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Abstract

90D\HPF is a data parallel lanquage w~ih

speczal directives to enable users to spectfy data a[ign -

ment and distributions. This paper describes the de-

sign and implementation of a Fortran!)ODjHPF com-

piler. Techniques for data and computation partition-

ing, communication detect ton and generation, and the

run-ttme support for the compiler are dtscussed. Fi-

nally, tn~txal performance results for the cornptler are

presented. We belteve that the methodology to process

data dtstributton, computation partittontngl conlmunz -

catton system design and the overall comptler destgn

can be used by the implementors of HPF compzlers.

1 Introduction

Currently, distributed melmory machines are pro-

grammed using a node language and a message pass-

ing library. This process is tedious and error prone

because the user must perform the task of data distri-

bution and communication for non-local data access.

There has been significant research in developing

parallelizing compilers. In this approach, the com-

piler takes a sequential Fortran 77 program as input,

applies a set of transformation rules, and produces a

parallelized code for the target machine. However,

a sequential language, such as Fortran 77, obscures

the parallelism of a problem in sequential loops and

other sequential constructs. This makes the poten-

tial parallelism of a program more difficult to detect

by a parallelizing compiler. Therefore, compiling a

sequential program into a parallel program is not a

natural approach. An alternative approach is to use

*This work was supported in part by NSF under CCR-

9110812 (Center for Research on Parallel Computation) and

DARPA under contract # DABT63-91-C-0028. The content of

the information does not necessarily reflect the position or the

policy of the Government and no official endorsement sholdd be

inferred. Alok Ghoudhary is also supported by an NSF Young

Investigator Award CCR-9357840.

tAlso with ECE Dept.

~Also with CIS Dept.

Q 1993 ACM 0-8186-4340-4/93/0011 $1.50

351

a programming language that can naturally represent

an application without losing the application’s origi-

nal parallelism. Fortran 90 [1] (with some extensions)

is such a language. The extensions may include the

forall statement and compiler directives for data par-

t itioning, such as decomposition, alignment, and dis-

tribution. Fortran 90 with these extensions is what we

call “Fortran 90 D”, a Fortran 90 version of the Fortran

D language [2]. We developed the Fortran D language

with our colleagues at Rice University. There is an

analogous version of Fortran 77 with compiler direc-

tives and other constructs, called Fortran 77D. For-

tran D allows the user to advise the compiler on the

allocation of data to processor memories. Recently, the

High Performance Fortran Forum, an informal group

of people from academia, industry and national labs,

led by Ken Kennedy, developed a language called HPF

(High Performance Fortran) [3] based on a number of

languages such as Fortran D, CM Fortran [4] and Vi-

enna Fortran [5]. HPF essentially adds extensions to

Fortran 90 similar to the Fortran D directives. Hence,

Fortran 90D and HPF are very similar except a few

syntactic differences. For this reason, we call our corn-

piler the Fortran 90 D/HPF compiler.

From our point of view, Fortran90 is not only a lan-

guage for SIMD computers [4], but it is also a natural

language for specifying parallelism in a class of prob-

lems called loosely synchronous problems. In Fortran

90 D/HPF, parallelism is represented with parallel con-

structs, such as array operations, where statements,

forall statements, and intrinsic functions. This gives

the programmer a powerful tool to express the data

parallelism natural to a problem.

This paper presents the design of a prototype com-

piler for Fortran 90 D/HPF. The compiler takes as in-

put a program written in Fortran 90 D/HPF. Its out-

put is SPMD (Single Program Multiple Data) program

with appropriate data and computation partitioning

and communication calls for MIhID machines. There-

fore, the user can still program using a data parallel

language but is relieved of the responsibility to per-

form data distribution and communication.
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The goals of this paper are to present the underly-

ing design philosophy, various design choices and the

reasons for making these choices, and to describe our

experience with the implementation. That is, in con-

trast to many other compiler papers which present

specific techniques to perform one or more functions,

our goal is to describe the overall architecture of our

compiler. We believe that the presented design will

provide directions to the implementors of HPF com-

pilers.

