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Abstract

Recently, high-level languages such as MATLAB have
become popular in prototyping algorithms in domains such
as signal and image processing. Many of these applications
whose subtasks have diverse execution requirements, often
employ distributed, heterogeneous, reconfigurable systems.
These systems consist of an interconnected set of heteroge-
neous processing resources that provide a variety of archi-
tectural capabilities. The objective of the MATCH (MATlab
Compiler for Heterogeneous computing systems) compiler
project at Northwestern University is to make it easier for
the users to develop efficient code for distributed, hetero-
geneous, reconfirgurable computing systems. Towards this
end we are implementing and evaluating an experimental
prototype of a software system that will take MATLAB de-
scriptions of various applications, and automatically map
them on to a distributed computing environment consisting
of embedded processors, digital signal processors and field-
programmable gate arrays built from commercial off-the-
shelf components. In this paper, we provide an overview
of the MATCH compiler and discuss the testbed which is
being used to demonstrate our ideas of the MATCH com-
piler. We present preliminary experimental results on some
benchmark MATLAB programs with the use of the MATCH
compiler.

1 Introduction

A distributed, heterogeneous, reconfigurable computing
system consists of a distributed set of diverse processing re-
sources which are connected by a high-speed interconnec-
tion network; the resources provide a variety of architectural

capabilities and are coordinated to perform an application
whose subtasks have diverse execution requirements. One
can visualize such systems to consist of embedded proces-
sors, digital signal processors, specialized chips, and field-
programmable gate arrays (FPGA) interconnected through
a high-speed interconnection network; several such systems
have been described in [9].

A key question that needs to be addressed is how to map
a given computation on such a heterogeneous architecture
without expecting the application programmer to get into
the low level details of the architecture or forcing him/her to
understand the finer issues of mapping the applications on
such a distributed heterogeneous platform. Recently, high-
level languages such as MATLAB have become popular in
prototyping algorithms in domains such as signal and im-
age processing, the same domains which are the primary
users of embedded systems. MATLAB provides a very
high level language abstraction to express computations in a
functional style which is not only intuitive but also concise.
However, currently no tools exist that can take such high-
level specifications and generate low level code for such a
heterogeneous testbed automatically.

The objective of the MATCH (MATlab Compiler for
distributed Heterogeneous computing systems) compiler
project [3] at Northwestern University is to make it eas-
ier for the users to develop efficient code for distributed
heterogeneous computing systems. Towards this end we
are implementing and evaluating an experimental prototype
of a software system that will take MATLAB descriptions
of various embedded systems applications, and automati-
cally map them on to a heterogeneous computing environ-
ment consisting of field-programmable gate arrays, embed-
ded processors and digital signal processors built from com-
mercial off-the-shelf (COTS) components. An overview of
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Figure 1. A graphical representation of the
objectives of our MATCH compiler.

the easy-to-use programming environment that we are try-
ing to accomplish through our MATCH compiler is shown
in Figure 1. The goal of our compiler is to generate ef-
ficient code automatically for such a heterogeneous target
while optimizing two objectives: (1) Minimizing resources
(such as type and number of processors, FPGAs, etc) under
performance constraints (such as delays, and throughput)
(2) Maximizing performance under resource constraints.

The paper is organized as follows. Section 2 provides an
overview of the testbed which is being used to demonstrate
our ideas of the MATCH compiler. We describe the vari-
ous components of the MATCH compiler in Section 3. We
present preliminary experimental results of our compiler in
Section 4. We compare our work with other related research
in Section 5, and conclude the paper in Section 6.

2 Overview of MATCH Testbed

The testbed that we have designed to work with the
MATCH project consists of four types of compute re-
sources. These resources are realized by using off-the-shelf
boards plugged into a VME cage. The VME bus provides
the communication backbone for some control applications.
In addition to the reconfigurable resources, our testbed also
incorporates conventional embedded and DSP processors to
handle the special needs of some of the applications. Real
life applications often have parts of the computations which
may not be ideally suited for the FPGAs. They could be ei-
ther control intensive parts or could be even complex float-
ing point applications. Such computations are performed
by these embedded and DSP processors. An overview of
the testbed is shown in Figure 2.

