
Implementation and Evaluation of Prefetching in the Intel Paragon Parallel File
System *

Meenakshi Arunachalam Alok Choudhary Brad Rullman +
ECE and CIS
121 Link Hall

Syracuse University
Syracuse, NY 13244

E-mail: {meena@top.cis.syr.edu, choudhar@cat.syr.edu and brad@ssd.intel.com}

Abstract

The significant dijjerence between the speeds of the II0 sys-
tem (e.g. disks) and compute processors in parallel systems
creates a bottlerleck that lowers thepe$ormance of an appli-
catiorl that does a consideruble amount of disk accesses. A
major portion of the compute processors’ time is wasted on
wuitiqfor II0 to complete. This problem call be addressed
ro a crrtairl. extent, if the Ilecessary data can befetchedfrom
the disk befolc the II0 call to the disk is issued. Fetching
data ahead of time, knowm as prefetching ia a multiproces-
sor environmem depends a great deal on the application’s
access pattern. The subject of this puper is implementation
and pclformunce evaluation of a prefetching prototype in a
~lladldction purallelfIle system on the Intel Paragon. Specif-
icolly, thisyuperpresents a) design and implementation of a
prefetching strategy in the parallelfile system and b) peeor-
malice measurements and evaluation oj’the file system with
and without prefetching. The prototype is designed at the
operating system level for the PFS. If is implemerzted in the
PFS subsystem, of the Intel Paragon Operatirlg System. It
is observed rhat in muny cuses prefetching provides coluid-
erable performance improvements. In some other cases no
impt.ovements or some perform.ance degradation is observed
due to ihe overheads incurred irt prefetching.

1. Introduction

Input-Output for parallel systems has drawn increasing at-
lention in the last few years as it has become apparent that
I/O performance rather than CPU or communication per-
formance may be the limiting factor in future computing
systems. A Ia~ge number of applications in diverse ar-
eas such as large scale scientific computations, database
and information processing, hypertext and multimedia sys-
tems, information retrieval etc. require processing very large

This wok was suppcwt2d by an NSF Young Investigator Award CCR-
9357840 and Imel Ccup.

t Urad Ruihnan is with Intel Scalable Systems Division.

quantities of data. For example, a typical Grand Challenge
Application at present could require 1Gbyte to 4Tbytes of
data per run [Z]. These figures are expected to increase by
orders of magnitude as teraflop machines become readily
available. Unfortunately, the performance of the I/O sub-
systems of MpPs has not kept pace with their processing
and communication capabilities. A poor I/O capability can
severely degrade the performance of an entire application.

The focus of this paper is parallel file systems in paral-
lel computers, and specifically read-ahead and prefetching.
The goal of prefetching is essentially to access data from
disks anticipating future use of the data. In a parallel file
system a file is normally striped across a large number of I/O
nodes and disks, and several processing nodes concull’ently
access the files. Thus, prefetching strategies that. may work
reasonably well for sequential files in uniprocessor envi-
ronments may not be extended in a stmightforward manner
because access patterns seen by the I/O nodes &are interleaved
accesses of many compute nodes.

In [4, 51 Kotz <and Ellis have concluded that employing
prefetching results in a definite gain in the read throughput
as seen by the user, but the issues involved i.n prel‘etchin~
in a parallel machine have to be cxefully analyzed. A two-
phase access strategy used at run-time has been proposed in
[l] that shows that the performance of the I/O subsystem can
improve significantly if the storage distribution on the disks
is decoupled from the data distribution on the computational
nodes. Galbreath et al.[3] argue that the abstraction of pLar-
allel I/O routines can enhance development, portability, and
performance of I/O operations in applications.

In this paper, we describe the design and implementation
of a prefetching prototype on the Paragon Parallel File Sys-
tem (PFS). It should be noted that the implementation of the
prefetching strategy is done in a real and production parallel
file system by modifying the code of the file system. Thus,
all the overheads that come with the production softwrlre :‘(:
also present in the prefetching software, which are normally
ignored in simulations <and other studies. The prototype has
been extensively test&. In this paper, we present initial
experience and performance studies from this imp!emWa-

1063-7133/96 $5.00 0 1996 IEEE
Proceedings of IPPS ‘96

554

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

tion. The results show that in many situations it is beneficial
to perform prefetching, and in some situations prefetching
does not provide any benefits.