The rest of this paper is organized as follows. The

compiler architecture is described in Section 2. Data

partitioning, and computation partitioning are dis-

cussed in Sections 3, and 4. Section 5 presents the

communication primitives and communication gener-

ation for Fortran 90 D/HPF programs. In Section 6,

we present the runtime support system including the

intrinsic functions. Some optimization techniques are

given in Section 7. Section 8 summarizes our initial

experience using the current version of the compiler.

It also presents a comparison of the performance with

hand written parallel code. Section 9 presents a sum-

mary of related work. Finally, summary and conclu-

sions are presented in Section 10.

2 Compiler System Diagram

Our Fortran 90 D/HPF parallel compiler exploits

only the parallelism expressed in the data parallel con-

structs. We do not attempt to parallelt:e other con-

structs, such as do loops and whale loops, since they are

used only as naturally sequential control constructs in

this language. The foundation of our design lies in rec-

ognizing commonly occurring computation and com-

munication patterns. These patterns are then replaced

by calls to the optimized run-time support system rou-

tines. The run-time support system includes parallel

intrinsic functions, data distribution functions, com-

munication primitives and several other miscellaneous

routines. This approach represents a significant de-

parture from traditional approaches where a compiler

needs to perform in-depth dependency analyses to rec-

ognize parallelism, and embed all the synchronization

and low-level communication functions inside the gen-

erated code.

Figure 1 shows the components of the basic For-

tran 90 D/HPF compiler. Given a syntactically correct

Fortran90D/HPF program, the first step of the com-

pilation is to generate a parse tree. The front-end to

parse Fortran 90 for the compiler was obtained from

ParaSoft Corporation. In

also transforms each array

this module, our compiler

assignment statement and

where statement into an equivalent forall statement

with no loss of information [6]. In this way, the sub-

sequent steps need only deal with forall statements.

The partitioning module processes the data distri-

bution directives; namely, decomposition, distribute

and align. Using these directives, it partitions data

and computation among processors.

I Lexer & Parser I
I

t

I

Partitioning

Dependency Analysis

i

Sequentialization

and Optimization

I Code Generation I

e
Figure 1: Diagram of the compiler.

After partitioning, the parallel constructs in the

node program are sequentialized since they will be ex-

ecuted on a single processor. This is performed by

the sequentialization module. Array operations and

forall statements in the original program are trans-

ferred into loops or nested loops. The communication

module detects communication requirements and in-

serts appropriate communication primitives.

Finally, the code generator produces loosely syn-

chronous [7] SPMD code. The generated code is struc-

tured as alternating phases of local computation and

global communication. Local computations consist of
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operations by each processor on the data in its own

memory. Global communication includes any transfer

of data among processors, possibly with arithmetic or

logical computation on the data as it is transferred

(e.g. reduction functions). Insucha rnodel,processes

do not need to synchronize during local computation.

But, if two or more nodes interact, they are implicitly

synchronized by global communication.

3 Data Partitioning

The distributed memory system solves the memory

bottleneck of vector supercomputers by having sepa-

rate memory for each processor. However, distributed

memory systems demand high locality for good per-

formance. Therefore, the distribution of data across

processors is of critical importance to the efficiency of

a parallel program in a distributed memory system.

Fortran D provides users with explicit control over

data partitioning with both data alignment and dis-

tribution specifications. We briefly overview directives

of Fortran D relevant to this paper. The complete

language is described elsewhere [2]. The DECOM-

POSITION directive is used to declare the name, di-

mensionality, and the size of each problem domain.

We call it “template” (the name “template” has been

chosen to describe “DECOMPOSITION” in HPF [3]).

The ALIGN directive specifies fine-grain parallelism,

mapping each array element onto one or more ele-

ments of the template. This provides the minimal

requirement for reducing data movement. The DIS-

TRIBUTE directive specifies coarse-grain parallelism,

grouping template elements and mapping them to the

finite resources of the machine. Each dimension of the

template is distributed in either a block or cyclic fash-

ion. The selected distribution can affect the ability

of the compiler to minimize communication and load

imbalance in the resulting program.

The Fortran 90 D/HPF compiler maps arrays to

physical processors by using a three stage mapping as

shown in Figure 2 which is guided by the user-specified

Fortran D directives.