We use an off-the-shelf multi-FPGA board from An-

VME bus
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•Four TDM 411
• 60 MHz TMS
320C40 DSP,
• 8 MB RAM
•TI C compiler
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Figure 2. Overview of the Testbed to Demon-
strate the MATCH Compiler

napolis Microsystems [2] as the reconfigurable part of our
testbed. This WildChildTM board has 8 Xilinx 4010 FP-
GAs (each with 400 CLBs, 512KB local memory) and a
Xilinx 4028 FPGAs (with 1024 CLBs, 1MB local mem-
ory). A Transtech TDM-428 board is used as a DSP re-
source. This board has four Texas Instruments TMS320C40
processors (each running at 60MHz, with 8MB RAM) in-
terconnected by an on board 8 bit wide 20MB/sec com-
munication network. The other general purpose compute
resource employed in the MATCH testbed is a pair of Mo-
torola MVME2604 boards. Each of these boards hosts a
PowerPC-604 processor (each running at 200 MHz, with
64 MB local memory) running Microware’s OS-9 operating
system. These processors can communicate among them-
selves via a 100BaseT ethernet interface.

A Force 5V board with MicroSPARC-II processor run-
ning Solaris 2.6 operating system forms one of the compute
resources that also plays the role of a main controller of the
testbed. This board can communicate with other boards ei-
ther via the VME bus or via the Ethernet interface.

3 The MATCH Compiler

We will now discuss various aspects of the MATCH
compiler that automatically translates the MATLAB pro-
grams and maps them on to different parts of the target sys-
tem shown in Figure 2. The overview of the compiler is
shown in Figure 3.

MATLAB is basically a function oriented language and
most of the MATLAB programs can be written using pre-
defined functions. These functions can be primitive func-
tions or application specific. In a sequential MATLAB
program, these functions are normally implemented as se-
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Figure 3. The MATCH Compiler Components

quential code running on a conventional processor. In the
MATCH compiler however, these functions need to be im-
plemented on different types of resources (both conven-
tional and otherwise) and also some of these need to be
parallel implementations to take best advantage of the par-
allelism supported by the underlying target machine.

MATLAB also supports language constructs using
which a programmer can write conventional procedural
style programs (or parts of it) using loops, vector notation
and the like. Our MATCH compiler needs to automatically
translate all such parts of the program into appropriate se-
quential or parallel code.

MATLAB being a dynamically typed language, poses
several problems to a compiler. One of them being the well
known type inferencing problem. The compiler has to figure
out not only whether a variable was meant to be a floating
point variable, but also the number of dimensions and ex-
tent in each dimension if the variable happens to be an array.
For example, when the compiler sees a MATLAB statement
a = b * c, it might mean one of several things: a, b,
c are scalar variables (either integer, or short, or float, or
double-precision); or a can be a one-dimensional vector,
b can be a two-dimensional matrix, and c can be a one-
dimensional vector; or a, b, c can be two-dimensional
matrices; or a, b can be matrices, and c can be a scalar;
or a, c can be matrices, and b can be a scalar. Clearly,
when a compiler has to generate the code, the correct type
needs to be declared or inferred by the compiler. Our com-
piler provides mechanisms to automatically perform such
inferencing which is a crucial component of any compiler
for a dynamically typed language. We have developed a

shape algebra which can be used to infer types and shapes
of variables in MATLAB programs [6].

Often, it may not be possible to infer these attributes,
in which case our compiler takes the help of user direc-
tives which allow the programmer to explicitly declare the
type/shape information. The directives for the MATCH
compiler start with %!match and hence appear as comments
to other MATLAB interpreters/compilers. An extensive set
of directives have been designed for the MATCH compiler
[3].

The maximum performance from a parallel heteroge-
neous target machine such as the one shown in Figure 2 can
only be extracted by efficient mapping of various parts of
the MATLAB program onto the appropriate parts of the tar-
get. The MATCH compiler incorporates automatic mecha-
nisms to perform such mapping. It also provides ways using
which an experienced programmer well versed with the tar-
get characteristics can guide the compiler to fine tune the
mapping in the form of directives.

