/O thread running in
the background to carry out the work of file I/O and caching, the program main thread can continue without
interruption. In our design, each I/O thread handles both local and remote requests to the locally cached data,
and cooperates with remote threads for coherence control.

Our caching scheme logically divides a file into equally-sized pages, each of which can be cached. The
default cache page size is set to the file system block size and is also adjustable through an MPI hint. A
page size aligned with the file system lock granularity is recommended, since it prevents false sharing. Cache
metadata describing the cache status of these pages are statically distributed in a round-robin fashion among
the MPI processes that collectively open the shared file. This distributed approach avoids centralization of
metadata management. To ensure atomic access to metadata, a distributed locking mechanism is implemented
where each MPI process manages the lock requests for its assigned metadata. Metadata locks must be obtained
before an MPI process can freely access the metadata, cache page, and the file range corresponding to the page.

To simplify coherence control, we allow at most a single cached copy of file data among all MPI
processes. When accessing a file page that is not being cached anywhere, the requesting process will try
to cache the page locally, by reading the entire page from the file system if it is a read operation, or by reading
the necessary part of the page if it is a write operation. An upper bound, by default 32 MB, indicates the
maximum memory size that can be used for caching. If the memory allocation utility, malloc( ) finds enough
memory to accommodate the page and the total allocated cache size is below the upper bound, the page will be
cached. Otherwise, under memory pressure, the page eviction routine is activated. Eviction is solely based on
only local references and a least-recent-used policy. If the requested page is already cached locally, a simple
memory copy will satisfy the request. If the page is cached at a remote process, the request is forwarded to the
page owner. An example I/O flow for a read operation is illustrated in figure 6 with four MPI processes. In
this example, process P1 reads data in file page 7. The first step is to lock and retrieve the metadata of page 7
from P3 (7 mod 4 = 3). If the page is not cached yet, P1 will cache it locally (into local page 3) by reading
from the file system, as depicted by steps (2.a) and (3.a). If the metadata indicates that the page is currently
cached on P2, then an MPI message is sent from P1 to P2 asking for data transfer. In step (3.b), assuming file
page 7 is cached in local page 2, P2 sends the requested data to P1. When closing a file, all dirty cache pages
are flushed to the file system. A high water mark is used in each cache page to indicate the range of dirty data,
so that flushing needs not always be an entire page.

5.2. Two-stage write-behind buffering

We used our MPI-I/O caching design as a basis for constructing a two-stage write-behind method to focus
on improving the performance of write-only operations. Although MPI-I/O caching can handle I/O mixed
with read and write operations, this write-behind method has two restrictions: the file must be opened in
the write-only mode and the MPI atomic mode must be set to false. The former is indicated by the use of
MPI MODE WRONLY in MPI File open( ) and the later is the default mode in MPI I/O. In the first stage of this
method, write data are accumulated in local buffers along with the requesting file offset and length. Once the
local buffer is full, the data are sent to the global buffer at the second stage. Double buffering is used so one
buffer can accumulate incoming write data, whereas the other is asynchronous sent to the global buffer. The
global buffer’s assignment consists of file pages statically distributed among the MPI processes that collectively
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Figure 6. Example of the I/O flow in MPI-I/O caching where MPI process P1 reads data from logical
file page 7.

open a shared file. A file is logically divided into equally sized pages with each page bound to a single MPI
process in a round-robin striping scheme. Accordingly, page i resides on the process of rank (i mod nproc),
where nproc is the number of processes. To minimize lock contention in the underlying file system, the default
page size is set to the file system stripe size, but it is adjustable through an MPI hint.

The first-stage local buffer is separated into (nproc − 1) sub-buffers: each of which are dedicated to
a remote MPI process. When accumulating in the local buffer, write data are appended to the sub-buffer
corresponding to its destination MPI process. The default size for each local sub-buffer is 64 kB, but can be
changed by the application through an MPI hint. Global file pages reside in memory until their eviction is
necessary. Figure 7 illustrates the operations of the two-stage write-behind method. In this example, there
are four MPI processes and each has three first-stage local sub-buffers. Each sub-buffer is corresponding to a
remote process. At P2, when the sub-buffer tied to P1 is full, it is flushed to P1. After receiving the flushed
data from P2, P1 redistributes it to the global pages based on the included offset-length information.

Since the global buffer is distributed over multiple processes, each process must be able to respond to
remote requests for flushing the first-stage write-behind data. Similar to the caching implementation, we use
the I/O thread approach to permit the process collaboration without interrupting the main program thread.
Each process can have multiple files opened, but only one thread is created. Once an I/O thread is created, it
enters an infinite loop to serve both local and remote write requests until it is signaled to terminate by the main
thread.

5.3. I/O kernel benchmark

We evaluated the S3D I/O kernel on two machines at the National Center for Supercomputing Applications:
Tungsten and Mercury. Tungsten runs a Red Hat Linux operating system and the compute nodes are inter-
connected by both Myrinet and Gigabit Ethernet communication networks. A Lustre parallel file system
version 1.4.4.5 is installed on Tungsten. Output files are saved in a directory configured with a stripe count
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Figure 7. Design of two-stage write-behind buffering.

of 16 and a 512 kB stripe size. Mercury runs a SuSE Linux operating system and the compute nodes are
also inter-connected by both Myrinet and Gigabit Ethernet. Mercury runs an IBM GPFS parallel file system
version 3.1.0 configured in the Network Shared Disk server model with 54 I/O servers and 512 kB file block
size. MPI-I/O caching is implemented in the ROMIO layer of MPICH version 2-1.0.5, the latest thread-safe
version of MPICH2 at the time our experiments were performed. Support for thread safety is limited, however,
to the default sock channel of MPICH2; thereby restricting inter-process communication in our experiments to
the slower Gigabit Ethernet. We used a 512 kB page size for both MPI-I/O caching and the two-stage write-
behind method. Setting the cache page size to the file system stripe size aligns all write requests to the stripe
boundaries and hence lock boundaries.

