
Communication Strategies for Out-of-core Programs on Distributed Memory

Machines

Rajesh Bordawekar Alok Choudhary

ECE Dept. and NPAC, Syracuse University, Syracuse, NY 13244

raj esh, choudhartlnpac. syr. edu

URL: http://uww.cat.syr.edu/-{rajesh,choudhr}r}

Abstract

In this paper, we show that communication in the out-

of-core distributed memory problems requires both inter-

processor communication and file 1/0. Thus, in order to

improve 1/0 performance, it is necessary to optimize the

I/O costs associated with a communication step.

We present three methods for performing communica-

tionin out-of-core distributed memory problems. The first

method, termed a.sthe”out-of-core” communication method,

follows aloosely synchronous model. Computation and Corn-

munication phases in this case are clearly separated, and
communication requires permutation of data in files. The
second method, termed aa “demand-driven-in-core commu-
nication” considers only communication required of each
in-core data slab individually. The third method, termed
as “producer-driven-in-core communication” goes even one
step further and tries to identify the potential (future) use

of data while it is in memory. We describe these methods in
detail and provide performance results for out-of-core appli-

cations; namely, two-dimensional FFT and two-dimensional

elliptic solver. Finally, we discuss how “out-of-core” and

“in-core” communication methods could be used in virtual
memory environments on distributed memory machines.

1 introduction

The use of parallel computers to solve large scale computa-
tional problems has increased considerably in recent times.
With these powerful machines at their disposal, scientists
are able to solve larger problems than were possible before.

As the size of the applications increase so do their data re-

quirements. For example, large scientific applications like

Grand Challenge applications require 100s of GBytes of data

per run [Ini94].

Since main memories may not be large enough to hold
data of order of Gbytes, data needs to be stored on disks
and fetched during execution of the program. Performance
of these programs depends on how fast the processors can ac-
cess data from the disks. A poor 1/0 capabfity can severely

degrade the performance of the entire program. The need

Permission to make digital/hard copies of all or part of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commercial advantage, th; ACM copyright/server
notice, the title of the publication and its date appear, and notice is given
that copyright is by permission of the Association for Computing Machinery,
Inc. (ACM). To copy otherwise, to republish,to post on servers or to A computation is called an out-of-core (OOC) computation
redistribute to lists, requires specific permission and/or fee.
lCS ’95 Barcelona, Spain o 1995 ACM 0-89791-726-6/95/0007. .$3.50

if the data which is used in the computation does not fit in

for high performance 1/0 is so significant that almost all the

present generation parallel computers such aa the Paragon,

iPSC/860, Touchstone Delta, CM-5, SP-1, nCUBE2 etc.

provide some kind of hardware and software support for
parallel 1/0 [CF94, Pie89, dRC94]. del Rosario and Choud-

hary [dRC94] give an overview of the various issues in high

performance 1/0.

Data parrdlel languages like High Performance Fortran

(HPF) [For93] were designed for developing complex scien-

tific applications on parallel machines. In order that these

languages can be used for programming large applications,

it is essential that these languages (and their compilers) pro-

vide support for applications requiring large data sets. We
are developing compilation techniques to handle out-of-core

applications [CBH+ 94]. The compiler takes an HPF pro-
gram as an input and produces the corresponding node pro-
gram with calls to runtime routines for 1/0 and communica-

tion. The compiler striprrzines the computation so that only
the data which is in memory is operated on. Computation

of in-memory data often requires data which is not present

in processor’s memory. Since the data is stored on disks,

communication often results in disk accesses. In this pa-

per we propose three strategies to perform communication

when data is stored on disks. These strategies use different

techniques to reduce 1/0 cost during communication. These

techniques are illustrated using two scientific applications.
Finally we show that these techniques could also be used in
virtual memory environments.

The paper is organized as follows. Section 2 describes
the out-of-core computation model. This section also intro-
duces a data storage model called the Local Placement

Model. Section 3 describes the three proposed strategies
for performing communication in out-of-core data parallel

problems. A running example of 2-D elliptic solver using Ja-

cobi relaxation is used to illustrate these strategies. Section

4 presents experimental performance results for two out-
of-core applications, namely two-dimensional Jacobi Relax-

ation and two-dimensional FFT using these communication
strategies. Section 5 describes how these communication
strategies could be used in virtual memory environments.
Conclusion are presented in section 6.

2 Computation Model

2.1 Out-of-core Comcmtation Model

395

the main memory. Thus, the primary data structures reside
on disks and this data is called OOC data. Processing OOC

data, therefore, requires staging data in smaller granules
that can fit in the main memory of a system. That is, the

computation is carried out in several phases, where in each
phase part of the data is brought into memory, processed,

and stored back onto secondary storage (if necessary).

The above phase may be viewed as application level de-

mand paging in which data is explicitly fetched (or stored) at

the application level. In virtual memory environments with
demand paging, a page (or a set of pages) is fetched into the

main memory from disk. The set of pages which lies in the
main memory is called the Working Set. Computations are
performed on the data which lies in the working set. After

the computation is over, pages from the working set which

are no longer required are written back on the disk (if re-

quired). When the computation requires data which is not

in the working set, a page fault occurs and the page which
contains the necessary data is fetched from disk. We can

consider the out-of-core computation as a type of demand
paging in which one or more pages form one slab. The slabs

are fetched from disk when required and computation is per-
formed on the in-core data slab. When the computation on
the in-core slab is finished, the slab is written back to the
disk.