3.1 Compilation Overview

The first step in producing parallel code from a MAT-
LAB program involves parsing the input MATLAB pro-
gram based on a formal grammar and building an abstract
syntax tree. After the abstract syntax tree is constructed the
compiler invokes a series of phases. Each phase processes
the abstract syntax tree by either modifying it or annotating
it with more information.

Using rigorous data/control flow analysis and taking
cues from the programmer directives (explained in Sec-
tion 3.5.2), this AST is partitioned into one or more sub
trees. The nodes corresponding to the predefined library
functions directly map on to the respective targets and any
procedural style code is encapsulated as a user defined pro-
cedure. The main thread of control is automatically gener-
ated for the Force V processor which keeps making remote
procedure calls to these functions running on the processor
(or processors) onto which they are mapped.

In the following sections we go into the details of these
aspects of the MATCH compiler.

3.2 MATLAB Functions on FPGAs

In this section we describe our effort in the development
of various MATLAB libraries on the Wildchild FPGA board
described earlier. These functions are developed in Register
Transfer Level (RTL) VHDL using the Synplify logic syn-
thesis tool from Synplicity to generate gate level netlists,
and the Alliance place-and-route tools from Xilinx. Some
of the functions we have developed on the FPGA board
include matrix addition, matrix multiplication, one dimen-
sional FFT and FIR/IIR filters [4]. In each case we have de-
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Table 1. Performance characterization of the
MATLAB matrix multiplication function on the
WILDCHILD FPGA board. Times are in milli-
seconds.
Matrix Config Download Compute Compute

Size Time + Readback FPGA host
64 x 64 2620 31+7=38 1.95 300

128 x 128 2620 58+24=82 15 2380
248 x 248 2620 155+91=246 103 17702
496 x 496 2620 603+358=961 795 142034

veloped C program interfaces to our MATCH compiler so
that these functions can be called from the host controller.
In the next subsections we discuss the implementations of
three of these functions, namely, matrix multiplication, the
filter function, and the FFT.

3.2.1 Matrix Multiplication

The MATLAB function C = A * B performs the multipli-
cation of two matrices A and B and stores the result in the
matrix C. Our specific implementation of this function can
be used to multiply two matrices of size up to 500X500 el-
ements in 16-bit fixed-point fractional 2’s complement for-
mat. The configuration and compute times for Matrix Mul-
tiplication are displayed in Table 1. It is evident that the
data transfer and configuration times dominate the evalua-
tion time. However, host compute time is about two orders
of magnitude longer than FPGA compute time.

3.2.2 Filter Function

Filtering is one of the most common operations performed
in signal processing. Most filters belong to one of two
classes - FIR for Finite Impulse Response and IIR for In-
finite Impulse Response filter. We have implemented the
general MATLAB library function filter(B,A,x) [22] which
applies the digital filter H(z) = B(z)/A(z) to the input sig-
nal x. Our specific implementation of the filter function al-
lows a maximum order of 64 on vectors of maximum size
250,000 elements. The data precision used is 8 bits fixed-
point in fractional 2’s complement format. The cascaded
form of the digital filter lends well to implementation on
the multi-FPGA architecture of the WILDCHILD system
due to the presence of near-neighbor communication capa-
bility via the systolic bus. Several FPGAs can be strung
together in series to implement the required filter operation.
The performance characteristics of this filter implementa-
tion for various number of taps and various data sizes is
shown in Table 2. These characterizations are used by the
automated mapping algorithm of the MATCH compiler de-
scribed in Section 3.6.1.

Table 2. Performance characterization of the
MATLAB filter function on the Wildchild FPGA
board of the MATCH testbed. Runtimes in
milli-seconds are shown for various number
of taps and various data sizes.