The rest of the paper is organized as follows. A brief de-
scription of the architecture of the Intel Paragon system, the
PFS and the PFS I/O modes is presented in Section 2. This
is fol.lowed by the implementation details of the prefetching
prototype in Section 3. The performance measurements and
evaluation of the prototype are presented and analyzed in
Section 4. Conclusions and future work are presented in
Section 5.

2 Intel Paragon and the PFS
The Intel Paragon is a massively parallel supercomputer
with a large number of nodes connected by a high-speed
mesh interconnect network. Each node is populated with
an i860 processor (SMP nodes are available with three i860
processors) and 16 MBytes or more of memory. The nodes
can operate individually or as a group to run a parallel ap-
plication in the MIMD fashion. The nodes are classified
into service nodes, compute nodes and I/O nodes. This
classification is based on the functionality of the nodes in
a system. Service nodes are used for interactive processes,
compute nodes run compute-intensive applications and I/O
nodes manage the system’s disk and tape drives, network
connections, and other I/O facilities.

The PFS is designed to provide high bandwidth necessary
for parallel appIications. This is accomplished by striping
the Eles across a group of regular Unix File Systems (UFS)
which are located on distinct storage devices, and by opti-
mizing access to these file systems for large tmnsfers. Any
number of PFS file systems may be mounted in the sys-
tem, each with different default data striping attributes and
buffering strategies. Stripe attributes describe how the file is
to be laid out via parameters such as the stripe unit size (unit
of data interleaving) and the stripe group (the I/O node disk
partitions across which a PFS file is interleaved). Currently
supported buffering strategies allow data buffering on the
I/O nodes to be enabled or disabled.

When buffering is disabled, a technique called Fast Path
II0 is used to avoid data caching and copying on large
transfers. The file system buffer cache on the Paragon OS
server is bypassed, as is the client-side memory mapped file
support used by default in the UFS file systems. Instead,
Fast Path reads data directly from the disks to the user’s
buffer, and writes from the user’s buffer directly to the disks.
Also, file system block coalescing is done on large read and
write operations, which reduces the number of required disk
accesses when blocks of the file are contiguous on the disk.

The Paragon PFS provides a set of file sharing modes (Fig-
ure 1) for coordinating simultaneous access to a file from
multiple application processes running on multiple nodes.
These modes are essentially hints provided by the applica-
tion to the lile system which indicate the type of access that

will be done. These hints allow the file system to optimize
the I/O accesses based on the desired file layout, the degree
of parallelism, and the level of data integrity required. The
I/O mode can be set when a file is opened, and the applica-
tion can also set/modify the I/O mode during the course of
reading or writing the Ele.

,,“;n;cy;zL Different data
M LOG

imode 4) (“i&de 1)

Figure 1: Paragon Parallel File System I/O modes

Figure 2 displays the read performance of most of the
various PFS I/O modes supported by the PFS. These results
were obtained on a Paragon with 8 compute nodes and 8 I/O
nodes, with all compute nodes reading a single shared Ele.
Each YO node was configured with a single SCSI-8 card
and RAID array: it should be noted that SCSI- 16 hardware
is also available that effectively quadruples the bandwidth
available on each I/O node. In the graph, data for the “Sep-
arate Files” case is also presented for comparison with the
I/O mode data; in this case each compute node accesses a
unique Ele rather than opening a shared file. The prefetch-
ing prototype described in the remainder of this paper was
implemented using the M-RECORD mode. This mode was
chosen because it is well suited for the SPMD prograin-
ming model, in which applications performing an extensive
amount of I/O usually distribute the data equally among the
I/O nodes for load-balancing and concurrency.