Stage 1: The alignment of arrays to template is de-

termined by their subscript expressions in the ALIGN

directive. The compiler computes j and J-l function

from the directive and applies j functions for the cor-

responding array indices to bring them onto common

template index domain. The original indices can be

calculated by j-1 if they are required. The algorithm

to compile align directive can be found in [8].

Stage 2: Each dimension of the template is mapped

onto the logical processor grid, based on the DIS-

w DI-B~

ALIGN DECOMPOSS

Figure 2: Three stage array mapping

TRIBUTE directive attributes. Block divides the tem-

plate into contiguous chunks. Cyclic specifies a round-

robin division of the template. The mapping functions

p and p–l to generate relationship between global and

local indices are computed.

Stage 3: The logical processor grid is mapped onto

the physical system. The mapping functions q and

P – 1 can change from one system to another but the

data mapping onto the logical processor grid does not

need to change. This enhances portability across a

large number of architectures.

By performing the above three stage mapping, the

compiler is decoupled from the specifics of a given ma-

chine or configuration. Compilation of distribution di-

rectives is discussed in detail in [8].

4 Computation Partitioning

Once the data is distributed, there are several alter-

natives to assign computations to processing elements

(PEs) for each instance of a forall statement. One of

the most common methods is to use the owner com-

putes rule. In the owner computes rule, the computa-

tion is assigned to the PE owning the lhs data element.

This rule is simple to implement and performs well in

a. large number of cases. Most of the current imple-

mentations of parallelizing compilers uses the owner

computes rule [5, 9]. However, it may not be possi-

ble to apply the owner computes rule for every case

without extensive overhead. The following examples

describe how our compiler performs computation par-

titioning.

Example 1 (canonical form) Consider the fol-

lowing statement, taken from the Jacobi relaxation

program

forall (i=l:ll, j=i :M)

B(i, j) = 0.25* (A(i-i, j)+ A(i+l, j)+ A(i, j-l)+A(i, j+l))
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In the above example, as in a large number of scien-

tific computations, the jor-ullstatement can be written

in the canonical form. In this form, the subscript value

in the lhs is identical to the forall iteration variable.

In such cases, the iterations can be easily distributed

using the owner computes rule.

Example 2 (non-canonical form) Consider the

following statement, taken from an FFT program

forall (i=l :incrm, j=l :nx/2)

x(i+j*incrm*2+i ncrm) = x(i+j*incrm*2)

- term2(i+j*incrm* 2+incrm)

The Ihs array index is not in the canonical form.

In this case, the compiler equally distributes the iter-

ation space on the number of processors on which the

lhs array is distributed. Hence, the total number of

iterations will still be the same as the number of lhs

array elements being assigned.

5 Communication

Our Fortran 90 D/HPF compiler produces calls to

collective communication routines [10] instead of gen-

erating individual processor send and receive calls in-

side the compiled code. There are three main rea-

sons for using collective communication to support in-

terprocessor communication in the Fortran 90 D/HPF

compiler.

1.

2.

3.

Improved performance esitmatton of communtca-

tton costs. Our compiler takes the data distri-

bution for the source arrays from the user as

compiler directives. However, any future com-

piler will require a capability to perform auto-

matic data distribution and alignments [1 1]. Such

techniques usually require computing trade-offs

between exploitable parallelism and the commu-

nication costs. The costs of collective communi-

cation routines can be determined more precisely,

thereby enabling the compiler to generate better

distributions automatically.

Improved performance of Fortran 90 D/HPF pro-

grams. To achieve good performance, interproces-

sor communication must be minimized. By devel-

oping a separate library of interprocessor commu-

nication routines, each routine can be optimized.

This is particularly important given that the rou-

tines will be used by many programs compiled

through the compiler.

Increased port abdit y of ih e Foriran 90D/HPF

compzler. By separating the communication li-

brary from the basic compiler design, portability

5.1

is enhanced because to port the compiler, only the

machine specific low-level communication calls in

the library need to be changed.

Communication Primitives

In order to perform a collective communication on

array elements, the communication primitive needs

the following information 1-) send processors list, 2-)

receive processors list, 3-) local index list of the source

array and, 4-) local index list of the destination array.