2.2 Programming Model

In this work, we focus on out-of-core computations per-
formed on distributed memory machines. In distributed

memory computations, work distribution is often obtained

by distribution data over processors. For example, High

Performance Fortran (HPF) provides explicit compiler di-

rectives (TEMPLATE, ALIGN and DISTRIBUTE) which describe

how the arrays should be partitioned over processors [For931.

Arrays are first aligned - to a template ‘(provided by th~

TEMPLATE directive). The DISTRIBUTE directive specifies how

the template should be distributed among the processors.

In HPF, an array can be distributed as either BLOCK(?n) or

CYCLIC(m). In a BLOCK(m) distribution, contiguous blocks of

size m are distributed among the processors. In a CYCLIC(m)

distribution, blocks of size m are distributed cyclically. The

DISTRIBUTE directive specifies which elements of the global
array should be mapped to each processor. This results in
each processor having a local array associated with it. Our
main assumption is that local arrays are stored in files from
which the data is staged into main memory. When the global
array is an out-of-core array, the corresponding local array
will have to be also stored in files. The out-of-core local
array can be stored in files using two distinct data place-

ment models. The first model, called the Global Placement

Mode/ (GPM) maintains the global view of the array by

storing the global array into a common file [CBH+ 94]. The

second model. called the Local Placement Model (LPM) dis-. -,
tributes the global array into one or more files according to

the distribution pattern. For example, the VESTA file sys-
tem provides a way of distributing a file into several logical

file partitions, each belonging to a distinct processor [CF94].

In this paper we only consider the local placement model.

2.3 Local Placement Model

In the Local Placement Model, the local array of each pro-

cessor is stored in a logical file called the Local Array File

(LAF) of that processor as shown in Figure 1. The local

Global Array

}.
ToRI _

..
.... ...

1
- To PI......

..............

m.................................:.:.:.,.:.
Top2 - $::+:;;;:?;;;:. - TOP3.....................

,.:+,.,:,,.:.x.:.x.:.:.:.:.................................

Pa PI P2 P3

Logical

DBk9 9
~,::~

rn~

\\ z----
LocalArray

Fdss

Figure 1: Local Placement Model

array files can be stored as separate files or they may be
stored as a single file (but are logically distributed). The

node program explicitly reads from and writes into “the file
when required. The simplest way to view this model is to

think of each processor as having another level of memory

which is much slower than main memory. If the 1/0 archi-

tecture of the system is such that each processor has its own

disk, the LAF of each processor can be stored on the disk

attached to that processor. If there is a common set of disks
for all processors, the LAF may be distributed across one or
more of these disks. In other words, we assume that each
processor has its own logical disk with the LAF stored on
that disk. The mapping of the logical disk to the physical

disks is system dependent. At any time, only a portion of the
local array is fetched and stored in main memory. The size
of this portion depends on the amount of memory available.

The portion of the local array which is in main memory is

called the In- Core Local Arra~ (ICLA). All computations

are performed on the data in the ICLA. Thus, during the

course of the program, parts of the LAF are fetched into the
ICLA, the new values are computed and the ICLA is stored
back into appropriate locations in the LAF.

3 Communication Strategies in Out-of-core Computations

Given 00C computations, when the primary data sets re-

side in files on disks, any communication involving the 00C
data would require disk accesses as well. In in-core compu-
tations on distributed memory machines, a communication
step involves movement of data from one or more processor’s
memory to other processor’s memories. For 00C compu-

tations, communication therefore would involve movement
of data from one or more processor’s files to other proces-
sor’s files. Given that disk accesses are several orders of
magnitude more expensive than memory accesses, and con-
siderably more expensive than communication time itself,

it is important to consider optimizations in the 1/0 part

of a communication step. In this section, we propose sev-

eral strategies to perform communication for 00C compu-

tations. We mainly focus on data parallel programs such as

396

i

2

3
4
5

6
7
8

REAL A(I024 ,1024) , B(I024 ,1024)

!HPF$” Processors P(4,4)
! HPF$ TEUPLATE T(I024 , 1024)
! HPF$ DISTRIBUTE T(BLOCK ,BLOCK)
!HPF$ ALIGH with T : : A, B

“ “F0iALL”&2:H-i, J=2:H-1)
A(I, J) = (A(I, J-1) + A(I, J+i)
+A(I+I, J) + A(I-i, J))/4

.

Figure 2: An HPF Program Fragment for Twe-dimensional
Jacobi Computations. The array A is distributed in

BLOCK-BLOCK fashion over 16 processors.
(A)

those writ ten in HPF. We first describe how the communi-
cation is done for in-core programs and then describe three
communication strategies for out-of-core programs. We ex-
plain both cases with the help of the HPF program fragment
given in Figure 2. In this example, arrays A and B are dis-

tributed in (BLOCK-BLOCK) fashion on 16 processors logically

arranged as a 4 x 4 two-dimensional grid.