Figure 2: Read Performance of the PFS I/O Modes

555

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

3 Prefetching Prototype Implementa-
tion

A read request to aPFS file can be issued either as a blocking
(synchronous) or a non-blocking (asynchronous) request.
There are two main phases for any asynchronous request
and they are, the reqldest SPIU~ and posting phase. During
the setup phase, the incoming request for read is allocated an
interrual structure for tracking the state of request during the
asynchronous processing. A pointer to this structure then
resides in the list of pointers maintained for active asyn-
chronous requests issued by the user. Associated with each
request structure is an asyncl~onous request thread (ART).
The ART will concurrently post and process the user’s I/O
request while the user thread is performing other operations.
The input parameters of the asynchronous read operation
[G] are passed to the ART aud the ART is initialized. Once
the ART is initialized, it begins processing asynchronous
requests that are queued in a FIFO manner on the active list.
The read request to the disk is itself performed by the ART
using the Fast Path I/O technique described earlier. The data
is read directly from the disk to the user’s buffer.

The prefetch requests are implemented like the asyn-
chronous read requests making use of the existing support
for asynchronous read requests in the Paragon OS. They are
issued as asynchronous requests by the user thread follow-
ing Lany read request to a PFS file. The prefetching requests
‘are dynamic in nature and totally driven by the application’s
access requests. Details about when and where to prefetch
is derived from the read request from the application. The
prefetch request is issued in anticipation of another read re-
quest issued by the same user thread on the same file. The
prototype prefetches only one block of data it anticipates
will be needed for the future read request. A read prefetch
request is issued from the client-side of the Paragon OS
for every read request that is issued by the user. Once the
asynchronous request is done, the data that has been read is
stored in a buffer along with other details such as the PFS file
offset, the size of the data in bytes etc. This prefetch buffer
structure is part of a list of all the prefetch buffer structures
of data that have been prefetched from that particular file.
The prefetch buffer list is a prart of the internal structure of
that file. When the Ele is opened newly by a process, the
prefetch list gets initiahzed and as the read requests come
in, new prefetch buffers are added onto the list. Memory for
the prefetch buffers is allocated in the compute node. At the
time the process closes the Ele, all the prefetch buffers are
freed and the prefetch buffer list points to a null pointer.

All the individual file pointers are required to point to the
same location before a read request is issued in any of the
PFS I/O modes. Before processing the read request, the
Paragon OS sets the individual file pointers from the nodes
to point to the starting locations of separate areas in the file.
Once the reading is complete, all the node file pointers point
to one common location which is the end of all the separate

areas. In the case of prefetching, the data from a read request
is stored in a prefetch buffer which is located in the metnory
of the compute node. Also, the file pointer is not changed
in the process of prefetching. This is done to present a file
system image that is consistent with the application’s read
requests.

4 Performance Measurements and
Evaluation of the Prototype

The performance measurements and evaluation of the
prefetching implementation was performed on a Paragon
consisting of 8 compute nodes and 8 I/O nodes each with
32 MB of memory. The default block size was 64KB and
default stripe factor 8.

The workload programs opened files in the MRECORD
mode. Delays were introduced between I/O accesses in this
synthetic workload to simulate the computation phases of a
program. To measure the performance of our prefetching
prototype, the workload performed extensive I/O on large
files.

The PFS Ele system block size is the basic unit of trans-
fer between the file system and the storage device. Read
and write request sizes that are a multiple of the block size
and start at a file system block boundary provide greater
throughput than those request sizes that Lare not a multiple of
the file system block size. This is because there is a higher
overhead involved in creating temporary buffers for the size
of the “partial” blocks and copying only the necessary data
from a transferred block.

The stripe unit size along with the stripe factor determines
how a particular request gets directed to the I/O nodes as
shown in Figure 3. If the request size sz is larger than the
stripe unit size SU, then the Erst of the SZ/SU requests go to
the first I/O node and the second of the SZ/SU requests to
the second I/O node and so on.

When an application is executed with prefetching at the
system-level, the read access time for a block as observed
by the application may be less than the actual disk access
time for reading that block. This is due to the fact that
prefetching makes the read access time appear less that] it
actually is by reading the block before the read request was
issued. This is exactly what we would like to achieve with
prefetching. Essentially, we would like to prefetch those
blocks that will be used by the application in the near future.
When a prefetched block is used to serve a future request
from the application, we say that there is a hit on that block.