There are two ways of determining the above infor-

mation, 1) Using a preprocessing loop to compute the

above values or, 2) based on the type of communica-

tion, the above information may be implicitly avail-

able, and therefore, not require preprocessing, We

classify our communication primitives into unstruc-

tured and structured communication.

Our structured communication primitives are based

on a logical grid configuration of the processors.

Hence, they use grid-based communications such as

shift along dimensions, broadcast along dimensions

etc. The following summarizes some of the structured

communication primitives implemented in our com-

piler.

transfer: Single source to single destination mes-

sage.

multicast: broadcast along a dimension of the

logical grid.

overlapsllift: shifting data into overlap areas in

one or more grid dimensions. This is particularly

useful when the shift amount is known at compile

time. This primitive uses that fact to avoid intra

processor copying of data and directly stores data

in the overlap areas [12].

temporary shift: This is similar to overlap shift

except that the data is shifted into a temporary

array. This is useful when the shift amount is not

a compile time constant. This shift may require

intra-processor copying of data.

concatenation: This primitive concatenates a

distributed array and the resultant array ends up

in all the processors participating in this primi-

tive.

We have implemented two sets of unstructured

communication primitives: 1) where the communicat-

ing processors can determine the send and receive lists

based only on local information, and hence, only re-

quire preprocessing that involves local computations



[13], and 2) where to determine the send and re-

ceive lists preprocessing itself requires communication

among the processors [14]. The primitives are as fol-

lows.

precomp~ead: This primitive is used to bring

all non-local data to the place it is needed before

the computation is performed.

postcomp.write: This primitive is used to store

remote data by sending it to the processors that

own the data after the computation is performed.

Note that these two primitives requires only local

computation in the preprocessing loop.

gather: This is similar to precomp-read except

that preprocessing loop itself may require com-

munication.

scatter: This is similar to postcomp-write except

that preprocessing loop itself may require com-

munication.

Communication Detection

The compiler must recognize the presence of col-

lective communication patterns in the computations

in order to generate the appropriate communication

calls. Specifically, this involves a number of tests on

the relationships among the subscripts of various ar-

rays in a forall statement. These tests should also in-

clude information about array alignments and distri-

butions. We use pattern matching techniques similar

to those proposed by Li and Chen [15]. Furthert we

extend the above tests to include unstructured conl-

munication.

Consider the following forall statement to illustrate

the steps involved in communication detection.

FORALL (il=ll:ul:sl, i2= . . . . . ..)

LHS(~l,j2,...,jn) = RHSl(gl,gz,..., gn,) +

where g, and fj, 1 ~ i < m, 1 < j < n, are func-

tions of index variables or are indirection arrays.

The algorithm first attempts to cletect structured

communication if the arrays are aligned to the same

template. For each array on the RHS, the following

processing is performed. Each subscript of the array is

coupled with the corresponding subscript on the LHS

array such that both subscripts are aligned with the

same dimension of the template. For each such pair,

the algorithm attempts to find a structured communi-

cation pattern in that dimension according to Table 1.

If a structured communication pattern is found then

the subscript on the RHS from this pair is tagged with

indicating the appropriate communication primitive.

Table 1: Communication primitives based on the re-

lationship between lhs and rhs array subscript refer-

ence patterns for block distribution. (c: compile time

constant, s, d: scalar, ~: invertible function, V: an

indirection arrav).

Steps

1

2

3

4

5
6

7

8

9

10

11

12

13

(t, i+c)

(i, z- c)
(2,1 + s)

(i)i - s)

(d, S)

(,,,)

(i, j(i))

(j(i), i)
(i, V(t))

(V(t), i)

(i, unknown)

(unknown, i)

Comm. primitives

multicast

overlap shift

overlapshift

temporary shift

temporary shift

transfer

no-communication

precompread

postcomp-write

gather

scat ter

gather

scatter

If any distributed dimension of an array on the RHS

is left untagged then the array is marked with one of

the unstructured communication primitives depending

on the reference pattern. Note that any pattern that

can not be classified according to Tables 1, is marked

as unknown (such subscripts involving more than one

forall index, e.g 1 + J) so that scatter and gather can

be used to parallelize any forall statement.