3.1 Communication Strategies in In-core Computations

Consider the HPF program fragment from Figure 2. The

HPF program achieves parallelism using (1) Data Distri-

bution and (2) Work Distribution. The data distribution
may be specified by the user using compiler directives or
may be automatically determined by the compiler. Work
distribution is performed by the compiler during the compi-

lation of parallel constructs like FORALL or array assignment

statements (line 6, Figure 2). A commonly used paradigm

for work distribution is the owner-computes rule [BCF+ 93,

HKT92]. The owner-computes rule says that the processor

that owns a datum will perform the computations which

make an assignment to this datum.

In the example, it can be observed that for the array

assignment (lines 6-8), each processor requires data from

neighboring processors. Consider processor 5 from Figure 3.
It requires the last row of processor 1, last column of proces-
sor 4, first row of processor 9 and first column of processor 6.
This pattern can be considered as a logical shift of the data
across processor boundaries. It should be noted that pro-
cessor 5 needs to send data to processors 1,4,6 and 9 aa well.

Data communication can be carried before the local compu-
tation begins. Since computation is performed in a SPMD

(loosely synchronous) style, all processors synchronize be-

fore communication. As all processors need off-processor
data for their local computations, they simultaneously send

and/or receive data. This is so called collective communica-

tion. After the communication is performed, each processor
begins computations on the local array. From this analysis,
we can arrive to following conclusions

1. Communication in an in-core HPF program is

generated during the computation of (in-core) 10

cal array because the processor requires data which

is not present in it’s memory. Both data distribu-
tion and work distribution strategies dictate the
communication pattern.

2. In an in-core SPMD (e.g. HPF) program, the

communication can be performed coilectiueig and

is normally performed either before or(and) after

the computation. This ensures that the compu-

tation does not violate loosely synchronous con-
straint.

0m9 10 k Cmmnticmcd

(c)
OUT-OF-COW

cOMWmaTION

Ass

1. 2 3. 4.
-Ummm

(D) lN-C~

COMMUMCATION

Figure 3: Figure illustrates compilation of out-of-core dif-
ference equation. The in-core slabs and the corresponding
ghost areas are shown using distinct shades.

3.2 Communication Strategies in Out-of-core Computa-
tions

In an out-of-core application, computation is carried out in

phases. Each phase reads a slab of data (or ICLA), per-

forms computations using this slab and writes the slab back

in the local array file. In this case processors may need to

communicant e because (1) computation of in-core local array

requires data which is not present in memory during the
computation involving ICLA and, (2) ICLA cent sins data
which is required by other processors for computation. The

communication can be performed in two ways: (1) in a col-

/ectiue manner, using Out-of-core Communication and

(2) in a demand basis, termed as “In-core Communica-

tion”.

We will now illustrate the two communication approaches

using the example of the 2-D elliptic solver (using Jacobi

Relaxation) (Figure 2). We now assume that array A is

an out-of-core array which is distributed over 16 processors.

Each processor stores it’s local array into it’s local array tile.

3.2.1 Out-of-core Communication

In the out-of-core communication method, the communica-

tion is performed collectively considering the entire 00C
local array. All processors compute the elements which are

requiredfor the computation of the OCLA but are notpresent

in the OCLA. These elements are communicant ed either be-
fore or after the computation on the 013 LA. The communi-

cation from node j to node i involves following steps

1. Synchronize (if necessary).

397

2.

3.

4.

Node j checks if it needs to send data to other
processors. If so, it checks if the required data is

in memory. If not, node j first sends a request

to read data from disk and then receives the re-

quested data from disk. If the required data is in
memory then the processor does not perform file

1/0.

Node j sends data to node i.

Node i either stores the data back in local file
or keeps it in memory (This would depend on

whether the data required can be entirely used
by the current slab in the memory, if not, the

received data must be stored in local files).

To illustrate these steps, consider processors 5 and 6

from Figure 3 (A). Each processor performs operations on

it’s OCLA in stages. Each OCLA computation involves re-

peated execution of three steps (1) Fetching an ICLA, (2)

Computing on the ICLA, (3) Storing the ICLA back in the

local array file. Figure 3(B) shows the ICLA’S using differ-

ent shades. Figure 3(C) shows the data that needs to be

fetched from other processors (called the ghost area). In

the out-of-core method, all the processors communicate this

data before the computation on the OCLA begins. To il-
lustrate the point that out-of-core communication requires

1/0, note that processor 5 needs to send the last column to

processor 6. This column needs to be read from the local
array file and communicated. Figure 4 shows the phases in
the out-of-core communication method.

Node 1 ?JC.4C2

3--------=’-’’-----------4.s

&
73 ‘%5%%’’”-” 4! -..............

R
~i~@

G

IA I

T
ad &m

.-__ —------------------

s F G

+ +
k~D,aIrc,~
s Sml’eDatitia
Gai-fiw

Figure 4: Out-of-core Communication, Collective communi-
cation performed either before or after the local computation
phase.

In the out-of-core communication method, communica-
tion and computation are performed in two separate phases.
As a result, the OCLA computation becomes atomic, i.e.,
once started it goes to completion without interruption. Thk
method is attractive from the compiler point of view since

it allows the compiler to easily identify and optimize collec-
tive communication patterns. Since the communication will

be carried before the computation, this strategy is suitable

Rr
Iorsdhghtm-..