In the S3D-I/O kernel, a checkpoint is performed at regular intervals, and its data consist primarily of
the solved variables in 8 B 3D arrays, corresponding to the values at the 3D Cartesian mesh points. At each
checkpoint, four global arrays are written to files and they represent the variables of mass, velocity, pressure
and temperature, respectively. Mass and velocity are 4D arrays, whereas pressure and temperature are 3D
arrays. All four arrays share the same size for the lowest three spatial dimensions X , Y and Z , and they are all
partitioned among MPI processes along X–Y –Z dimensions in the same block–block–block fashion. For the
mass and velocity arrays, the length of the fourth dimension is 11 and 3, respectively. The fourth dimension is
not partitioned.

In the original S3D, file I/O is programmed in Fortran I/O functions and each process writes its sub-arrays
to a new, separate file at each checkpoint. We added a functionality of using MPI I/O to write the arrays into
a shared file in their canonical order. With this change, there is only one file created per checkpoint, regardless
of the number of MPI processes used. Figure 8 shows the data partitioning pattern on a 3D array and the
mapping of a 4D sub-array to the global array in file. 3D arrays can be considered a special case with a fourth
dimension length of one. For performance evaluation, we keep the size of partitioned X–Y –Z dimensions a
constant 50×50×50 in each process. This produces about 15.26 MB of write data per process per checkpoint.
As we increase the number of MPI processes, the aggregate I/O amount proportionally increases as well.
Given the array sizes, it is clear that the S3D I/O does not generate write request offsets that are aligned with
file system lock boundaries. Thus, conflict locks due to false sharing and I/O serialization are expected.
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We measure the execution time and calculate the write bandwidth for running ten checkpoints. Figure 9
shows the write bandwidth results for using Fortran I/O, MPI collective I/O natively, collective I/O with MPI-
I/O caching and independent I/O with the two-stage write-behind method. Fortran I/O has significantly better
performance than the others cases on Lustre, but this situation changes on GPFS. On GPFS, Fortran I/O is even
worse than the MPI-I/O caching for 64 and 128 processes. Further investigation by separately measuring the
file open time of ten checkpoints shows that file open costs increase more dramatically on GPFS than Lustre
when scaling the number of processes. Lustre seems to handle larger number of files more efficiently than
GPFS. As for the MPI-I/O performance, we observe that MPI-I/O caching outperforms the native collective
I/O on both GPFS and Lustre. This improvement is the effect of I/O alignment with the file system lock
boundaries.

The two-stage write-behind behaves differently on each file system in that it is worse than the native
collective I/O on GPFS, but outperforms the MPI-I/O caching on Lustre. We think write-behind performance
is worse because the S3D-I/O pattern results in many remote data flushes from the local first-stage to global
second-stage buffers. Note that the native MPI-I/O case uses collective I/O functions, whereas the write-
behind method uses independent I/O functions. It has been reported in [58] that using independent I/O
natively results in significantly worse write bandwidth than using collective I/O. This is because there is a
significant difference in the number of the write requests to the file system. Compared to the use of native
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independent writes that produces I/O bandwidth less than 5 MB per second, our write-behind method shows a
clear improvement and achieves a bandwidth close to, or better than, the collective I/O method.

In fact, both the MPI-I/O caching and two-stage write-behind methods have their own advantages and
disadvantages. As we described earlier, the distributed lock protocol used in MPI-I/O caching to maintain the
cache metadata integrity incurs a certain degree of communication overhead. Because the write-behind method
deals with write-only patterns, no coherence control is required at all. MPI-I/O caching allows the first process
that requests a page to buffer it locally; thereby, taking advantage of data locality and increasing the likelihood
of local cache hits. In contrast, since the second-stage buffers of the write-behind method are statically assigned
across MPI processes in a round-robin fashion, the data written by a process in the first-stage buffers will most
likely need to be flushed to remote processes.

The S3D-I/O experiments demonstrate the significance of aligning the I/O requests with the file system
lock boundaries. In fact, enforcing POSIX semantics such as I/O atomicity has become substantial obstacles
to parallel file systems for efficiently handling shared-file I/O at sustained I/O rates close to the maximum
network bandwidth. Since the primary I/O patterns of large-scale parallel applications are write-only and
non-overlapping, enforcing strict semantics like POSIX atomicity is not always necessary. We plan to add a
mechanism in MPI-I/O caching to selectively relax the atomicity requirement. Our current design for MPI-
I/O caching conservatively chooses to keep at most a single copy of cached file data. Although simplifying
coherence control, this restriction increases the likelihood of remote cache page access over local accesses. We
will investigate a new implementation that allows multiple cached copies of the same file date. We also plan
to explore other issues such as cache load rebalancing and data prefetching.

6. DNS of a lifted turbulent jet flame in vitiated coflow

6.1. Introduction

Turbulent lifted flames have been widely investigated due to their important role both in practical applications
such as direct injection stratified spark ignition engines, diesel engines and commercial boilers, and in
understanding fundamental combustion phenomena as a building-block flame in turbulent combustion. In
particular, the stabilization mechanism of a lifted flame base has drawn great attention because the lifted
flame base determines the overall flame stability and the characteristics of combustion systems [21–23].
Despite the importance of flame base stabilization, however, there has thus far been little consensus among
researchers regarding the dominant mechanism which stabilizes the lifted flame base, not only because of the
complex structure and propagation characteristics of turbulent lifted flames, but also because of the difficulty
in obtaining time-series multi-scalar velocity measurements.