5.3 Communication Generation

Having recognized the type of communication in

each dimension of an array for structured communi-

cation or each array for unstructured communication

in a forall statement, the compiler needs to perform

the appropriate program transformations. We now il-

lustrate these transformations with the aid of some

examples.

5.3.1 Structured Communication

All the examples discussed below have the following

mapping directives.

C$ PROCESSORS(P,Q)

C$ DISTRIBUTE TEMPL(BLOCK,BLOCK)

C$ ALIGN A(I,J), B(I,J) WITH TEMPL(I,J)

Example 1 (transfer) Consider the statement

FORALL(I=l N) A(I,S)=B(I,3)

The first sub-
script of B is marked as no. communication because
A and B are aligned in the first dimension and have
identical indices. The second dimension is marked as
transfer.
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(b) mukicast

Figure 3: Structured communication on logical grid

processors.

1. call set-BOUIJD (lb, ub, st,1 ,if,l)

2. call set-OAD(B-DAD, . . )

3. call transfer (B, B.DAD, TMP,

source=global-t o-proc(3) ,

dest=global-to-proc (8))

4. DO I=lb, ub, st

5. if(grid(2) .EQ. d,est)

A(I, global-to-local(8)) = Tt!P(I)

6. EliD DO

In the above code, the set-BOUND primitive (line

1) computes the local bounds for computation assign-

ment based on the iteration distribution (Section 4).

In line 2, the primitive set-DAD is used to fill the

Distributed Array Descriptor (DAD) associated with

array B so that it can be passed to the transfer com-

munication primitive at run-time. The ‘DAD has suf-

ficient information for the communication primitives

to compute all the necessary information including lo-

cal bounds, distributions, global shape etc. Note that

transfer performs one-to-one send-receive communica-

tion based on the logical grid. In this example, one

column of grid processors communicate with another

column of the grid processors as shown in Figure 3 (a).

Example 2 (multicast) Consider the statement

FORALL(I=l:N,J= l:M) A(I,J)=B(I,3)

The second subscript of B marked as multicast and
the first one as no.communication.

1.

2.

3.

4.

5.

6.

7.

8.

call eet-BOUBD(lb, ub, st ,1 ,I?,l)

call set-BOUMD(lbl, ubl ,stl,l ,H,l)

call set-DAD (B-DAD, .)

call multi cast (B, B-DAD, THP,

source-proc=global -to_proc(3) , dim=2)

DO I=lb, ub, st

DO J=lbi ,ubl ,stl

A(I, J) = T14P(I)

EED DO

Line 4 shows a broadcast along dimension 2 of the

logical processor grid

ments B(1, 3) where 1

by the pr~cessors owning ele-

~ 1< N (Figure 3 (b).)

5.3.2 Unstructured Communication

In distributed memory MIMD architectures, there

is typically a non-trivial communication latency or

startup cost. Hence, it is attractive to vectorize mes-

sages to reduce the number of startups. For un-

structured communication, this optimization can be

achieved by performing the entire preprocessing loop

before communication so that the schedule routine can

combine the messages to the maximum extent. The

preprocessing loop is also called the “inspector” loop

[16, 13].

Example 1 (precomp~ead) Consider the state-
ment

FORALL(I=l :Ii) A(I)= B(2*I+1)

The array B is marked as precomp-read since the

distributed dimension subscri~t is written as f(i) =

2*i+l

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

which is invertible as’g(i) = (i – 1)/2.” ‘ ‘

count=l

call set-BOUND (lb, ub, st, l, E,l)

DO 1=1, N/P

receive-list (count )=global-to-proc(f (i))

send-list (count)= global -to-pro c(g(i) )

local-list (count) = global-to-local (g(i) )

count= count+l

EIJD DO

isch = schedulel (receive .list,

send-list, local-list, count)

call precomp-read(isch, tmp, B)

count=l

DO 1=1, U/P

if((I. ge.lb). and. (l.le. ub)

.and. (mod(I, st). eq.0)) ! mask

A(I) = tmp(count)

count= count+l

END DO

The pre-processing loop is given in lines 1-9. Note

that this pre-processing loop executes concurrently in

each processor. The loop covers entire local array

bounds since each processor has to calculate the re-

ceiveJist as well as the send-list of processors. Each

processor also fills the local indices of the array ele-

ments which are needed by that processor.