Filter Vector Config Download Compute
Taps Size Time + Readback
16 16K 2600 132+15=147 3
16 64K 2600 188+58=246 13
16 256K 2600 440+230=670 52
64 16K 2600 132+15=147 13
64 64K 2600 188+58=246 52
64 256K 2600 440+230=670 210

256 16K 2600 132+15=147 52
256 64K 2600 188+58=246 210
256 256K 2600 440+230=670 840

Table 3. Performance characterization of the
MATLAB FFT function on the Wildchild FPGA
Board. Times in milli-seconds

FFT Config Download Compute Compute
Size Time + Readback FPGA host
128 3656 105+46=151 0.050 510
256 3656 106+47=153 0.130 1111
512 3656 107+48=155 0.290 2528

1024 3656 109+48=157 0.640 5624

3.2.3 Fast Fourier Transform

The discrete Fourier transform (DFT) algorithm is used to
convert a digital signal in the time domain into a set of
points in the frequency domain. The MATLAB function
fft(x) computes the frequency content of a signal x and re-
turns the values in a vector the same size as x.

Our specific implementation of the FFT function can
compute the Fast Fourier Transform of up to 1024 points
where each point is a complex number with real and imag-
inary parts in 8-bit fixed-point fractional 2’s complement
format. The FFT operation exhibits a high level of paral-
lelism during the initial stages of computation but commu-
nication between processors becomes high during the final
stages. The Fast Fourier Transform was run at 8 MHz and
results are displayed in Table 3.

3.3 MATLAB Functions on DSPs

In this section we will describe our effort in the devel-
opment of various MATLAB library functions on the DSPs.
These functions are developed on the Transtech DSP boards
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Table 4. Performance characterizations of the
MATLAB matrix multiplication function on the
Transtech DSP board for various matrix sizes
and processor configurations. Runtimes are
in seconds.

Execution Time(in secs)
Size 1x1 1x2 2x1 2x2 1x4 4x1

16 x 16 0.004 0.005 0.005 0.005 0.005 0.005
64 x 64 0.096 0.067 0.071 0.051 0.068 0.076

128 x 128 0.639 0.378 0.391 0.242 0.279 0.304
256 x 256 3.66 2.52 2.57 1.44 1.527 1.611

utilizing multiple DSPs using message-passing among mul-
tiple processors in C using our own custom implementa-
tion of MPI. We subsequently used the PACE C compiler
from Texas Instruments to generate the object code for the
TMS320C40 processors. Our current set of functions in-
cludes real and complex matrix addition, real and complex
matrix multiplication ,one and two dimensional FFT. Each
of these libraries has been developed with a variety of data
distributions such as blocked, cyclic and block-cyclic dis-
tributions. In the next section, we go through the imple-
mentation details of one of these functions, namely, matrix
multiplication.

3.3.1 Matrix Multiplication

We have implemented the MATLAB matrix multiplication
function on the Transtech DSP board containing 4 proces-
sors. We designed our matrix multiplication function to be
generic enough to handle data distributed differently. We
assume that for the matrix multiplication C = A * B, the
matrices A and B can be arbitrarily distributed on the pro-
cessors in a general block cyclic distribution. Table 4
shows the results of matrix multiplication on the Transtech
DSP board. The speedup for the matrix multiplication is
also around 2.54 on 4 processors for data distributed in a
cyclic(4),cyclic(4) manner.

3.4 Automatic Generation of User functions

Since MATLAB allows procedural style of programming
using constructs such as loops and control flow, the parts of
the program written in such a style may not map to any of
the predefined library functions. All such fragments of the
program need to be translated appropriately depending on
the target resource onto which they are mapped. As shown
in Figure 3, we wish to generate C code for the DSP and
embedded processors and VHDL code for the FPGAs. In
most cases we need to translate them into parallel versions

to take advantage of multiple resources that can exploit data
parallelism.

3.4.1 Code Generation for Embedded and DSP

Our MATCH compiler generates sequential and message-
passing parallel C code for the embedded and DSP pro-
cessors. If the target is a single processor, then we gen-
erate scalarized C code. For example, corresponding to
a MATLAB array assignment statement, the types, shapes
and sizes of the variables accessed in the statement are ei-
ther inferred or declared through directives; a scalarized C
code is subsequently generated which has a set of nested
for loops whose loop bounds are determined by the sizes
of the arrays being referenced in the assignment statement.
Detailed issues of scalarization have been reported in [6].