Several theories have been proposed to explain the stabilization mechanism of turbulent lifted flames [21].
In general, these theories can be categorized into five different groups depending on the degree of premixedness
of the mixture upstream of the lifted flame base and on the scale of the turbulence structure: premixed flame
theory, non-premixed flamelet theory, edge flame theory, turbulence intensity theory and large eddy theory. In
spite of the proposed theories, it is still highly controversial as to what the stabilization mechanism is. Definitive
evidence substantiating a dominant stabilization mechanism is still unattainable due to inherent limitations in
scalar-velocity measurements. Recently, autoignition was proposed as an additional stabilization mechanism
of lifted flames in a heated coflow [24]. As a consequence of the stabilizing influence of autoignition, the
recirculation region of hot combustion products is often used to stabilize a lifted flame in practical combustors.
For example, in diesel engines, fuel is injected and mixed with a heated oxidizer coflow in the chamber at
temperatures above the ignition limit, such that the stability and overall characteristics of the lifted flame and
soot processes are highly affected by the heated oxidizer stream [25]. Thus, to investigate the stabilization
mechanism of a turbulent lifted hydrogen jet flame in a heated coflow, 3D DNS with detailed hydrogen/air
chemistry was performed. The role of autoignition resulting from the heated coflow is examined in detail to
determine the stabilization mechanism of the flame. In addition, the flame structure is characterized at different
axial locations downstream of the burner exit in terms of conditional flame statistics.
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Figure 10. Instantaneous image of HO2 and OH from DNS of a lifted hydrogen/air jet flame.

6.2. Problem configuration

The simulation was performed in a 3D slot-burner configuration. Fuel issues from a central jet, which consists
of 65% hydrogen and 35% nitrogen by volume with an inlet temperature of 400 K. The central jet is surrounded
on either side by coflowing heated air at 1100 K. This temperature is greater than the crossover temperature
of hydrogen/air chemistry, such that the mixture upstream of the flame base is autoignitable. A uniform grid
spacing of 15 µm was used in the streamwise direction, x and spanwise direction, z, whereas an algebraically
stretched mesh was used in the transverse direction, y. The domain size is L x , L y , L z = 2.4, 3.2, 0.64 cm3

with 1600, 1372 and 430 grid points. The slot width and fuel jet velocity are, respectively, 1.92 mm and
347 m s−1 and the jet Reynolds number is 11 000. Based on local turbulence intensity and length scale, the
turbulent Reynolds number is 360 at the 1/4th streamwise location along the jet centerline. To facilitate
the simulation, the central hydrogen/nitrogen jet is ignited by artificially imposing a high-temperature region in
the central jet. Based on the prescribed inlet jet velocity and the streamwise domain length, a flow-through time
is approximately 0.07 ms. The solution was advanced at a constant time step of 4 ns through 12 flow-through
times to provide stationary statistics. The simulation was performed on the 50 Tflop Cray XT3 at Oak Ridge
National Laboratories and required 3.5 million CPU-hours running for 10 days on about 10 000 processors.

6.3. Results and discussion

The global structure of the flame stabilization base is revealed from instantaneous images of the flame structure
at different times [17]. Figure 10 shows a 3D volume rendering of the mass fraction of OH (YOH) and HO2

(YHO2) at t = 0.40 ms. At first glance, one can see that fine flow structures upstream of the flame base are
readily dissipated as the flow traverses downstream, primarily due to the effect of heat release by the flame. In
addition, the flame base marked by OH isocontour is highly irregular and strongly affected by the instantaneous
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Figure 11. Temperature versus mixture fraction at different axial positions downstream of slot.

local flow and mixture conditions. Therefore, the stabilization of the lifted jet flame is a highly localized, and
not a global phenomenon. Also note that HO2 radical accumulates upstream of OH and other high-temperature
radicals such as H and O, which are not shown here. HO2 radical is a precursor of autoignition in hydrogen/air
chemistry such that its existence upstream of other intermediate radicals provides strong evidence that the
lifted flame base is stabilized by autoignition by heated coflow rather than by flame propagation.

To understand the stabilization mechanism and flame structure from the statistical point of view, scatter
plots of temperature versus mixture fraction at different axial locations at t = 0.42 ms are presented in
figure 11. Open circles and diamonds represent, respectively, the conditional mean and standard deviation of
temperature. The frozen inflow and equilibrium temperature are also represented by dashed lines. Similar to the
instantaneous plots, temperature first increases in a fuel-lean mixture, and subsequently the peak shifts toward
richer mixtures, clearly indicating that ignition occurs first under hot, fuel-lean conditions where ignition
delays are shorter. This has also been demonstrated in previous 2D DNS of auto-ignition in an inhomogeneous
hydrogen/air mixture [26].

In summary, 3D DNS of a turbulent lifted hydrogen/air jet flame in an autoignitive heated coflow
was performed using detailed chemistry and mixture-averaged transport properties. The results show that
autoignition is the key mechanism responsible for flame stabilization, and HO2 radical is important in initiating
the autoignition ahead of the flame base. Autoignition is found to occur primarily in hot, fuel-lean regions
where the scalar dissipation rate, or local mixing rate, is low and developing ignition kernels are sheltered
from radical and heat losses.