The schedulel routine does not need to communi-

cate but only constructs the scheduling data structure

isch. The schedule isch can also be used to carry out

identical patterns of data exchanges on several differ-

ent but identically distributed arrays or array sections.

The same schedule can be reused to repeatedly carry

out a particular pattern of data exchange on a single

distributed array. In these cases, the cost of generat-

ing the schedules can be amortized by only executing

it once. This analysis can be performed at compile

time. Hence, if the compiler recognizes that the same

schedule can be reused, it does not generate code for
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scheduling but it passes a pointer to the already ex-

isting schedule.

The precomp.read primitive performs the actual

communication using the schedule. Once the com-

munication is performed, the data is ordered in a one

dimensional array, and the computation (lines 12-15)

uses this one dimensional array. The precomp_read

primitive brings an element into temp for each local

array element since preprocessing loops coves entire

local array. The tjstatement masks the assignment to

preserve the semantic of original loop.

Example 2 (gather) Consider the statement

FORALL(I=l N) A(I)= B(V(I))

The array B is marked as requiring gafher com-

munication since the subscript is only known at run-

time. The receiving processors can know what non-

local data they need from other processors, but a pro-

cessor may not know what local data it needs to send

to other processors. For simplicity, in this example,

we assume that the indirection array V is replicated.

If it is not replicated, the indirection array must also

be communicated to compute the receive list on each

processor.

1

2

3

4

6

7

8

9

10

11

12

13

14

15

count=l

call set-BOUFJD (lb, ub, st, l,?T, i)

DO I=lb, ub, st

receive-list (count )=global-to-pro c(V(i))

local-list (count ) = global-to-local (V(i) )

count= count+i

EIiD DO

isch = schedule2(rece ive.list ,

local-list , count)

call gather (isch, tmp, B)

count=l

DO I=lb, ub, st

A(I) = tmp(count)

count= count+l

EMD DO

Once the scheduling is completed, every processor

knows exactly which non-local data elements it needs

to send to and receive from other processors. Recall

that the task of scheduler2 is to determine exactly

which send and receive communications must be car-

ried out by each processor. The scheduler first figures

out how many messages each processor will have to

send and receive during the data exchange. Each pro-

cessor computes the number of elements ( receive_hf)

and the local index of each element it needs from

all other processors. In schedu/e2 routine, processors

communicate to combine these lists (a fan-in type of

communication). At the end of this proceming, each

processor contains the send and receive list. After this

point, each processor transmits a list of required ar-

ray elements ( locaf-ht) to the appropriate processors.

Each processor now has the information required to

set up the send and receive messages that are needed

to carry out the scheduled communication. This is

done by the gather primitives.

The gather and scatter operations are powerful

enough to provide the ability to read and write dis-

tributed arrays with vectorized communication facil-

ity. These two primitives are available in PARTI (Par-

allel Automatic Runtime Toolkit at ICASE) [16] de-

signed to efficiently support irregular patterns of dis-

tributed array accesses.

6 Run-time Support System

The Fortran 90D compiler relies on a very powerful

run-time support system. The run-time support sys-

tem consists of functions which can be called from the

node programs of a distributed memory machine.

Intrinsic functions support many of the basic data

parallel operations in Fortran 90. They not only pro-

vide a concise means of expressing operations on ar-

rays, but also identify parallel computation patterns

that may be difficult to detect automatically. Fortran

90 provides intrinsic functions for operations such as

shift, reduction, transpose, reshape, and matrix mul-

tiplication.

Some of the intrinsic functions can be further opti-

mized for the underlying hardware architecture. Our

FortIran 90 D/HPF compiler has more than 500 paral-

lel run-time support routines and the implementation

details can be found in [17].

Arrays may be redistributed across subroutine

boundaries. A dummy argument which is distributed

differently from its actual argument in the calling rou-

tine is automatically redistributed upon entry to the

subroutine by the compiler, and is automatically redis-

tributed back to its original distribution at subroutine

exit. These operations are performed by the redistri-

bution primitives which transform from block to c~chc

or vice versa.