The particular paradigm of parallel execution that we
have presently implemented in our compiler is the single-
program-multiple-data (SPMD) model, where all proces-
sors execute the same program but on different portions of
array data. The way the computations are distributed among
processors by the compiler is the owner computes rule in
which operations on a particular data element are executed
by only those processors that actually “own” the data ele-
ment. Ownership is determined by the alignments and dis-
tributions that the data is subjected to.

3.4.2 Code Generation for FPGAs

Each user function is converted into a process in VHDL.
Each scalar variable in MATLAB is converted into a vari-
able in VHDL. Each array variable in MATLAB is assumed
to be stored in a RAM adjacent to the FPGA, hence a cor-
responding read or write function of a memory process is
called from the FPGA computation process. Control state-
ments such as IF-THEN-ELSE constructs in MATLAB are
converted into corresponding IF-THEN-ELSE constructs in
VHDL. Assignment statements in MATLAB are converted
into variable assignment statements in VHDL. Loop con-
trol statements are converted into a finite state machine as
shown in Figure 4.

For each loop statement, we create a finite state machine
with four states. The first state performs the initialization
of loop control variables and any variables used inside the
loop. The second state checks if the loop exit condition is
satisfied. If condition is valid, it transfers control to state
4, which is the end of the loop. If condition is not valid,
it transfers control to state 3, which performs the execution
of statements in the loop body. If there is an array access
statement (either read or write), one needs to generate ex-
tra states to perform the memory read/write from external
memory and wait the correct number of cycles.

The above steps described how VHDL code is gener-
ated on a single FPGA. When we have multiple FPGAs on
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function sum()
sum = 0;
for i =1:100
  sum = sum + a(i);
end

process sum
if rising_edge(clock)
case state is
when int: sum := 0; i := 0;
                state := 2;
when 2: if (I < 100) state := 3;

else state := 5;
when 3: RAMaddr := a + I;

Readmemory := 1;
state := 4;

when 4:
sum := sum + RAM_out;
i := i + 1;
state := 2;

when 5:
result_sum := sum;
state := init;

end process

2 3

4 5

int

State diagram of finite
state machine

MATLAB PROGRAM Register Transfer Level VHDL PROGRAM

Figure 4. Example compilation of a MATLAB program
with loops into RTL VHDL. On the top left we show an
example MATLAB code which performs a summation of
elements of an array. We show the state diagram of a fi-
nite state machine to perform the same computation in the
bottom left. On the right we show the corresponding RTL
VHDL code.

a board such as the WILDCHILD board, we generate the
VHDL code using the owner-computes rule assuming the
SPMD style of programming described in the previous sec-
tion. Since the FPGAs have limited computation power, we
do not have a general communication library such as MPI
running on the FPGAs, but a very basic set of communica-
tion functions to perform data transfers among the FPGAs
using the cross-bar network on the board.

3.5 Mapping the Program Fragments onto the
Target

The MATCH compiler supports both automated as well
as user directed mapping to cater to a wide range of appli-
cations. While the automated mapping is meant to produce
reasonably good results with no user intervention, the user
directed approach is intended to give a greater control to
an experienced programmer to fine tune the program. Both
approaches are complimentary and can be selectively com-
bined in a given application.

3.5.1 Automated Mapping

When possible, the MATCH compiler tries to automatically
map the user program on to the target machine taking into
account the specified timing constraints, device capabili-
ties and costs. The automatic mapping is formulated as a
mixed integer linear programming problem with two opti-
mization objectives: (1) Optimizing resources (such as type
and number of processors, FPGAs, etc) under performance

constraints (such as delays, and throughput) (2) Optimizing
performance under resource constraints. The performance
characterization of the predefined library functions and the
user defined procedures guide this automatic mapping. Ex-
amples of performance characterizations are illustrated in
Table 2 for the FPGA board and Table 4 for the DSP board
in our MATCH testbed.

We have developed an automatic mapping tool called
SYMPHANY [5] which takes as input (a) a control and data
flow graph of a MATLAB program which represents vari-
ous MATLAB functions as nodes (b) Characterizations of
the MATLAB functions on various resources such as sin-
gle or multiple FPGAs and DSP processors in terms of de-
lays and costs (c) Performance constraints in the form of
throughput and delays. The SYMPHANY tool uses a mixed
integer linear programming formulation and solution for
the time constrained resource optimization problem to solve
the resource selection, pipelining, and scheduling problems
while optimizing the resources.

