
Language and Compiler Support for Out-of-Core

Irregular Applications on Distributed-Memory

Multiprocessors?

Peter Brezany1, Alok Choudhary2, and Minh Dang1

1 Institute for Software Technology and Parallel Systems, University of Vienna
Liechtensteinstrasse 22, A-1090 Vienna, EM: {brezany,dang}@par.univie.ac.at

2 ECE Department, Northwestern University, Evanston, EM: choudhar@ece.nwu.edu

Abstract. Current virtual memory systems provided for scalable com-
puter systems typically offer poor performance for scientific applications
when an application’s working data set does not fit in main memory.
As a result, programmers who wish to solve “out-of-core” problems ef-
ficiently typically write a separate version of the parallel program with
explicit I/O operations. This task is onerous and extremely difficult if
the application includes indirect data references. A promising approach
is to develop a language support and a compiler system on top of an
advanced runtime system which can automatically transform an appro-
priate in-core program to efficiently operate on out-of-core data. This
approach is presented in this paper. Our proposals are discussed in the
context of HPF and its compilation environment.

1 Introduction

A wide class of scientific and engineering applications, called irregular applica-
tions, greatly benefit from the advent of powerful parallel computers. However,
the efficient parallelization of irregular applications for distributed-memory mul-
tiprocessors (DMMPs) is still a challenging problem. In such applications, access
patterns to major data arrays are only known at runtime, which requires runtime
preprocessing and analysis in order to determine the data access patterns and
consequently, to find what data must be communicated and where it is located.

The standard strategy for processing parallel loops with irregular accesses,
developed by Saltz, Mehrotra, and Koelbel [9], generates three code phases,
called the work distributor, the inspector, and the executor. Optionally, a dynamic
partitioner can be applied to the loop [2,12].
? The work described in this paper is being carried out as part of the research project

“Aurora” supported by the Austrian Research Foundation.

D. O’Hallaron (Ed.): LCR’98, LNCS 1511, pp. 343–350, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

344 P. Brezany, A. Choudhary, and M. Dang

Number of Mesh Edges: 2516402

23.8 sec

Number of Mesh Nodes: 360000

512.7 sec

160.1 sec

37.3 sec

14.2 sec
8.4 sec

16 processors 32 processors 64 processors

Virtual
memory

Optimized
I/O

Fig. 1. Optimized file I/O vs. VM

Large scale irregular applications
involve large data structures. Runtime
preprocessing provided for these appli-
cations results in construction of ad-
ditional large data structures which
increase the memory usage of the
program substantially. Consequently,
a parallel program may quickly run
out of memory. Therefore, some data
structures must be stored on disks
and fetched during the execution of
the program. Such applications and
data structures are called out-of-core
(OOC) applications and OOC data
structures, respectively. The perfor-
mance of an OOC program strongly
depends on how fast the processors,
the program runs on, can access data

from disks. Traditionally, in scientific computations, OOC problems are handled
in two different ways: (1) virtual memory (VM) which allows the in-core pro-
gram version to be run on larger data sets, and (2) specific OOC techniques
which explicitly interface file I/O and focus on its optimization. Although VM
is an elegant solution (it provides the programming comfort and ensures the
program correctness), it has been observed that the performance of scientific ap-
plications that rely on virtual memory is generally poor due to frequent paging
in and out of data.

In our recent papers [3,4], we describe the runtime support CHAOS+ we have
developed for parallelization of irregular OOC applications on DMMPs. Fig. 1
shows the performance improvement obtained by the OOC version1 of the Euler
3-D solver which was built on top of CHAOS+ against VM on the Intel Paragon.
Although the interface to CHAOS+ is a level higher than the interface to a
parallel file system and the interface to a communication library, it is still difficult
for the application programmer to develop efficient OOC irregular programs. A
promising approach is to develop a language support and a compiler system
on top of an advanced runtime system which can automatically transform an
appropriate in-core program to efficiently operate on OOC data. This approach
is discussed in this paper.