-.. . . .
. . . .

‘g=~ .--J.:>..
. ..’-.

. . .

! I I
t

ruIleen8takm&Aa
s: -&.@&
Gcurmakomikb J---J

Figure 5: Demand-driven In-core Communication. Node 2

requests data from Node 1 (point 2). Node 1 reads data

from disks and sends to node 2 (points 4-5).

for HPF FORALL-type of computations which have copy-in-
copy-out semantics. In the above example, four shifts are

required which result in disk accesses, data transfer and data
storage (in that order).

3,2.2 In-core Communication

For 00C computations, the communication may be per-
formed in an entirely different way by just considering the

communication requirements of the ICLA (or slab in mem-

ory) individually. In other words, communication set for

each ICLA is generated individually. The basic premise be-

hind this strategy is that if the data present in the memory

can be used for communication while it is resident in mem-

ory, it may reduce the number of file 1/0 steps.

In-core communication method differs from the out-of-
core communication method in two aspects, (1) in the in-

core communication method, communication is”not performed
collectively. The two phases, computation on the ICLA and
communication are interleaved. However the computation
on the ICLAS is still carried out in an SPMD fashion. The
data to be communicated is the data which is required for
the computation of the ICLA but is not rxesent in the mem-

ory (but it may be present in remote memory or another

processor’s file). The in-core communication can be further

divided into two types, (1) Demand-driven Communication

and (2) Producer-driven Communication.

c Demand-driven In-core Communication (Consumer de-

cides when to fetch)

In this strategy, the communication is performed when
a processor requires off-processor data during the com-
putation of the ICLA. Figure 5 illustrates the demand-
driven communication method. Node 2 requires off-

processor data at point 2 (Figure 5). Let us assume

that the required data is computed by node 1 at point
1 and stored back on disk. When node 2 requires this

398

I Nd.1 Iw. 2

141
+

Figure 6: Producer-driven In-core Communication. Node 1

sends data to node 2 (points 1-2). Node 2 uses this data at

point 3.

●

data, it sends a request to node 1 to get this data.

Node 1 checks if the data is in memory else it reads

the data (point 3). After reading the data from disk,

node 1 sends this data to node 2. Node 2 receives this
data (point 5) and uses it during the computation of

the ICLA.

This method can be illustrated using the example of

the elliptic solver (Figure 3). Consider again processor

5. Figure 3(B) shows the different ICLAS for the pro-

cessor 5. Let us consider slab 1 (shown by the darkest

shade). The ghost area of this slab is shown in Fig-

ure 3(D). When this ICLA is in processor’s memory,

it requires data from processors 1, 4 and 9. Hence,
processor 5 sends requests to processors 1, 4 and 9.
After receiving the request, processors 1, 4 and 9 check
whether the requested data is present in the ICLA or
it has to be fetched from the local array file. Since

processors 1 and 9 have also fetched the first slab, the

requested data lies in the main memory. Hence proces-

sors I and 9 can send the requested data without doing

file 1/0. However, since processor 4 has also fetched

the first slab, the requested data does not lie in the

main memory. Therefor, processor 4 has to read the

data (last column) from it’s local array file and send

it to processor 5. It is important to note that the shift
collective communication pattern in the original 00C
communication is broken into different patterns when
in-core communication is considered.

Producer-driven In-core Communication (Producer de-

cides when to send)

The basic premise of this communication strategy is

that when a node computes on an ICLA and can de-
termine that a part of this ICLA will be required by
another node later on, this node sends that data while
it is in its present memory. Note that in the demand-
driven communication, if the requested data is stored

on disk (as shown in Figure 5), the data needs to be

fetched from disk which requires extra 1/0 accesses.

This extra 1/0 overhead can be reduced if the data

can be sent to the processor either when it is com-

puted or when it is fetched by it’s owner processor.

This approach is shown in Figure 6. Node 2 requires

some data which is computed by node 1 at point 1. If
node 1 knows that data computed at point 1 is required
by node 2 later, then it can send thw data to node

2 immediately. Node 2 can store the data in mem-

ory and use it when required (point 3). This method

is called the Producer-driven communication since in

this method the producer (owner) decides when to send

the data. Communication in this method is performed

before the data is used. This method requires knowl-
edge of the data dependencies so that the processor
can know beforehand what to send, where to send and
when to send. It should be observed that this ap-

proach saves extra disk accesses at the sending node
if the data used for communication is present in its

memory.

In the example of the elliptic solver, assume that pro-

cessor 5 is operating on the last slab (slab 4 in Fig-

ure 3(D)). This slab requires the first column from

processor 6. Since processor 6 is also operating on the

last slab, the first column is not present in the main
memory. Hence, in the demand-driven communication
method, processor 6 needs to fetch the column from
it’s local array file and send it to processor 5. In the
producer-driven communication method, processor 6
will send the first column to processor 1 during the

computation of the first slab. Processor 5 will store
the column in its local array file. This column will be

then fetched along with the last slab thus reducing the

1/0 cost.