3.5.2 User Guided Mapping

In cases where such an automatic mapping is not satisfac-
tory or if the programmer is in a better position to guide
the compiler, special user directives are provided for this
purpose. These directives describe the target architectures
to the compiler, the availability of predefined libraries on
them and other relevant characteristics.

3.6 Final Code Generation

After generating the ASTs for each of the individ-
ual parts of the original MATLAB program, these ASTs
are suitably translated for appropriate target processors.
Depending on the mapping (performed as discussed in
Section 3.5), the targets for each of these ASTs could
be different. The ASTs corresponding to FPGAs are
translated to RTL VHDL and those corresponding to
Host/DSP/Embedded processors are translated into equiv-
alent C language programs. At nodes corresponding to op-
erators and function calls, the annotated information about
the operands and the operator/function are checked. De-
pending upon the annotated information a call to a suitable
C function is inserted that accomplishes the task of the oper-
ator/function call (pre defined or user written) in the MAT-
LAB program. For example, to invoke the fft function on
the cluster of DSP processors, the compiler generates a call
to a wrapper function fft(DSP,....), instead of the set of ac-
tual calls needed to invoke the fft on the DSP processors
cluster. This wrapper contains the mechanism to invoke the
function on respective resource. Finally, these generated
programs are compiled using the respective target compil-
ers to generate the executable/configuration bit streams.
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4 Experimental Results

We have implemented a preliminary version of the
MATCH compiler. In this section we will report results of
the MATCH compiler on some benchmark MATLAB pro-
grams.

4.1 Matrix Multiplication

We first report on results of the simple matrix multipli-
cation function on various parts of the testbed. We perform
the same matrix multiplication function on three targets on
the testbed. The following MATLAB code represents the
matrix multiplication test benchmark. We use directives to
map the same matrix multiplication computation to three
targets in our heterogeneous testbed. The compiler calls the
appropriate library functions and the related host code.

The results of executing the code on the testbed are
shown in Table 5. The column shown as “Force” refers to
a matrix multiplication library running on the Force board
using the RTEXPRESS library [7] from Integrated Sen-
sors Inc., using 32 bit real numbers. The column shown
as “DSP” refers to a matrix multiplication library written
in C using one processor on the Transtech DSP board, us-
ing 32 bit real numbers. The column shown as “FPGA”
refers to a matrix multiplication library function written in
VHDL in the Wildchild FPGA board, using 8-bit fractional
numbers. The numbers in parenthesis under the column for
FPGA refers to the FPGA configuration and data read and
write times off the board. It can be seen that even including
the FPGA configuration and data download times it is faster
to perform matrix multiplication on the Wildchild FPGA
board. It should be noted however that the FPGA board is
operating at a smaller clock cycle (20 MHz) instead of the
Force board running at 85 MHz and the DSP board running
at 60 MHz. However the FPGA board has more parallelism
since it has 8 FPGAs working in parallel; also the data pre-
cision on the FPGA computation is only 8 bits while the
Force board and DSP boards are operating on 32 bit integer
numbers.

4.2 Fast Fourier Transform

We next report on results of a one-dimensional Fast
Fourier Transform function on various parts of the testbed.
We perform the same FFT function on four targets on the
testbed using a program similar to the previous matrix mul-
tiplication example.

The results are shown in Table 6. The column shown
as “Force” refers to the FFT running on the Force board
with the RTEXPRESS Library [7] from ISI, using 32 bit
real numbers. The column shown as “DSP” refers to the
FFT written in C using one processor on the Transtech DSP

Table 5. Comparisons of runtimes in seconds
of the matrix multiplication benchmark on
various targets of the testbed

Execution Time(in secs)
Size Force RTE DSP FPGA

(85 MHz, 32 bit) (60 MHz, 32 bit) (20 Mhz, 8 bit)
64X64 0.36 0.08 0.002 (0.038)

128X128 2.35 0.64 0.015 (0.082)
248X248 16.48 4.6 0.103 (0.246)
496X496 131.18 36.7 0.795 (0.961)

Table 6. Comparisons of runtimes in seconds
of the FFT benchmark on various targets of
the testbed.