7. Simulation of premixed combustion under intense turbulence

7.1. Introduction

Premixed combustion under intense turbulence is of fundamental interest due to its relevance to practical
applications such as lean premixed stationary gas turbines. Premixed flames under lean conditions tend to be
thicker, propagate slower and the flame structure is more susceptible to the influence of turbulence. Recently,
Peters [27] has provided a model for flame propagation in the regime where the turbulence scales are capable of
penetrating and influencing the preheat zone, but are incapable of penetrating the reaction zones. This regime
is called the thin reaction zones (TRZ) regime.
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Premixed flame structure consists of a broader preheat layer upstream of a narrower reaction layer. Usual
modeling approaches for the TRZ regime assume that the turbulent eddies can enter and influence the preheat
layer—but the reaction zone, being thinner than the preheat layer by an order of magnitude, is not penetrated.
The assumption of an order of magnitude disparity in the thickness of the preheat layer versus the reaction
layer is based on theoretical analysis of the flame structure using activation energy asymptotics. In practical
fuels such as methane–air, especially at lean conditions, the preheat layer is only approximately three times
wider than the reaction layer. It needs to be determined if the reaction layer indeed stays intact in the TRZ
regime despite the fact that it is not as thin as commonly assumed.

It is also not clear whether the flame dynamics in this regime are dominated by the entrainment of small
eddies into the flame structure or by the large-scale flow straining which does not alter the flame structure.
The penetration of the local flame structure by small eddies is expected to cause thickened flames in the TRZ
regime [27, 28]. However, the competitive effect of the large-scale structure is expected to thin the flame.
Thus, it is unclear whether flames are thicker or thinner in the TRZ regime. Several experimental studies
in this regime have reported [29, 30] thicker flames, whereas others have reported thinner flames [31, 32].
Computations have also not yet delivered a definitive result. 1D linear eddy model computations [33] show
thickened flames and 3D DNS [34] show there is some probability of encountering thicker flames, but more
likely flames are thinner. 2D decaying turbulence simulations [35] and 3D expanding flame simulations [36]
found that, on average, the flame gets thinner. These results, not only contradict the common theoretical
description of the flame structure [28], but are also inconclusive due to the lack of realism in 2D turbulence
and the lack of statistical stationarity in the expanding flame configuration.

Here, 3D fully resolved DNS of turbulent premixed combustion are performed in a spatially developing
slot-burner Bunsen flame configuration with a detailed methane–air chemical mechanism. Three simulations
in the TRZ regime at successively higher turbulence intensities have been performed as part of a parametric
study. Data are analyzed to obtain statistical measures of the influence of turbulence on flame structure. In
particular, the effect of turbulent strain on preheat layer thickness and the integrity of the reaction layers are
studied.

7.2. Problem configuration

The simulation was performed in a slot-burner Bunsen flame configuration. The slot-burner Bunsen
configuration is especially interesting due to the presence of mean shear in the flow and is similar in
configuration to the burner used in experimental studies, for example by Filatyev et al [37]. This configuration
consists of a central reactant jet through which premixed reactants are supplied. The central jet is surrounded
on either side by a heated coflow, whose composition and temperature are those of the complete combustion
products of the reactant jet. This arrangement is similar to the pilot flame surrounding slot burners commonly
used in experiments [37]. The reactant jet was chosen to be a premixed methane–air jet at 800 K and mixture
equivalence ratio, φ = 0.7. The unstrained laminar flame properties at these conditions computed using
PREMIX [38] are as follows:

(a) flame speed, SL = 1.8 m s−1,

(b) thermal thickness based on maximum temperature gradient, δL = 0.3 mm,

(c) full-width at half-maximum (FWHM) of heat release rate, δH = 0.14 mm, and

(d) flame timescale, τf = δL/SL = 0.17 ms.

One of the reasons for choosing a preheated inflow condition is that the cost of computation is inversely
proportional to the Mach number at the inflow. Preheating the reactants leads to a higher flame speed and
allows a higher inflow velocity without blowing out the flame. Also, many practical devices such as internal
combustion engines, gas turbines and recirculating furnaces operate at highly preheated conditions. One
important consequence of preheating is that the reaction zone is broadened at 800 K (δL/δH = 2) compared to
300 K (δL/δH = 3). However, the preheat temperature chosen here is low enough that flameless combustion
does not occur.

A parametric study was performed to investigate the effect of increasing turbulence intensity on lean
premixed combustion. The problem configuration, mixture equivalence ratio and temperature are the same for
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Table 1. Simulation parameters.

Case A Case B Case C
Slot width (h) 1.2 mm 1.2 mm 1.8 mm

Domain size in the streamwise,
crosswise and spanwise directions 12h × 12h × 3h 20h × 12h × 3h 20h × 12h × 3h

Number of grid points 52 million 88 million 195 million
Turbulent jet velocity (U ) 60 m s−1 100 m s−1 100 m s−1

Laminar coflow velocity 15 m s−1 25 m s−1 25 m s−1

Jet Reynolds number (Rejet = Uh/ν)a 840 1400 2100
Turbulence intensityd (u′/SL) 3 6 10
Turbulence length scaleb,d (lt/δL) 0.7 1 1.5
Integral length scalec,d (l33/δL) 2 2 4
Turbulence Reynolds number (Ret = u′l33/ν)a 40 75 250
Karlovitz number (δL/ lk)

2 100 100 225
Damkohler number (SLL t/u′L) 0.23 0.17 0.15

a Kinematic viscosity at the inflow conditions, ν = 8.5e − 5 m−2 s−1, is used to compute Reynolds
number.
b Turbulence length scale lt is estimated as lt = u′3/ε̃, where ε̃ is the average turbulent kinetic energy
dissipation rate.
c Integral length scale l33 is defined as the integral of the auto-correlation of the spanwise component
of velocity in the spanwise direction.
d The turbulence scales evolve from the synthetic turbulence specified at the inflow. The u′, lt and l33

values reported here are at the 1/4th streamwise location along the jet centerline.

all three simulations. However, they differ in the domain sizes and inflow turbulence conditions. The simulation
parameters are given in table 1. A uniform grid spacing of 20 µm was used in the streamwise, x and spanwise,
z directions, whereas an algebraically stretched mesh was used in the transverse, y direction. Although the
uniform grid spacing at the center of the jet ensures numerical fidelity and flexibility in post-processing, the
boundaries are pushed farther away to reduce their influence on the flame.