1 Only indirection arrays were out-of-core in this program version.

Out-of-Core Irregular Applications on Distributed-Memory Multiprocessors 345

In Section 2, we describe the language directives available to the programmer
which provide useful information to the compiler. These directives are proposed
as a part of the language HPF+ [5]. Section 3 presents basic and advanced com-
piler methods to transform the OOC program and insert communication and
I/O. Experimental results are discussed in Section 4. We review related work
and conclude in Sections 5 and 6.

2 Language Support

The DISTRIBUTE directive in HPF partitions an array among processors by
specifying which elements of the array are mapped to each processor. This results
in each processor storing a local array which is called the distribution segment.

In order to allocate memory and handle accesses to OOC arrays, the HPF
compiler needs information about which arrays are out-of-core and also the ma-
ximum amount of in-core memory that is allowed to be allocated for each array.
The user may provide this information by a directive of the following form:

!HPF+$ [dist spec,] OUT OF CORE [, IN MEM (ic portion spec)] :: ar1, .., ark

where ari specify array identifiers, and the optional part dist spec represents an
HPF distribution-specification annotation. The keyword OUT OF CORE indica-
tes that all ari are out-of-core arrays.

In the second optional part, the keyword IN MEM indicates that only the
array portions of the global shape that corresponds to ic portion spec are allowed
to be kept in main memory. During computation, each processor brings a section
of ari into its memory part, called in-core local array (ICLA), and operates
on it and stores it back, if necessary. The shape of ICLA is computed from
ic portion spec.

If the data for an OOC array comes from an input file or is to be written
to an output file then the file name must be specified. For this the ASSOCIATE
directive ([7]) is used.

The OUT OF CORE directives can be introduced in the specification part of
the program unit or can immediately precede the parallel loop specification. For
example, in Fig. 2, arrays X, Y, EDGE1 and EDGE2 will be handled as OOC
arrays in the loop L which represents a sweep over the edges of an unstructured
mesh. The data for X comes from the file ’X file.dat’. ICLAs of shape (dK/M]e)
are allocated for EDGE1 and EDGE2 on each processor. The shape of ICLAs
allocated for X and Y is determined by the programming environment.

346 P. Brezany, A. Choudhary, and M. Dang

!HPF$ PROCESSORS P(M)

REAL X(NNODE), Y(NNODE); INTEGER EDGE1(NEDGE), EDGE2(NEDGE)
!HPF$ DISTRIBUTE (BLOCK) ONTO P :: X, Y, EDGE1, EDGE2
...
... X and Y are data arrays, EDGE1 and EDGE2 are indirection arrays ...
!HPF+$ ASSOCIATE (’X file.dat’, X)
... ASSOCIATE directives for Y, EDGE1, and EDGE2 ...
!HPF+$ OUT OF CORE :: X, Y
!HPF+$ OUT OF CORE , IN MEM (K) :: EDGE1, EDGE2
!HPF+$ INDEPENDENT , REDUCTION (Y), USE (SPECTRAL PART(X,Y))
L: DO I = 1, NEDGE

...
Y(EDGE1(I)) = Y(EDGE1(I)) + F(X(EDGE1(I)),X(EDGE2(I)))
Y(EDGE2(I)) = Y(EDGE2(I)) – F(X(EDGE1(I)),X(EDGE2(I)))

END DO

Fig. 2. Code for Out-of-Core Unstructured Mesh in HPF Extension

HPF+ enables the user to specify a partitioning strategy either for all or
a selected set of arrays. We illustrate this approach by the example in Fig. 2.
The USE clause of the INDEPENDENT loop enables the programmer to select
a partitioner from those provided in the environment (in the example, this is
SPECTRAL PART) and the arrays (in the example, X and Y) to which it is
applied.

3 Compilation Strategies

The compilation process consists of four steps: (1) processing the input HPF+
program by the front end, program normalization, and initial program analysis,
(2) basic restructuring, (3) optimizations, and (4) target code generation. In the
first part of this section, we describe the basic restructuring strategy and then
discuss several optimizing techniques.

3.1 Basic Parallelization Strategy

The out-of-core parallelization strategy is a natural extension of the inspector-
executor approach. The set of iterations assigned to each processor by the work
distributor is split into a number of iteration tiles. Sections of arrays referenced

Out-of-Core Irregular Applications on Distributed-Memory Multiprocessors 347

in each tile, called data tiles, are small enough to fit into local memory of that
processor. The inspector-executor strategy is then applied to each iteration tile.