Execution Time(in secs)
Size Force RTE DSP FPGA

(85 MHz, 32 bit) (60 MHz, 32 bit) (9 MHz, 8 bit)
128 0.62 0.668 0.00005 (0.51)
256 2.61 3.262 0.00013 (0.51)

board, using 32 bit real numbers. The column shown as
“FPGA” refers to the FFT written in VHDL in the Wildchild
FPGA board, using 8 bit fractional numbers. It can be seen
that even including the FPGA configuration and data down-
load times it is faster to perform the FFT on the Wildchild
FPGA board. It should be noted however that the FPGA
board is operating at a smaller clock cycle (9 MHz) instead
of the Force board running at 85 MHz and the DSP board
running at 60 MHz.

4.3 Image Correlation

After investigating simple MATLAB functions, we now
look at slightly more complex MATLAB programs. One
benchmark that we investigated is the image correlation
benchmark whose code is shown below. The MATLAB
program takes two 2-dimensional image data, performs a
2-dimensional FFT on each, multiplies the result and per-
forms an inverse 2-dimensional FFT on the result, to get the
correlation of two images. The MATLAB program anno-
tated with various directives appears as follows. The type
and shape directives specify the size and dimensions of the
arrays. The USE directives specify where each of the li-
brary functions should be executed. It specifies that the two
FFTs and the inverse FFT should be executed on the DSP
board, and the matrix multiplication should be executed on
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Figure 5. Performance (runtimes in seconds) of the
MATCH compiler for the Image Correlation Application
for am image size of 256 X 256 on various platforms.

the FPGA board.
The performance of this correlation benchmark using the

MATCH compiler is shown for various platforms in Fig-
ure 5. It can be seen that the results of the RTEexpress li-
brary is faster on the SUN Ultra 5 workstation (200 MHz
Ultra Sparc) over the Force board (85 MHz microsparc
CPU). However, the implementation of the custom matrix
multiplication library on the FPGA board and the custom
FFT library function on the DSP board is much faster than
the RTExpress libraries. This is because the RTExpress li-
braries perform a lot of memory allocations and copies of
data structures before they perform the actual computations
[7].

4.4 Space Time Adaptive Processing

The next benchmark we studied is the coded for Space
Time Adaptive Processing. We took a MATLAB version of
the STAP code from Air Force Research Labs and imple-
mented various parts of the code on the testbed. The perfor-
mance of this pulse compression function from the STAP
benchmark using the MATCH compiler is shown for vari-
ous platforms in Figure 6. Again, it can be seen that the
results using the RTEexpress library is faster on the SUN
Ultra 5 workstation (200 MHz Ultra Sparc) over the Force
board (85 MHz microsparc CPU). The results using the RT-
Express library on the host and FFT library on the DSP is
faster than the complete implementation on the host, but
not fast enough to outperform the results on the SUN Ultra
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Figure 6. Performance (runtimes in seconds) of the
MATCH compiler for the Pulse Compression Function
from the STAP Application for am image size of 256 X 256
on various platforms.

5 workstation.

5 Related Work

In this section we review related work in the area of soft-
ware environments for heterogeneous computing.

5.1 High-Performance MATLAB Projects

Several projects have involved running parallel MAT-
LAB interpreters in parallel, such as the Multi-MATLAB
[23] which targeted both parallel machines such as the IBM
SP2 and network of workstations, and the Parallel Toolbox
[24] which runs on a network of workstations. These sys-
tems are different from our MATCH compiler in that the
processors execute MATLAB interpreters, rather than com-
piled code.

There are several projects that involve MATLAB compil-
ers or translators. The MCC compiler from MATHWORKS
Corporation [22]. translates MATLAB into C code suitable
for compilation and execution in single processors. The
MATCOM compiler from MathTools [21] translates MAT-
LAB into C++ code suitable for compilation and execu-
tion in single processors. DeRose and Padua developed the
FALCON compiler [20] at the University of Illinois which
translates MATLAB scripts into Fortran 90 code. Quinn
et al [19] developed the OTTER compiler which translates
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MATLAB programs directly into SPMD C programs with
calls to MPI. Banerjee et al extended the PARADIGM com-
piler which translated MATLAB programs to calls to the
SCALAPACK library [26]. The RTExpress Parallel Li-
braries [7] from Integrated Sensors Inc. consist of efficient,
parallel performance tuned implementations (using C plus
MPI) of over 200 MATLAB functions.