3.2.3 Discussion

The main difference between the in-core and out-of-core
communication methods is that in the latter, communica-
tion and computation phases are separated. Since the com-
munication is performed before the computation, an out-of-

core computation consists of three main phases, Local 1/0,

Out-of-core Communication and Computation. The local

1/0 phase reads and writes the data slabs from the local

array files. The computation phase performs computations

on in-core data slabs. The out-of-core communication phase
performs communication of the out-of-core data. This phase

redistributes the data among the local array files. The com-
munication phase involves both inter-processor communica-

tion and file 1/0. Since the required data may be present

either on disk or in on-processor memory, three distinct ac-

cess patterns are observed

1. Read(write) from my logical disk.

2.

This access pattern is generated in the in-core
communication method. Even though data re-

sides in the logical disk owned by a processor,
since the data is not present in the main memory
it has to be fetched from the 10CS.I array file.

Read from other processor’s memory.

In this case the required data lies in the mem-

ory of some other processor. In this case only
memory-to-memory copy is required.

399

3. Read (write) from other processor’s logical disk.

When the required data lies in other processor’s
disk, communication has to be done in two stages.
In case of data read, in the first stage the data
has to read from the logical disk and then com-

municated to the requesting processor. In case of
data write, the first phase involves communicat-

ing data to the processor that owns the data and
then writing it back to the disk.

The overall time required for an out-of-core program can

be computed as a sum of times for local 1/0 Tl,o, in-core

computation TCO~P and communication Tcomm.

T = Tl,. + T.onrn -t Tc.xnP

Tl,o depends on (1) Number of slabs to be fetched into

memory and, (2) 1/0 access pattern. The number of slabs

to be fetched is dependent on the size of the local array

and the size of the available in-core memory. The 1/0 ac-

cess pattern is determined by the computation and the data

storage patterns. The 1/0 access pattern determines the

number of disk accesses. TCO~~ can be computed as a sum

of 1/0 time and inter-processor communication time. The

1/0 time depends on (1) whether the disk to be accessed

is local (owned by the processor) or it is owned by some

other processor, (2) the number of data slabs to be fetched

into memory and, (3) the number of disk accesses which is

determined by the 1/0 access patterns. The inter-processor

communication time depends on the size of data to be com-

municated and the speed of the communication network. Fi-
nally the computation time depends on the size of the data

slabs (or size of available memory). Hence, the overall time
for an out-of-core program depends on the communication
pattern, available memory and 1/0 access pattern.

4 Experimental Performance Results

This section presents performance results of 00C applica-

tions implemented using the communication strategies pre-

sented in this paper. We demonstrate that under different

circumst antes, different strategies may be preferred, i.e., no

one strategy is universally good. We also show performance
by varying the amount of memory available on the node to
store ICLAS.

The applications were implemented on the Intel Touch-
stone Delta machine at Caltech. The Touchstone Delta has
512 compute nodes arranged as a 16x 32 mesh and 32 1/0

nodes connected to 64 disks. It supports a parallel file sys-

tem called the Concurrent File System (CFS).

4.1 Two-Dimensional Out-of-core Elliptic Solver

Table I presents performance of 2D out-of-core elLiptic solver
using the three communication strategies. The problem size
is 4K x4K array of real numbers, representing 64 MBytes of

data. The data distribution is (BLOCK-BLOCK) in two dimen-

sions. The number of processors is 64 (with a 8*8 logical

mapping). The size of the ICLA waa varied from 1/2 of the

OCLA to 1/16 of the OCLA.
Tables 1 and 2 show three components of the total execu-

tion time; namely, Local 1/0 (L IO) time, Computation time

(COMP) and the Out-of-core Communication time (COMM)

for Out-of-core Communication Method, Demand-driven In-

core Communication Method and Producer-driven In-core

Demand-driven In-core Comm. Method

cost Ratio= $ Ratio= ~ Ratio= ~ Ratio= &

COMM 1.52 1.60 1.78 1.98
COMP 1.08 1.09 1.11 1.08

LIO 57.71 61.3 62.51 72.698

Producer-driven In-core Comm. Method

cost I Ratio= ~ I Ratio= ~ I Ratio= ~ I Ratio= ~

COMM I 1.88 I 1.98 I 2.03 I 2.61

COMP 1.11 I 1.08 I 1.1 I 0.99
LIO 54.41 61.22 67.03 73.53 III , , ,

Out-of-core Comm. Method

cost I Ratio= ?j I Ratio= ~ I Ratio= $ I Ratio=+

COMM I 250.76 261.73 288.97 279.37
COMP I 1.8 I 1.73 I 1.8 I 1.7 II

LIO I 51.90 1 63.91 I 128.29 200.37 u

Table 1: Out-of-core 2D-Jacobi (4 K*4K) on 64 Processors,

time in sec.

Communication Method. The experiment is performed for

four values of the memory ratio (ICLA/OCLA). From these

results we make the following observations

1.

2.

3.

4.

5.

COM P remains constant in all the three communica-

tion methods. This is expected as the amount of com-

putation is the same for alI cases.