Generally, the code generated for an OOC data-parallel loop consists of four
phases which are connected by control flow depicted in Fig. 3. In the following
we describe briefly each phase2.

Work Distributor

Partitioner

Inspector for Tile i

Executor for Tile i

for Data and Iterations
Determine Distribution

Redistribute Data and Iterations

Phase A

Phase B

Phase C

Phase D

Compute Execution Set and Tiles

Execute Loop for Iterations in Tile i

Read Data from Local Files (Using IOSs)

Pr
oc

es
si

ng
 T

ile
s

1,
 ..

.,
m

Gather Non-Local Data (Using CSs)

Write Back Updated Elements (Using IOSs)
(Using CSs)
Scatter Updates of Non_Local Elements

Compute I/O Schedules (IOSs)
and Communication Schedules (CSs)

Fig. 3. Computing Phases

A. Default initial data and work distri-
bution Initially, the iterations and
data and indirection arrays are dis-
tributed among processors in block
fashion. The distribution segment of
each OOC array belonging to a pro-
cessor is stored in a separate local file
of this processor3. Next, an ICLA is
allocated for each OOC indirection ar-
ray. Moreover, the iteration set assig-
ned to a processor, called the execu-
tion set of this processor, is blockwise
split into a number of iteration tiles.
The result of this operation depends
on the shape of ICLAs allocated for
the indirection arrays.

B. OOC Partitioning This optio-
nal phase involves the use of a disk-
oriented partitioner which uses OOC
data (for example, the node coordina-
tes of the mesh) to determine a new
data and work distribution. The data
and indirection arrays are then re-
distributed. The redistribution results
into the modification of the local files
storing the corresponding distribution
segments.

C. OOC Inspector This preprocessing phase results in computation of I/O sche-
dules which describe the required I/O operations and communication schedules
which describe the required communication. The inspector phase also computes
the shape of ICLAs for the data arrays.

2 This compilation strategy is based on the CHAOS+ runtime support.
3 We consider the Local Placement Execution Model [6].

348 P. Brezany, A. Choudhary, and M. Dang

D. OOC Executor Once preprocessing is completed, we are in a position to carry
out the necessary memory allocation, I/O, communication, and computation,
following the plan established by the inspector.

A simplified compilation scheme can be applied to the OOC applications in
which data arrays can fit in main memory, while indirection arrays are OOC.

3.2 Optimizations

We have proposed a set of optimizations which minimize the file access costs
and other runtime overheads. Some of them are discussed below.

Redundancy elimination. Execution of the loop iteration tiles performed in the
execution phase corresponds to the computation specified in the HPF program.
On the other hand, other phases introduce additional runtime and memory
overhead associated with the parallelization method. Reduction of this overhead
is a crucial issue in the compiler development. The optimization techniques we
apply to OOC problems are based upon a data flow framework called Partial
Redundancy Elimination.

Hiding I/O latency. To overlap time expensive I/O accesses, the compiler can
generate a code for two types of processes: application processes and I/O pro-
cesses. The application processes implement the computation specified by the
original program. The I/O processes serve the data requests of the application
processes.

Eliminating extra file I/O by reordering computation. In order to minimize I/O
and communication, it is important to update the value of a mesh node (see Fig.
2) for the maximum number of times before it is written back to the file. To
achieve this goal the loop iterations and indirection arrays must be reorganized.
Our approach [4] is based on a loop transformation called the loop renumbering.

4 Performance Results

This section presents the performance of the unstructured mesh linear equation
solver GCCG which is a part of the program package FIRE [1]. The application
was hand-coded using the methods described in Section 3. All the experiments
were carried out on the Intel Paragon. To be able to compare the performance of
OOC program versions with the in-core versions using the Paragon’s virtual me-
mory system, the programs operated on big unstructured meshes. So, the paging

Out-of-Core Irregular Applications on Distributed-Memory Multiprocessors 349

mechanism of Paragon was activated in some experiments. The performance of
this solver for different number of processors and tiles is given in Table 1. We
compare the performance of the implementation which includes overlapping I/O
with communication and computation with the solution in which the application
process is blocked while waiting on I/O. Each I/O process was running on the
same node as the corresponding application process. The experimental results
show a big performance improvement obtained by the OOC versions against vir-
tual memory. The performance was significantly improved by overlapping I/O
with computation and communication.