7.3. Results and discussions

A reaction progress variable, c is defined such that it is a linear function of the mass fraction of O2 and varies
from c = 0 in the reactants to c = 1 in the products. Based on the laminar flame solution at the chosen
reactant conditions, the heat release is a maximum at c = 0.65. Therefore, the iso-surface corresponding to
c = 0.65 is taken as the flame surface. Figure 12 shows the instantaneous flame surface for the three cases. In
all three cases the flame is initially planar at the inlet, but is wrinkled within a short distance in the downstream
direction. Also the scale of wrinkling increases in the downstream direction. Comparing the three cases, it is
seen that the amount of wrinkling increases from case A to case C. Also there is a significantly higher amount
of flame–flame interaction in cases B and C compared to case A. The flame–flame interaction leads to pinch
off as evident in the far downstream location in case A. This effect is more pronounced in cases B and C
where the pinch off is noticed further upstream. In case C, the pinch off and mutual annihilation of flame
surface due to interaction are found to occur even at locations very close to the jet inlet. This shows that the
flame–flame interaction is a dominant mechanism limiting the flame surface area generated by wrinkling due to
turbulence. Another interesting observation is that the shape of the flame is mostly convex toward the products
and forms sharper cusps towards the reactants. This is contrary to the expected behavior for a Huygens-type
self-propagation and is evidence that the flame topology is strongly influenced by turbulent straining.

Here, the data from the DNS are analyzed to determine if, on average, the flame thickness increases or
decreases relative to a laminar flame. The reciprocal of the magnitude of progress variable gradient, 1/|∇c|
yields a flame thickness analogous to the definition used for the laminar thermal thickness L . |∇c| is averaged
over intervals of c and compared with the unstrained laminar flame profile in figure 13. In [15], the conditional
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Case A Case B Case C

Figure 12. Instantaneous iso-contour of the progress variable (c = 0.65) representing flame surface for
cases A, B and C.

mean of |∇c| was presented for case A and the results showed that the mean |∇c| was lower in the turbulent
flame than in a laminar flame, which indicated flame thickening. Here, the same analysis is also applied to cases
B and C, to verify if the flame continues to get thicker as the turbulence intensity is increased. A comparison
of case A with case B in figure 13 shows that the mean gradients are further reduced. This again indicates an
increase in flame thickening due to the increase in turbulence intensity from u′/SL between 3 and 6. However,
a comparison of case B with case C shows that there is negligible increase in flame thickness even though the
turbulence intensity was increased from u′/SL between 6 and 10. This is a very interesting result and shows
that any further increase in turbulence intensity beyond a threshold level does not result in thicker flames.

8. Visualization for validation and discovery

Knowledge discovery from terabytes of raw data is a daunting task due to the sheer size and the complexity
of the temporally evolving intermittent phenomena. Manipulating terabytes of data will undoubtedly stress
the network and the storage infrastructure, and data in the future will inevitably increase in size as petascale
leadership class computers become imminent in 2009. Moreover, the difficulty of knowledge discovery is also
compounded by the complexity of the turbulent autoignition and flame phenomena being studied, and the
complex relationship between several dozen reacting scalar fields together with the turbulence field.
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Figure 13. Conditional means of |∇c| compared to the laminar flame profile for the three simulations.
The means are computed at three chosen streamwise locations corresponding to 1/4, 1/2 and 3/4th of
the domain length in the stream-wise direction.

Researchers at the SciDAC Institute for Ultrascale Visualization and University of California at Davis
(UC Davis) are developing new visualization technologies that will provide scientists with the tools to validate
their simulations and to discover new phenomena from petabytes of simulated data [39].

8.1. Multivariate visualization

To understand the correlation of scalar fields such as temperature, mixing rates and species concentrations
in turbulent flames, we need the capability to visualize two or more scalars simultaneously. Conventional
visualization tools do not directly support this need. The common practice is to make side-by-side comparisons
of images of different variables by hand, which is tedious and time consuming. Furthermore, the information
that can be derived by looking at separate images is quite limited. Thus, we need effective methods for
simultaneously visualizing multiple time-varying variables from large data sets in an interactive fashion.

In many fields not limited to combustion, the capability to simultaneously visualize different variables that
describe the same spatial domain and to determine their correlations is very desirable. In a multidisciplinary
computing environment, for example, several engineering analysis programs such as structural and flow solvers
run concurrently and cooperatively to perform a multidisciplinary design. The goal might be to identify the
relevant design variables that can explain a particular phenomenon’s causes, such as the effect of high strain
rate or mixing rate on local flame extinction or stabilization. Other examples include the need to visualize data
from multimodalities in medical imaging, and the desire to compare simulation and experimental data in many
engineering design studies.