Although hit-ratio serves as a good measure of perfor-
mance in a sequential program, in a parallel programming
model, overall read bandwidth seen by an application is a
better measure of performance. This is because, a collective
I/O (refers to I/O by all the nodes on which an application
program executes, e.g. reading one column (distinct) each
of a matrix by all processors) request is considered complete

556

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

------------_ request sizes of 64KB
-request size.9 of 128KB

Figure 3: Declustering of Compute node requests to the I/O
nodes

when the individual I/O requests of all the nodes have been
satisfied. The read bandwidth is the total amount of data that
can be read by all the nodes per unit time as observed by
the application. For a parallel I/O mode like MRECORD,
the numerator would be the amount of data read by all the
compute nodes and the time taken is the time taken by a
compute node to complete all the read calls. Another im-
portant measure to consider is the amount of overlap of I/O
with computation. For example, even if at the time of a
read request, the data is not available in the prefetch cache
(miss when the request is presented), if most of the read
is already done, Ehe performance benefits can be tremen-
dous. Finally, the prefetching benefits should be equally
distributed amongst the processors in order to see an overall
benefit.

4.1. Prefetching for I/O Bound Applications
This experiment generates the I/O workload of an applica-
tion which does not perform any computation between the
I/O calls. An example of this would be where an application
issues calls to access one block after another witbout. any
computation between these calls. This workload represents
the behavior of applications that perform initial reads from
files before commencing computation. As our prefetching
prototypedynamically issues a prefetch request for only one
block from the information of a current read request issued
by the user, lhe benefits from prefetching in this kind of
application are not significant as shown in Table 1. There
are no significant differences between the read bandwidths
with and without prefetching. The prefetch request aimed to
serve the future I/O request call does not have a significant
head start and hence the application takes the same time to
complete all its read accesses and hence no change is ob-
served in the read bandwidth. The read brandwidths for the
preFetching case are comparable with the non-prefetching
cnse in all the block sizes except for 64KB size. This is

~1
(no prefetching) (prefetching)

Table 1: PFS Read Performance with and without Prefetch-
ing: stripeunit size=64KES stripegroup=

due to the overhead involved in prefetching. The prefetched
data is copied into the prefetch buffer present in the system
and from there is copied into the user buffer which is not
available until the user makes a read request. The prefetch-
ing overhead is more pronounced when the request sizes are
smaller as the time to complete a read is also less for these
requests.

4.2 Prefetching for Balanced Applications
To study the benefits of prefetching, we use balanced work-
loads that perform significant amounts of I/O interleaved
between computations. In [5] such applications are termed
as “balanced”. To simulate computation for each block read,
delays were introduced between consecutive reads. Figures
4 and 5 summarize the results for file size of 128MBytes
when delays are introduced between successive read re-
quests. The computation times between the I/O requests
ranged from 0.001 second to 0.1 second. This range of de-
lays represents from “no overlap” to “complete overlap” be-
tween computation and I/O for a subset of parameters. Fig-
ure 4(A-C) demonstrates that when overlap between I/O and
computation is present, significant performance improvc-
ments can be obtained.

Thus, the closer to completion a prefelch request is, the
lesser time a hit read request will have to wait for the
prefetching to complete. W e also notice that as the re-
quest size increases, the time taken for a prefetching request
will also increase and only with a corresponding increase
in computation times can we expect a proportional rise in
the observed bandwidth. Table 2 gives the minimum read
access times for the various request sizes. These times de-
termine how much overlap will occur between computation
and I/O. For example, for a request size of 1024KB. it takes
0.42sec to complete a read request. Thus, a delay of 0.1 set
is not. enough to provide any significant overlap. This fact
is ckarly evident from Figure 5(D and E), where Ihe requesr
sizes <are 5 12KB and 1024KB per processor, and therefore,
the read time itself is so large that no significanl overlap

557

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

D. Read Bandwidths

40.0

A. Read Bandwidths
64la RequB6tdze

100.0

3 80.0
s

P
M
r 60.0
B
$
5
6
.x + 40.0
z
2
B
c 20.0

0.0

150.C

4

9

I ioo.c
+I

P

f
*

E
5o.c

g

0.f

D&y (seconds)

B. Read Bandwidths
128KB Request size

system Pr*fsWlng

0.001 0.01 0.1
cl&Y (SecandS)

C. Read Bandwidths
256KB Request size

0.01
0eh.y (seands)