COMM is largest in the out-of-core Communication

method. This is because, each processor needs to read
boundary data from a file and write the received bound-

ary data into a file. Since the boundary data is not al-
ways consecutive, reading and writing of data results

in many small 1/0 accesses. This results in an overall

poor 1/0 performance. However, in thk example, for

the out-of-core communication method, COMM does
not vary significantly aa the size of the available mem-

ory is varied. As the amount of data to be communi-

cated is relatively small, it can fit in the on-processor
memory. As a result, communication does not require

stripmining (i.e. becomes independent of the available

memory size). If the amount of data to be communi-

cated is greater than the size of the available memory,
then COM M will vary as the size of the available mem-

ory changes.

Producer-driven in-core communication, even though
it performs the best, does not provide significant per-

formance improvement over the Demand-driven in-core
communication method. The main reason that is due

to lack of on-processor memory, the receiver processor

stores that received data on dwk and reads it when
needed. This results in extra 1/O accesses.

In both Demand and Producer-driven communication

methods, COM M does not vary significantly as the
amount of available memory is changed. In the 2-
D Jacobi method, the inter-processor communication
forms a major part of in-core communication. Since

the in-core communication requires small 1/0, the in-

core communication cost is almost independent of the
available memory.

As the amount of memory is decreased, more 1/0 ac-

cesses are needed to read and store the data. This leads

400

Demand-driven In-core Comm. Method

cost Ratio= $ Ratio= ~ Ratio= ~ Ratio= J-

COMM 1.92 1.78 2.10 2.34
COMP .5.8 5.9 5.49 5.29

IICOMP 5.90 I 5.88 I 5.6 I 5.8
LIO 251.54 268.39 312.75 348.19 II

Table 2: Out-of-core 2D-Jacobi (8 K*8K) on 64 Processors,

time in sec.

to an increase in the cost of LIO. It should be noted

that the local 1/0 and the 1/0 during communication

are the dominant factors in the overall performance.

6. In in-core communication methods, the structured com-

munication pattern (shifl) gets distributed into several

unstructured patterns (for each in-core data slab). In

order to optimize these communication patterns, we

need to use Producer/Demand-driven communication

methods.

Table 2 illustrates the performance for the same problem

with the same level of scaling for the problem size and the

number of processors. This example solves a problem of
8K x 8K on 64 processors. Clearly, for both problem sizes,
the out-of-core communication strategy performs the worst
in terms of the communication time due to the fact that
communication requires many small 1/0 accesses.

As we will observe in the next application, when the
communication volume is large and the number of processors

communicating is large, out-of-core communication provides
better performance.

4.2 Two-Dimensional Fast Fourier Transform

This application performs two-dimensional Fast Fourier Trans-

form (FFT). The FFT is an O(NZog(N)) algorithm to com-

pute the discrete Fourier transform (DFT) of a N x N ar-

ray. On a distributed memory machine, FFT is normally

performed using transpose/redistribution based algorithms.

One way to perform a transpose based FFT on a N x N

array is as follows:

1. Distribute the array along one dimension accord-

ing to some (*acyclic) distribution.

2. Perform a sequence of lD FFTs along the non-
distributed dimension (column FFTs).

3. Transpose the intermediate array z.

4. Perform a sequence of lD FFTs along the columns

of the transposed intermediate array z T.

Note that the above algorithm does not require any com-

munication during 1D F FTs. However this algorithm re-

quires a transpose (redistribution) which has an all-to-all

PROGRAM FFT

REAL A(l,l)

! HPF$ TEMPLATE T (M , H)

! HPF$ DISTRIBUTE T(* ,BLOCK)

!HPF$ ALIGH WITH T :: A

FORALL(J=I :1) &

DO-lD_FFT(A(: ,J))

A=TRAHSPOSE (A)

FORALL(J=I :1) &

DO-lDXFT(A(: ,J))

STDP

END

Figure 7: An HPF Program for 2-D FFT. Sweep of the 1-D

FFT in (X/Y) dimension is performed in parallel.

communication pattern. Hence, the performance of the trans-
pose based algorithm depends on the cost of the transpose.

Figure 2 presents an HPF program to perform 2D FFT. The

DO-lD-FFT routine performs 1-D FFT over the jth column of

the array.
The basic 2D-FFT algorithm can be easily extended for

out-of-core arrays. The 00C 2D FFT algorithm also in-
volves three phases. The first and third phase involves per-

forming lD FFT over the in-core data. The transposition
phase involves communication for redistributing the inter-

mediate array over the disks. Thus, the performance of

the out-of-core FFT depends on the 1/0 complexity of the

out-of-core transpose algorithm. The transpose can be per-

formed using two ways, (1) Out-of-core Communication and

(2) In-core Communication.

4.2.1 Out-of-core Communication

In the out-of-core communication method, the transposition
is performed after the computation in the first phase as a

collective operation. Figure 8 (A) shows the communica-

tion pattern for the out-of-core transpose. Each processor

fetches data blocks (ICLAS) consisting of several subcolumns

from it’s local array file. Each processor then performs an

in-core transpose of the ICLA. After the in-core transpose,
the ICLAS are communicated to the appropriate processor

which stores them back in the local array file.