To visualize data from S3D, however, we are concerned only with rendering scalar volume data on
the same mesh, which is a simpler problem than multimodality volume visualization in medical imaging
or comparative visualization of simulated scientific data from different codes. The techniques we have
developed can generate effective visualizations that reveal interaction and causal effect between different
scalar properties of the same flow domain. Our approach to the simultaneous visualization problem is to
use hardware-accelerated volume rendering, user-controlled data fusion and mixed rendering styles [40].
Interactive rendering lets users freely change rendering and visualization parameters, as well as data-fusion
schemes. Rendering different volumes with different styles, if done appropriately, can enhance perception of
shape, structure and spatial relationship. The data-fusion problem here is to determine how to display multiple
data values defined at the same spatial location.

A few approaches prove effective for simultaneously visualizing an S3D simulation of a turbulent jet
flame undergoing local extinction and reignition [40]. To understand the strong coupling between turbulence,
the turbulent mixing of scalars such as temperature and species concentrations, and reaction, it is helpful to
render the stoichiometric mixture fraction isoline overlaid on the scalar dissipation rate (that is, local mixing
intensity) image and on the hydroxyl radical concentration image. Doing so will identify the actively burning
flame surface relative to these other quantities.
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Figure 14. Simultaneous visualization two variables. Left: mixture fraction isosurface (gold) and HO2.
Middle: mixture fraction isosurface and OH. Right: OH and HO2.

In another simulation using S3D for modeling an autoignitive lifted turbulent hydrogen/air jet flame,
simultaneous visualization of the stoichiometric mixture fraction isosurface and the hydroperoxy radical
(HO2) shows that autoignition occurs in fuel-lean mixtures where the temperature is higher, the mixing rates
are lower and ignition delay times are shorter. HO2 is a good marker of autoignition regions preceding the
high-temperature lifted flame base as discussed earlier. The image sequence generated with the simultaneous
visualization techniques shows unambiguously that the H2/air flame in heated coflow is stabilized by
autoignition. The simultaneous visualization of these two key quantities in non-premixed autoignitive
combustion are necessary to determine the spatial relationship between localized autoignition and the location
of the high-temperature flame base which resides downstream of the HO2 and at the stoichiometric mixture
fraction where the ideal proportions of fuel and oxidizer are brought together. Figure 14 displays selected
simultaneous visualization examples.

8.2. Visualization interface

The ability to simultaneously visualize multiple variables is very powerful. However, the relationship between
these variables is often nontrivial, requiring repeated exploration in the data’s temporal, spatial and variable
domains. An easy-to-use, interactive interface for specifying different combinations of multivariate data
visualization is therefore desirable. We have developed an interface based on parallel coordinates and time
histograms [41] that effectively supports time-varying multivariate feature extraction. Figure 15 shows the
visualization interface. In the parallel coordinate interface, selected points in the three-variable space are
represented as polylines with vertices on the parallel line segments. The parallel-coordinate interface can thus
show the relationships between two or more variables or time steps. The time-histogram interface displays each
variable’s temporal characteristic and helps users identify time steps of interest. Together with volume, surface
and cutting-plane visualizations, these different views of the data are tightly coupled to facilitate trispace data
exploration [42].

The above trispace visualization interface design is being deployed in a desktop setting. We will extend
this interface design to support animating features of interest enabling scientists to track the evolution of
features of interest—e.g. ignition kernels, extinction holes—in time. In particular, the new system will make it
possible to produce animations with much greater ease.

8.3. In-situ visualization

For extreme-scale combustion simulations, massive I/O requirements render traditional feature extraction
and tracking approaches unusable. The source data sets are typically comprised hundreds of instantaneous
snapshots, presently each 50–150 GB in size, containing evolution data for dozens of 3D scalar and vector
field components (fluid velocity, molecular species concentrations, temperature, density, etc). Moreover, the
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Figure 15. Interactive visualization to find negative spatial correlation between variables χ and OH
near the isosurface of mixture fraction (mixfrac) over time. Three user-interface components are
shown including the multivariate view for timestep 39, the temporal view for three variables where the
X - and Y -axes correspond to time step and data value, respectively, and the spatial views for time
steps 39 and 97. In the multivariate view, the transfer function widgets of chi and mixfrac are used as
the brushing tool, thus highlighting voxels of yellow thin flow features shown in the spatial view near
the blue isosurface. The temporal view shows the histogram of the voxels over time in blue as well
as the temporal transfer functions.

features are typically specified in terms of data such as kinetic rates, thermodynamic quantities or transport
characteristics, which are derived from the original data. To ensure the fidelity of these derived quantities, a
significant portion of the solver used to generate the data is reused, e.g. chemistry, thermodynamic, transport
properties, derivative stencils, interpolants, etc. Data sets of this magnitude, even when limited to just the
primitive state data, cannot be loaded en masse into computer memory prior to analysis; the data must be split
into subsets and staged for processing. Furthermore, the data are typically archived to mass-storage systems
shortly after being written to disk by the simulation software in order to make space for the subsequent time
snapshots. Retrieving simulation data for further analysis therefore must include transferring the necessary
files from the mass-storage device onto active disks. All these challenges strongly suggest an in situ approach.