Figure 4: PFS Read Performance for Balanced Workloads
for 64KB, 128KB, 256KB Request Sizes- File Size (128MB)

Delay (seconds)

E. Read Bandwidths
,024 KB Fmquost Edze

‘@ ’ NO Prefetching
& Systetn Prefetching

Figure 5: PFS Read Performance for Balanced WorkIoads
for 5 12Kl3, 1024KB Request Sizes- File Size (128MB)

takes place with the computation. Thus, no performance
gains are observed. The relation between the time taken to

I Reauest Size I Read Access Time 1 iw I (see)
64 I 0.0317

/ ;oiji4 1 E /
Table 2: Read Access Times for V%rious Request Sizes

satisfy a prefetch read request by accessing a disk and the
time spent on computation between the consecutive read re-
quests determines what percentage of I/O can be overtapped
with computation. The read request size also determines
how long a prefetch read access will take and this time can
be used to overlap computation with I/O in order to reduce
the I/O latency.

558

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

4.3 Prefetching for Various Stripe units.

Table 3, summarizes results for varying stripe units with
prefetching. Given that no delay was introduced between
requests, the results are consistent with the no prefetching
case. For smaller request sizes, the throughputs are less
than the throughputs of the no prefetching case due to the
prefetching overhead.

Table 3: PFS Read Performance with prefetching for differ-
ent Stripe unit sizes

4.4 Prefetching for Different Stripe groups.

The measurements were obtained using two sets of
stripegroups, namely striping across all 8 nodes and striping
8 ways across 1 node. The results are given in Table 4. With
prefetching, we observe a maximum speedup by a factor of
7.7. Again, no delays were introduced between requests.
Due to the prefetching overhead which is more pronounced
when the read request sizes are small, the speedup is less
than the no prefetching case for 64KEL

Table 4: PFS Read Performance with Prefetching for differ-
ent Stripe groups, Number of Nodes =8

5 Conclusions and Future Work
In this paper we presented a design and implementation of
a prefetching prototype in the Intel Paragon Parallel File
System. Although the PFS on the Paragon provides several
access modes and file sharing mechanisms, we selected the
M-RECORD mode for our implementations because it is a
highly parallel mode. Furthermore, this mode seems to be
a preferred choice for a large number of users because it
provides consistency as well as high-performance.

We presented initial performLance results for the tile sys-
tems, which demonstrate tha! the file system performance
is scalable. The access bandwidth seen by the user when
using prefetching is also scalable, and given a reasonable
overlap between computation and I/O, the benefits from the
system prefetching can be very signiticant. Given that in the
normal mode of operation (without prefetching), the data is
directly transferred into the user’s buffer, while in the sys-
tem level prefetching the data is buffered, performance with
prefetching is comparable when there is no overlap of I/O
with computation.

In any such implementation in the system software, there
are a large number of parameters that can be studied and
need to be evaluated. As a part of the future work, we plan
to evaluate the performance of prefetching on much larger
systems and study the performance for a greater variety of
workloads and access patterns. Furthermore, we plan to
implement prefetching in other file I/O modes.

References
PI

121

131

[41

VI

161

Juan Miguel de1 Rosario, Rajesh Bordawekar, Alok Choud-
hary. Improved Parallel I/O via a Two-phase Run-time Ac-
cess Strategy, Workshop on Parallel 110, International Par-
allel Processing Sytnposium, pp.56-69, April 1993.

Juan Miguel de1 Rosario, Alok Choudhary. High Perfor-
mance I/O for Parallel Computers: Problems and Prospects,
IEEE Computer, March 1994.

N. Galbreath, W. Gropp, D. Levine. Applications-Driven
Parallel I/O,Proceedings of Sc~l~erconll,rrtiri~~ 94.

David Katz, Carla Schlatter Ellis. Practical Prefetching Tech-
niques for Multiprocessor File Systems,Disl~i~)l,utenundPar-
allel Databases Vol.1, pp.33-51. 1993.

David F. Katz, Carla Schlatter Ellis. Prefetching in File Sys-
tems for MIMD Multiprocessors, IEEE Transactionsfor Par-
allel and Distributed Systems, Vol.1, pp.218-230, 1990.

Paragon OSFII User’s Guide, Intel Superconymter Systems
Division.

559

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