4.2.2 In-core Communication

In this method, the out-of-core 2D FFT consists of two

phases. In the first phase, each processor fetches a data slab

(ICLA) from the local array file, performs 1-D FFTs over

the columns of the ICLA. The intermediate in-core data is

then transposed. In the second phase, each processor fetches
ICLAS from it’s local array file and performs lD FFTs over

the columns in the ICLA.
Figure 8 (B) shows the in-core transpose operation. The

figure assumes that the ICLA consists of one column. After
the in-core transpose, the column is distributed across all

the processors to obtain corresponding subrows. Since the
data is always stored in the column major order, the subrows
have to be stored using a certain stride. This requires a large
number of small 1/0 accesses.

Note that in the transpose baaed FFT algorithm, the
communication pattern do not change when in-core com-
munication methods are used. As a result, two different

401

OclA

w CN1.of.,. CaImml.kslh

i
n. vim

!,::
0) In-a(k.amu,kMb9

m Vkw

Figure 8: Out-of-core Transpose.

in-core communication methods are not required for com-

munication optimization. We have implemented only the

Producer-Driven communication method.

4.2.3 Experimental Results

Tables 3 and 4 present performance results for the out-of-

core ZD FFT using the two communication strategies. The

experiment was performed for two problem sizes, 4K*4K

and 8K*8K array of real numbers, representing 64 MBytes
and 256 MBytes respectively. The arrays were distributed

in column-block form over 16 and 64 processors arranged

in a logical square mesh. The amount of available memory

was varied from 1/2 to 1/16 of the local array size. Each

table shows three components of the total execution time;

namely, computation time (COM P), local 1/0 time (LIO)

and communication time (CO MM). Tables 3 and 4 illustrate

the variation of the total execution time with respect to the

ratio (ICLA/OCLA).

In-core Communication Method
“

cost Ratio= ~ Ratio= L Ratio= ~ Ratio= J-

COMM 933.59 1767.35 3382.7 6514.54
COMP 8.9 8.52 8.35 8.29

LIO 13.212 22.48 40.86 79.07
Out-of-core Communication Method

cost Ratio= ~ Ratio= ~ Ratio= ~ Ratio= &

COMM 64.505 103.5 134.8 175.95
COMP 8.3 8.8 8.65 8.9u LiO 13.39 27.46 49.68 92.45 u

Table 3: Out-of-core FFT (4 K*4K) on 64 Processors

From these results, we observe the following

1. For the out-of-core FFT, COMM for the in-core com-

munication method is larger than that for the out-of-
core communication method. CO M M includes the cost

In-core Communication Method

cost Ratio= ~ Ratio= ~ Ratio= ~ Ratio= &

COMM 923.82 982.19 1827.18 3466.88
COMP 38.5 37.19 36.47 36.23

LIO 23.39 26.97 I 44.76 I 90.11
Out-of-core Communication Method

cost I Ratio= ~ I Ratio= ~ I Ratio= ~ I Ratio= ~

COMM I 149.82 I 171.11 I 193.23 I 260.95

IICOMP 34.34 I 34.26 I 34.30 I 34,44
LIO 28.38 35.59 58.81 108.24

Table 4: Out-of-core FFT (8 K*8K) on 64 Processors

2.

3.

4.

of performing inter-processor communication and 1/0.

The in-core communication method requires a large

number of small 1/0 accesses to store the data. In

both in-core and out-of-core communication methods,
COMM increases rM the amount of available memory

is decreased.

The in-core communication method requires less LIO
than the out-of-core communication method. This is
due to the fact that in the in-core communication
method, part of the local 1/0 is performed aa a part

of the out-of-core transpose.

As the number of processors and grid size is increased,
the out-of-core communication performs better but per-
formance of the in-core communication method de-
grades.

In both methods, the computation cost COMP remains

the same.

5 Communication Strategies in Virtual Memory Environ-
ments

So far, we presented communication strategies for 00C com-
putations, where data staging was done explicitly at the

application level. This staging is performed by runtime rou-

tines (e.g. see [TBC+ 94]). In this section, we briefly discuss

how these strategies can be used when node virtual memory

on nodes may be available.
Assume that node virtual memory is provided on an

MPP, where the address space of each processor is mapped

onto a disk(s). For example, on SP2, each node haa a disk

sasociated with it for paging. Also assume that node haa
a TLB-like mechanism to convert virtual addresses to the
corresponding physical accesses.

In such an environment, where demand paging is per-
formed for accesses for data not present in the memory,
sweep through a computation will involve page faults and ac-
cesses to pages from disks when needed. Two types of page
faults are possible in this environment; namely, page faults

caused by local accesses, termed as “local page faults” and
page faults caused by data required by remote processors
due to communication requirements termed aa “remote page

faults”. The former is equivalent to local 1/0 in the explicit

method for data accesses in form of slabs using the compiler

and runtime support. The latter is equivalent to the 1/0

performed during communication in the explicit method.
If no compiler and runtime support for stripmining com-

putations, and no (explicit) access dependent support for

1/0 is provided, paging of the system level can be very ex-

pensive. On the other hand, inexplicit support by thecom-

piler andtheruntime system is provided to perform explicit

1/0 at the application level, all techniques discussed earlier

in this paper can be applied in the systems that do pro-
vide virtual memory at the node level. The following briefly

discusses the communication scenarios.