Investigations have begun on how to conduct in situ feature extraction and visualization for S3D.
Compared with a traditional visualization task that is performed in a post-processing fashion, in situ
visualization brings some unique challenges [43]. First of all, the visualization code must interact directly
with the simulation code, which requires both the scientist and the visualization specialist to commit to this
integration effort. To optimize memory usage, strategies need to be developed for simulation and visualization
codes to share the same data structures. Secondly, visualization load balancing is more difficult to achieve
since the visualization has to comply with the simulation architecture and builds tightly coupled with it. Unlike
parallelizing visualization algorithms for standalone processing where we can partition and distribute data best
suited for the visualization calculations, for in situ visualization, data partition and distribution is dictated by
the simulation code. Moving data frequently among processors is not an option for visualization processing.
We need to retool to balance the visualization workload so the visualization is at least as scalable as the
simulation. Finally, the visualization calculations must be low cost, with decoupled I/O for delivering the
rendering results, while the simulation is running. Since the visualization calculations on the supercomputer
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cannot be hardware accelerated, alternative methods must be developed to simplify the calculations such that
adding visualization would present only a small overhead on top of the cost of the simulation.

Further studies are required for in situ processing and visualization to understand the impact of this
approach on S3D, subsequent visualization tasks, and the entire scientific discovery process employing
extreme-scale computing.

9. Workflow for S3D

The terascale S3D DNS simulations enabled by large allocations of computing time through the DOE INCITE
awards on leadership class computers are producing 30–130 TB of data per simulation, creating a significant
challenge for data management, movement and analysis and visualization. We believe workflow automation
will help us maintain our scientific productivity as we move toward petascale computing.

The overall goal of automating the workflow for monitoring the S3D code is to reduce manpower cost of
managing large and complex data generated by this code. Currently, the S3D code is producing three types of
data files/data types at various data generation rates. These files are: (i) restart files which contain the bulk of
the analysis data, (ii) netcdf analysis files [44], used to monitor specific quantities from the S3D codes, more
frequently than the restart files, and finally (iii) ASCII files which contain both the minimum and maximum
volume average data from the S3D code. These data must be archived to local disk, morphed from N-files for
the restarts, to M-files, moved over from ORNL to Sandia for local data analysis, and archived to the High
Performance Storage System [45] at ORNL. Furthermore, we would like to visualize the fields in the netcdf
files, plotting both xy-plots and colormap/contour plots. Since the data that are generated by the S3D code can
potentially be extremely large, we must use effective ways to move data around, using secure methods. We
must also be able to track the provenance of these files, so that we can recover from failures across the wide
area network.

The Kepler [46] workflow system is adopted to automate the S3D workflow. Kepler is an open-source
scientific workflow system developed with the collaboration of several projects of different scientific and
technology areas. Kepler is based on Ptolemy II [47], a modeling tool for heterogeneous, concurrent systems.
The main advantage of Ptolemy II lies in a modeling and design paradigm called actor-oriented modeling
[48, 49], in which the data-centric computational components (actors) and the control-flow centric scheduling
and activation mechanisms (frameworks) are clearly separated, an essential way to deal with the complex
design issues of scientific workflows. In Kepler, a scientific workflow is viewed as a graph of independent
components called actors where the edges denote the communication links between them, and parameters
to customize their behavior. The execution semantics of the graph of connected actors is specified by a
separate director, which defines how actors are executed and how they communicate with one another. A
Kepler actor itself can be a nested workflow, even under the control of a different director than the top level.
During workflow execution, tokens, encapsulating data, flow among the actors according to the schedule
determined by the director. Workflows, exploiting the functionality of the underlying workflow system, provide
many advantages beyond simply automating the mundane tasks like archiving data; they allow for real-time
monitoring of simulations in progress, and they can track the provenance of the data and the workflow in real-
time. We choose to use a workflow instead of a scripting language such as Python because of its ability to deal
with concurrent and pipelined operations, such as graphing a particular file, at the same time as another actor is
transferring the next file. Kepler is also being extended to support the integration of provenance tracking, for the
workflow as well as for the data, which can greatly help the scientist to find the original data sets contributing to
a particular image or to compare different experiments. Scientific workflows can exhibit different features, i.e.
service orientation and data analysis, user interaction and leadership class computing. Each of these different
classes of workflows attempts to highlight different aspects and technical capabilities of scientific workflows.

In our case, the main aspects of that we will use come from the Center for Plasma Edge Simulations
(CPES) SciDAC project [50]. In this project, we have developed a custom set of actors in Kepler to solve
common tasks in high-performance computing within scientific workflows, which are used here to work
with the S3D workflow as well. One of the main actors that we use in the S3D-monitoring workflow is the
ProcessFile actor that models the execution of an operation on a remote file as a (sub-) workflow itself. It
uses an ssh connection to execute a command on a remote system, parameterized by the filenames, which are
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Figure 16. S3D Kepler workflow.

passed along through the workflow. It also keeps a checkpoint on the successfully executed actions, writes
operation errors into log files and lists the result of the operation. It is designed in a way that long pipelines
of file processing can be constructed conveniently, just varying the actual commands for each stage. In case
the workflow is stopped and restarted, the automatic check pointing within this actor allows the workflow
to skip steps that had already been accomplished, while retrying the failed ones; without any further need
in the workflow construction to deal with the restarts and thus, keeping the workflow design clean and
straightforwardly simple. If there are failures during the data processing, the workflow can be restarted later
and the files that were not processed can continue, even after the simulation. This form of fault tolerance
allows the users to concentrate on the science and not the mundane task of keeping track of the file movements
manually. The commands executed remotely range from utilities like tar and scp to Python scripts created to
take care of various aspects of the processing, thus combining the advantages of both the graphical workflows
to express concurrency, task and data dependency and scripting for inherently sequential tasks that would
be too awkward to implement as a workflow or just unnecessary duplication of work already existing in the
form of a script. Another important actor is the FileWatcher, which is a generic component to regularly check a
remote directory for new or modified files, and thus creates an indirect connection between the simulation code
and the workflow, where the former’s output drives the activity of the latter. The use of the ProcessFile actor
with its restart and retry capabilities and the FileWatcher actor allows the workflow to stay isolated from the
simulation, to keep up with the simulation and handle erroneous operations while not to have any effect on the
simulation even if the workflow fails; which is critical for S3D simulations that can consume millions of CPU
hours in a single simulation. We run the S3D code on the Cray XT4 system jaguar.ccs.ornl.gov at ORNL. All
data are transferred to an Intel Infiniband cluster, ewok.ccs.ornl.gov, for morphing, imaging and archival. Each
of these systems runs the PBS batch system, supports both interactive and batch nodes and has a lustre parallel
file system, which has the capability of writing data up to 3 GB s−1. Data are also transferred to another cluster
at Sandia, for later (post-execution) analysis. Finally, data are backed up to the High Performance Storage
System at ORNL. The S3D Kepler workflow is shown in figure 16.
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Figure 17. Interactive monitoring of the S3D workflow.