When a distributed array is passed as an argument

to some of the run-time support primitives, it is also

necessary to provide information such as its size, dis-

tribution among the nodes of the distributed mem-

ory machine etc. All this information is stored into a

structure which is called dwirzbuied array descriptor

(DAD) [17].
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7 Optimizations

Several types of cornmuntcation and computation

optimizations can be performed to generate a more

efficient code. In terms of computation optimiza-

tion, it is expected that the scalar node compiler per-

forms a number of classic scalar optimizations within

basic blocks. These optimizations include common

subexpression elimination, copy propagation (of con-

stants, variables, and expressions), constant folding,

useless assignment elimination, and a number of al-

gebraic identities and strength reduction transforma-

tions. However, to use parallelism within the single

node (e.g. using attached vector units), our compiler

propagates information to the node compiler using

node directives. Since there is no data dependency

between different loop iteration in the original data

parallel constructs such as forall statement, vectoriza-

tion can be performed easily by the node compiler.

Our compiler performs several optimizations to re-

duce the total cost of communication. Some of com-

munication optimization [15, 18, 14] are as follows.

1

2.

3.

4.

Vectorzzed communzcatzon. Vectorization com-

bines messages for the same source and destina-

tion into a single message to reduce communica-

tion overhead. Since we are only parallelizing ar-

ray assignments and forall statements in Fortran

90 D/HPF, there is no data dependency between

different loop iterations. Thus, all the required

communication can be performed before or after

the execution of the loop on each of the processors

involved.

Eltminate unnecessary communzcatzons. In many

cases, communication required for two different

operands can be replaced by their union. For ex-

ample, the following code may require two over-

lapptng.shzjls. However, with a simple analysis,

the compiler can eliminate the shift of size 2.

FORALL(I=l :fl) A(I)= B(I+2)+B(I+3)

Reuse of scheduling information. Unstructured

communication primitives are required by com-

putations which require the use of a preproces-

sor. As discussed in Section 5.3.2, the schedules

can be reused with appropriate analysis.

Code movement. The compiler can utilize the in-

formation that the run-time support routines do

not have procedural side effects. For example,

the preprocessing loop or communication routines

can be moved up as much as possible by analyzing

Table 2: Comparison of the execution times of the

hand-written code and FortIran 90D compiler gener-

ated code for several applications. (Intel iPSC/860,

time is in seconds).

Number of PEs

Program Size 1 I 2 I 4 I 8 I 16

Gauss Hand lKx IK 6231 I 446.6 I 235.3 1348 I 79.4

Gauss F90D lKxIK 61a.7 4519 261.8 I 147.2 874
J

Nbody Hand I lKxIK II 68 I 1,7 I 1.2 0,7 I 0.4

Nbodv F90D 11(x1K 13.8 59 2.4 I 1.3 0.8, ,

1OptIon Hand SK 42 31 I 16 0.8 I 0.4

oDtlOn F90D I SK II 431 31 1.6 I 0.8 0,4

Pi Hand I 64K o 39s I o zoo I 0.101 I 0053 I 0.030

PI F90D 64K II 0411 0207 0104 0054 0032

definition-use chains. This may lead to moving

of the scheduling code out of one or more nested

loops which may reduce the amount of commu-

nication required significantly. We are incremen-

tally incorporating many more optimizations in

the compiler.

8 Experimental Results

To illustrate the performance of our compiler, we

present benchmark results from four programs and the

first 10 Livermore loop kernels. Gauss solves a sys-

tem of linear equations with partial pivoting. lVbody

program simulates the universe using the algorithm in

[10]. Option program predicts the stock option pric-

ing using stochastic volatility European model. Pi

program calculates the value of pi, using numerical

integration. The Livermore kernels are 24 loops ab-

stracted from actual production codes that have been

widely used to evaluate the performance of various

computer systems. Data for all programs were block

distributed and were written outside of the compiler

group at N PAC by experienced message passing pro-

grammers.

Tables 2 and 3 show the performance of com-

piler generated codes (F90D/HPF) and hand-written

f77+ MP code. The tables contain data from running

these programs with varying number of processors an

Intel iPSC/860. The compiler generated codes and

hand-written codes use Express as a message passing

library. Timings were taken using eztimeo function

having an accuracy of one microsecond. The programs

were compiled by using Parasoft Express Fortran com-

piler which calls Portland Group if77 release 4.0 com-

piler with all optimizations turned on (-04).