In the virtual memory environment, the computation can

be stripmined so that a set of pages can be fetched in the
memory. When the computation of data from these pages
is over, either the entire or a part of the slab is stored back
on disk. Suppose the local computation requires data which

does not lie in the in-core slab (Demand-driven In-core Com-

munication). In this case, a page }auit will occur. Since the

required data will lie either on the local disk or on the disk
owned by some other processor, both “local page faults” and

“remote page faults” are possible. A local page fault fetches
data from the local disk. A remote page fault fetches data

from a distant processor. Remote page fault results in inter-

processor communication. If the owner processor does not
have the required data in it’s memory, a Zocal page fault

will occur else the owner processor can send the data (or

page) without accessing it’s own disk. This situation is very

similar to the communication in the out-of-core scenario.
Since the Producer/Demand-driven communication strate-

gies allow the nodes more control over how and when to com-
municate, these strategies are suitable for virtual memory

environments. Consider the Producer-driven in-core com-

munication method. Suppose the processor A knows that a
particular page will be required in the future by processor
B. Then processor A can either send the page to proces-

sor B immediately or retain this page (this page will not

be replaced) until processor B asks for it. Processor B also

knowing that this page will be used later will not replace it.
Further optimizations can be carried out by modifying basic
page-replacement strategies. Standard LRUstrategy can be
changed to accommodate access patterns across processors,
i.e. if a page owned by a processor A is recently used by a

processor B, then this page will not be replacedin processor
A.

6 Conclusions

We have shown that communication in the out-of-core prob-

lems requires both inter-processor communication and file

1/0. Communication in the out-of-core problems can be per-

formed atleast in three different ways. Theout-of-corecom-
munication method performs communication in a collective

way while the in-core communication methods (Producer-

driven/Consumer-driven) communicate in a demand basis

by only considering the communication requirements of the

data slab which is present in memory. In-core communi-

cation methods are suitable for problems in which the com-
munication volume and the number of processors performing
communication is small. Producer-driven in-core communi-
cation method can be used to improve communication per-

formance by optimizing file 1/0. Out-of-core communication

method is useful for problems having large communication
volume. In both methods, the communication cost depends

on the amount of file 1/0. We demonstrated, through ex-

perimental results, that different communication strategies
are suitable for different types of computations. We believe,
these methods could be easily extended to support node vir-

tual memories on distributed memory machines.

Acknowledgments

We thank anonymous referees for their comments. This

work was supported in part by NSF Young Investigate or

Award CCR-9357840, grants from Intel SSD and IBM Corp.,
and in part by USRA CESDIS Contract # 5555-26. This
work was performed in part using the Intel Touchstone Delta

and Paragon Systems operated by Caltech on behalf of the
Concurrent Supercomputing Consortium. Access to this fa-

cility wss provided by CRPC.

References

[BCF+93] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt , and
S. Ranka. Fortran 90D/HPF compiler for distributed
memory MIMD computers: Design, implementation,
and performance results. In Proceedings oj Szpemom-

puting ’93, pages 351–360, November 1993.

[CBH+ 941 A. Chourllmw, R. 130rdawekar, M. HarrY, R. Krish-

[CF94]

[dRC94]

[For93]

[HKT92]

[Ini94]

[Pie89]

[TBC+94]

naiyer, R. Pormusamy, T. Singh, and R. Thakur.
PASSION: Parallel and Scalable Software for Input-
Output. Technical Report SC CS–636, NPAC, Syra-
cuse University, September 1994.

P. Corbett and D. Feitelson. Overview of the Vesta

Parallel File System. In Proceedings of the Sea/able

High Pc,jormancc Computing Conference, pages 63–
70, May 1994.

J. del Rosario and A. Choudhary. High performance

i/o for parallel computers: Problems and prospects.

IEEE Computer, March 1994.

High Performance Fortran Fem. High Performance

Fortran Language Specification Version 1.0. Techni-

cal Report CRPC-TR92225, Center for Research in
Parallel Computing,R1ce University, January 1993.

Seems Hiranandani, Ken Kennedy, and Chau-

Wen Tseng. Compiler support for machine-
independent parallel prograrnmi ng in fortran d.

In Languages, Compilers and Run- Time Environ-

ments for Distributed MemoTy Machines. North-

Holland, Amsterdam, The Netherlands, 1992.

Applications Working Group Of The Scalable 1/0

Initiative. Preliminary survey of ifo intensive ap-

plications. Technical Report CCSF-38, Concurrent
Supercomputing Consortium, Caltech, Pasadena, CA

91125, January 1994. Scalable 1/0 Initiative Working

Paper No. 1.

P. Pierce. A Concurrent File System for a Highly

Parallel Mass Storage Subsystem. In Proceedings of

4th Conference on Hypercubes, Concurrent Comput-

ers and Applications, pages 155–160, Match 1989.

R. Thakur, R. Bordawekar, A. Choudhary, R. Pon-

nusamy, and T. Singh. PASSION Runtime Library

for Parallel 1/0. In Proceedings oj the Scalable Par-

allel LibraTies Conference, October 1994.

403