All the above compiler projects target sequential or ho-
mogeneous parallel processors. In contrast our MATCH
compiler is generating code for heterogeneous processors.
Finally, they have no notion of generation of compiled
code to satisfy performance or resource constraints. Our
MATCH compiler tries to perform automated mapping and
scheduling of resources.

5.2 Compilers for Configurable Computing

Numerous projects in configurable computing have been
described in [14, 13, 12, 10, 9]. Several researchers have
performed research on the development of software which
can help reduce the amount of time to take a high level ap-
plication and map it to a configurable computing system
consisting of FPGAs.

The Cameron project [17] at Colorado State University is
an attempt to develop an automatic tool for image process-
ing applications (VSIP libraries) in Khoros. The CHAM-
PION project [18] at the University of Tennessee is build-
ing a library of pre-compiled primitives that can be used as
building blocks of image processing applications in Khoros.
The CORDS [8] project has developed a hardware/software
co-synthesis system for reconfigurable real-time distributed
embedded system.

There have been several commercial efforts to generate
hardware from high-level languages. The Signal Processing
Workbench (SPW) from the Alta Group of Cadence, trans-
lates from a block diagram graphical language into VHDL,
and synthesizes the hardware. The COSSAP tool from Syn-
opsys also takes a Block Diagram view of an algorithm and
translates it to VHDL or Verilog. However, the levels that
one has to enter the design in SPW or COSSAP is at the
block diagram level with interconnection of blocks which
resembles structural VHDL. The Renoir tool from Men-
tor Graphics Corporation lets users enter state diagrams,
block diagrams, truth tables or flow charts to describe dig-
ital systems graphically and the tool generates behavioral
VHDL/Verilog automatically. Tools such as Compilogic
from Compilogic Corporation translate from C to RTL Ver-
ilog [27].

There have been several efforts at developing compilers
for mixed processor-FPGA systems. The RAW project [14]
at MIT exposes its low-level hardware details completely
to the software system and lets the compiler orchestrate
computations and data transfers at the lowest levels. The

BRASS group at the University of California, Berkeley has
developed the GARP [13] architecture which combined a
MIPS-II processor with a fine-grained FPGA coprocessor
on the same die; a C compiler for the architecture has also
been developed. The Transmogrifier C compiler takes a
subset of C extended with directives and compiles it to a
set of Xilinx FPGAs on a board. The RAPID project at
the University of Washington has developed a RAPID-C
compiler [16] which compiles a language similar to C with
directives onto the RAPID reconfigurable pipelined datap-
ath architecture. The Chimaera [12] project is based upon
creating a new hardware system consisting of a micropro-
cessor with an internal reconfigurable functional unit. A C
Compiler for the Chimaera architecture has been developed
[28]. The NAPA-1000 Adaptive Processor from National
Semiconductor [10] features a merging of FPGA and RISC
processor technology. A C compiler for the NAPA 1000
architecture has been developed as well [11].

Our MATCH compiler project [3] differs from all of the
above in that it is trying to develop an integrated compi-
lation environment for generating code for DSP and em-
bedded processors, as well as FPGAs, using both a library-
based approach and automated generation of C code for the
DSP and RTL VHDL code for the FPGAs.

6 Conclusions

In this paper we provided an overview of the MATCH
project. As described in the paper, the objective of the
MATCH (MATlab Compiler for Heterogeneous computing
systems) compiler project is to make it easier for the users
to develop efficient code for heterogeneous computing sys-
tems. Towards this end we are implementing and evalu-
ating an experimental prototype of a software system that
will take MATLAB descriptions of various embedded sys-
tems applications in signal and image processing, and au-
tomatically map them on to an adaptive computing envi-
ronment consisting of field-programmable gate arrays, em-
bedded processors and digital signal processors built from
commercial off-the-shelf components.
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