Table 1. Performance of the OOC GCCG Solver (time in seconds).

5 Related Work

Compiling OOC data-parallel programs is a relatively new topic and there has
been little research in this area. Bordawekar, Choudhary, and Thakur [11] have
worked on compiler methods for out-of-core HPF regular programs. Cormen and
Colvin have worked on a compiler for out-of-core C*, called ViC* [8]. Paleczny,
Kennedy, and Koelbel [10] propose a compiler support and programmer I/O
directives which provide information to the compiler about data tiles for OOC
regular programs.

6 Conclusions

The difficulty of efficiently handling out-of-core irregular problems limits the per-
formance of distributed-memory multiprocessors. Since coding out-of-core ver-
sion of an irregular problem might be a very difficult task and virtual memory
does not perform well in irregular programs, there is a need for compiler-directed
explicit I/O approach.

350 P. Brezany, A. Choudhary, and M. Dang

In this paper, we have presented a preliminary design for addressing these
problems which is based on an HPF compilation system and the advanced run-
time support CHAOS+. We have evaluated the effectiveness and feasibility of
this approach on an out-of-core irregular kernel and compared its performance
with the corresponding in-core versions supported by virtual memory. The re-
sults achieved are encouraging.

References

1. G. Bachler and R. Greimel. Parallel CFD in the Industrial Environment. UNICOM
Seminars, London, 1994.

2. P. Brezany and V. Sipkova. Coupling Parallel Data and Work Partitioners to the
Vienna Fortran Compilation System. In Proceedings of the Conference EUROSIM
– HPCN Challenges 1996. North Holland, Elsevier, June 1996.

3. P. Brezany, A. Choudhary, and M. Dang. Parallelization of Irregular Out-of-Core
Applications for Distributed-Memory Systems. Proc. of HCPN 97, Vienna, April
1997, Springer-Verlag, LNCS 1225.

4. P. Brezany, A. Choudhary, and M. Dang. Parallelization of Irregular Codes Inclu-
ding Out-of-Core Data and Index Arrays. In Proceedings of the conference “Parallel
Computing 1997 - PARCO’97”, North Holland, Elsevier, April 1998.

5. B. M. Chapman, P. Mehrotra, and H. P. Zima. Extending HPF for advanced data
parallel applications. TR 94-7, Univ. of Vienna, 1994.

6. A. Choudhary, et al. PASSION: Parallel and Scalable Software for Input-Output.
CRPC-TR94483, Rice University, Houston, 1994.

7. A. Choudhary, C. Koelbel, and K. Kennedy. Preliminary Proposal to Provide
Support for OOC Arrays in HPF. Document of the HPFF, Sep. 7, 1995.

8. T. H. Cormen and A. Colvin. ViC*: A Preprocessor for Virtual-Memory C*. TR:
PCS-TR94-243, Dept. of Computer Science, Dartmouth College, Nov. 1994.

9. C. Koelbel, P. Mehrotra, J. Saltz, and S. Berryman. Parallel Loops on Distributed
Machines. In Proceedings of the 5th Distributed Memory Computing Conference,
Charleston, pages 1097–1119, IEEE Comp. Soc. Press, April 1990.

10. M. Paleczny, K. Kennedy, and C. Koelbel. Compiler Support for Out-of-Core
Arrays on Parallel Machines. In Proceedings of the 7th Symposium on the Frontiers
of Massively Parallel Computation, McLean, VA, pages 110-118, February 1995.

11. R. Thakur, R. Bordawekar, and A. Choudhary. Compiler and Runtime Support
for Out-of-Core HPF Programs. In Proceedings of the 1994 ACM International
Conference on Supercomputing, pages 382–391, Manchester, July 1994.

12. R. Ponnusamy, et al. A Manual for the CHAOS Runtime Library. Technical Report,
University of Maryland, May 1994.

	Introduction
	Language Support
	Compilation Strategies
	Basic Parallelization Strategy
	Optimizations

	Performance Results
	Related Work
	Conclusions