Table 3: Comparison of the execution times of the

hand-written code and Fortran 90D compiler gener-

ated code for the first 10 Livermore loop kernels. Data

size is 161< real. (a 16 node Intel iPSC/860, time is in

milliseconds).

LOOP # Type of Application I F90D Hand I Ratto

1 Hydrodynamics 2.545 2.550 099

2. Incomplete Cholesky 11783 10.440 1.12

3 Inner product 3253 3.249 1.00

4 Banded llnear equations 5139 3~1~ 160

5 ‘Ihdlagonal elimination 309’28 30897 100

6. Linear recurrence relations 18491 18865 0.98

7 Equation of state 11346 3704 306

8 AD I 38656 ?0 03s I 92

9 Numerical Integration 2255 2441 092

10 Numerical Dlfferentlation 981.4 4589 213

We observe that the performance of the compiler

generated codes are usually within a factor of 2 of the

hand-written codes. This is due to the fact that expe-

rienced programmer can incorporate more optimiza-

tion than our compiler currently does. For example,

a programmer can combine or eliminate some of the

communication or some of intra-processor temporary

copying. The compiler uses a more generic packing

routine, whereas a programmer can combine commu-

nication for the same source and destination for differ-

ent arrays. Another observation is that our run-time

system shift routine is slower than the programmer’s

shift routines. We are planing to rewrite some part of

our run-time shifts using assembly language.

9 Summary of Related Work

Callahan and Kennedy [9] proposed distributed-

rnemory compilation techniques based on data-

dependence driven program transformations. These

techniques were implemented in a prototype compiler

in the ParaScope programming environment. Cur-

rently, a Fortran 77D compiler is being developed at

Rice [18]. The Fortran 77D compiler introduces and

classifies a number of advanced optimizations needed

to achieve acceptable performance; they are analyzed

and empirically evaluated for stencil computations.

SUPERB [5] is a semi-automatic parallelization tool

designed for MIMD distributed-memory machines. It

supports arbitrary user-specified contiguous rectangw

lar distributions, and performs dependence analysis to

guide interactive program transformations. KAL1 [13]

is the first compiler system that supports both reg-

ular and irregular computations on MIMD machines.

KAL1 requires that the programmer explicitly parti-

tion loop iterations onto the processor grid. An inspec-

tor/executor strategy is used for run-time preprocess-

ing of the communication for irregularly distributed

arrays. Dataparallel C [19] is a variant of the original

C* programming language, designed by Thinking Ma-

chines Corporation for its Connection Machines pro-

cessor array. Data parallel C extends C to provide the

programmer access to a parallel virtual machine. ARF

is a compiler for irregular computations [14]. Saltz

et al. describe and experimentally characterize ARF

compiler and runtime support procedures which em-

body methods that are capable of handling a wide

range of irregular problems in scientific computing.

Many techniques especially unstructured communica-

tion of Fortran 90D compiler are adapted from ARF

compiler. The ADAPT system [20] compiles Fortran

90 for execution on hIIMD distributed memory archi-

tectures. The ADAPTOR [21] is a tool that transform

data parallel programs written in Fortran with array

extensions and layout directives to explicit message

passing. Li and Chen [22] describe general compiler

optimization techniques that reduce communication

overhead for Fortran-90 implementation on massively

parallel machines. Our compiler uses pattern match-

ing techniques to detect communication similar to Li

and Chen’s. Sabot [23] describes the techniques that

are used by the CM compiler to map the fine-grained

array parallelism of languages such as Fortran 90 and

C* onto the Connection hlachine architectures.

10 Conclusions

In this paper, we presented design, implementa-

tion and performance results of our Fortran 90 D/HPF

compiler for distributed memory machines. Specifi-

cally, techniques for processing distribution directives,

computation partitioning, communication detection

and generation were presented. We also showed that

our design is portable, yet efficient.

We believe that the methodology presented in this

paper to compile Fortran 90 D/HPF can be used by

the designers and implementors for HPF language.
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