There are three pipelines in the workflow, executed in parallel: the restart/analysis, the netcdf file
transformation and the min/max log pipelines. S3D produces restart files approximately every hour. The restart
files consist of several files in a separate directory on jaguar. These files are transferred to ewok via multiple
ssh connections, which can effectively move the data at 100 MB s−1. In theory, we can move the data over to
ewok at 350 MB s−1 if we further parallelize the data moving process. In order to move the files only when
they are fully written to the disk, the workflow watches a log file generated by S3D for an entry indicating that
the output for that timestep is complete. Once the files are transferred to the lustre file system on ewok, the
workflow morphs these files into a smaller number of files, so that the S3D analysis can be done on a smaller
number of files. These files are simultaneously transferred to both the HPSS system at ORNL, and over to the
cluster at Sandia, where we can later analyze the results. One of the last additions that we are providing is to
transform the files into netcdf files on ewok, and then move them to our visualization partners at UC Davis.
The next pipeline is for processing the netcdf files. A new netcdf file is potentially created much more often
than the restart files. Each netcdf file contains both 2D slices, and 1D slices from the 3D data set. The netcdf
file is transferred over to ewok, and then a file watcher actor calls another actor which generates images using
Grace [51]. This library can be used for the xy plots only, therefore we use a service-oriented visualization
routine developed in AVS/Express [52] to visualize the colormap/contour results. This provides us with the
additional flexibility that we can perform 3D visualization on the fly, and output images. The AVS/Express
service is launched on ewok as a batch job. The job submission script writes down the location of the server
so that we can communicate to the AVS/Express service through a socket connection. Each variable from the
netcdf file is either processed in the Grace portion of the pipeline or the AVS/Express portion. Furthermore,
the min and max of each variable of the netcdf file is calculated and transferred to a file that will be read in by
the dashboard. The final portion of the workflow is to take the ASCII files for both the min and max of several
S3D variables and move this file over to ewok so that the quantities can be included in the min and max files
for the dashboard. We also run gnuplot at every instance, so that we can generate an XY plot of the min and
max of each variable. This permits us to log onto our web dashboard, described below, and visualize the results
during the execution of S3D on the leadership class computer as presented in figure 17.
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Figure 18. Monitoring jobs on DOE machines.

Figures 17 and 18 show two aspects of our web-2 based dashboard. Figure 17 displays interactive
monitoring of maximum and minimum time traces of simulation variables and 2D isocontour plots of variables
whereas figure 18 displays active monitoring of jobs on various DOE machines. Users must use their One
Time Password (OTP) to log onto the dashboard. They are then presented with a display (see figure 18)
which shows the jobs running at both ORNL and NERSC (if they have an account at NERSC). We choose
to use Asynchronous Javascript And Xml (AJAX) to program the dashboard, so that each machine can update
independently from one another. The dashboard communicates through a MySQL database running on one
of the ewok nodes, to update all of the quantities. Users can see all of their running jobs on the lower right
window on the dashboard. When one clicks on a job ID belonging to an S3D job the simulation monitoring
page is presented as the one shown in figure 17. The user sees a tree of their data, and can move the name
over the boxes, to visualize the results. The results are updated whenever the workflow creates new images
from the newer time steps of the simulation. The user can also animate each window separately. We are in the
process of moving the monitoring part of the dashboard over to FLASH [53]. This will allow us to control the
memory caching of each image better, and allow us to seamlessly move from image deliver to movie delivery.
The movies can be created once the simulation is over, to allow users to interact with the dashboard. Since all
of the information on the dashboard is located in a database, we are allowing the users to annotate each image,
so that users can type notes for each run. Further changes in the dashboard will allow the user to track both the
workflow and data provenance during and after the simulation.

10. Concluding remarks

Terascale combustion simulations of simple laboratory-scale flames have been performed on CrayXT
machines. These simulations provide fundamental insight into the ‘chemistry-turbulence’ interactions required
to develop and validate predictive coarse-grained models used to design practical combustion devices. The path
forward to petascale computing and beyond will enable exploration of an even wider range of scales—both
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for turbulence and flame—at thermo-chemical conditions closer to practical combustion regimes in engines.
Performance monitoring and optimization will become even more important if science applications are to scale,
as future architectures are likely to have large numbers of multi-core processors and deep memory hierarchies.
Careful management of cache will become even more important. Finally, analysis and visualization of 100s
of terabytes of raw time-varying data from the simulations will require the development of scaleable data
reduction strategies including distributed feature segmentation and tracking algorithms, and the ability to
interactively query the data. The scaleable implementation of these algorithms will likely depend on future
compute and analysis architectures and rely on close collaboration between computer and computational
scientists.
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