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Abstract. An important aspect of pairwise sequence comparison is as-
sessing the statistical significance of the alignment. Most of the cur-
rently popular alignment programs report the statistical significance of
an alignment in context of a database search. This database statistical
significance is dependent on the database, and hence, the same alignment
of a pair of sequences may be assessed different statistical significance
values in different databases. In this paper, we explore the use of pair-
wise statistical significance, which is independent of any database, and
can be useful in cases where we only have a pair of sequences and we
want to comment on the relatedness of the sequences, independent of any
database. We compared different methods and determined that censored
maximum likelihood fitting the score distribution right of the peak is the
most accurate method for estimating pairwise statistical significance. We
evaluated this method in an experiment with a subset of CATH2.3, which
had been previoulsy used by other authors as a benchmark data set for
protein comparison. Comparison of results with database statistical sig-
nificance reported by popular programs like SSEARCH and PSI-BLAST
indicate that the results of pairwise statistical significance are compara-
ble, indeed sometimes significantly better than those of database statisti-
cal significance (with SSEARCH). However, PSI-BLAST performs best,
presumably due to its use of query-specific substitution matrices.

Keywords: Database statistical significance, Homologs, Pairwise local
alignment, Pairwise statistical significance.

1 Introduction

Sequence alignment is extremely useful in the analysis of DNA and protein
sequences [1,2,3]. Sequence alignment forms the basic step of making various high
level inferences about the DNA and protein sequences - like homology, finding
protein function, protein structure, deciphering evolutionary relationships, etc.
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There are many programs that use some well known algorithms [4,5] or their
heuristic version [3,6,7]. Recently, some enhancements in alignment program
features have also become available [8,9] using difference blocks and multiple
scoring matrices. Quality of a pairwise sequence alignment is gauged by the
statistical significance rather than the alignment score alone, i.e., if an alignment
score has a low probability of occurring by chance, the alignment is considered
statistically significant.

For ungapped alignments, rigorous statistical theory for the alignment score
distribution is available [10], and it was shown that the statistical parameters K
and λ can be calculated analytically for a pair of sequences with given amino acid
composition and scoring scheme. However, no perfect theory currently exists for
gapped alignment score distribution, and for score distributions from alignment
programs using additional features like difference blocks [8], and which use mul-
tiple parameter sets [9]. The problem of accurately determining the statistical
significance of gapped sequence alignment has attracted a lot of attention in
the recent years [11,12,13,14,15]. There exist a couple of good starting points
for statistically describing gapped alignment score distributions [16,17], but a
complete mathematical description of the optimal score distribution remains far
from reach [17]. Some excellent reviews on statistical significance in sequence
comparison are available in the literature [18,19,20].

Pairwise protein local sequence alignment programs give the optimal or sub-
optimal alignment of a given sequence pair. In the case of database searches, the
second sequence is the complete database consisting of many sequences. Many
approaches exist currently to estimate the statistical significance of a database
hit (match of the query sequence with part of the database). For the database
searches, the statistical significance of a pairwise alignment score is reported in
terms of E-value, which is the expected number of hits in the database with a
score equal or higher arising by chance, or the P-value, which is the probability of
getting at least one score equal or higher arising by chance. These E-values and
P-values are corresponding to the database, and although these can be converted
to the pairwise E-values and P-values [15], they cannot estimate the true sta-
tistical significance of the specific pairwise alignment under consideration, since
the database E-values and P-values depend on the average sequence features
like length, amino acid composition, and not the features of sequence pair under
consideration.

In particular, BLAST2.0 [3] reports the statistical significance as the likelihood
that a similarity as good or better would be obtained by two random sequences
with average amino-acid composition and lengths similar to the sequences that
produced the score. However, if either of the two sequences has amino acid
composition significantly different from the average, the statistical significance
may be an over or underestimate. Similarly, the statistical estimates provided by
the FASTA package [6,21] report the expectation that a sequence would obtain
a similarity score against an unrelated sequence drawn at random from the
sequence database that was searched, which again is dependent on the average
sequence composition of the entire database and not on the specific sequence pair.
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Accurate estimates of the statistical significance of pairwise alignments can
be very useful to comment on the relatedness of a pair of sequences aligned
by an alignment program independent of any database. And thus, pairwise sta-
tistical significance can also be used to compare different alignment programs
independently. In addition to the standard local alignment programs [4,5], some
recent programs have been developed [8,9] that take into account other desirable
biological features in addition to gaps, like difference blocks, and the use of mul-
tiple parameter sets (substitution matrices, gap penalties). These features of the
alignment programs enhance the sequence alignment of real sequences by suiting
to different conservation rates at different spatial locations of the sequences. As
pointed out earlier, rigorous statistical theory for alignment score distribution is
available only for ungapped alignment, and not even for its simplest extension,
i.e., alignment with gaps. Accurate statistics of the alignment score distribution
from newer and more sophisticated alignment programs therefore is not expected
to be straightforward. For comparing the performance of newer alignment pro-
grams, accurate estimates of pairwise statistical significance are needed.

The statistical significance of a pairwise alignment depends upon various fac-
tors: sequence alignment method, scoring scheme, sequence length, and sequence
composition [19]. The straightforward way to estimate statistical significance of
scores from an alignment program for which the statistical theory is unavailable
is to generate a distribution of alignment scores using the program with ran-
domly shuffled versions of the pair of sequences and compare the obtained score
with the generated score distribution, either directly or by fitting an extreme
value distribution (EVD) curve to the generated distribution to calculate the
statistical significance of the obtained score (as described in the next section).

The PRSS program in the FASTA package [6,7,21] calculates the statistical
significance of an alignment by aligning them, shuffling the second sequence up
to 1000 times, and estimating the statistical significance from the distribution
of shuffled alignment scores. It uses maximum likelihood to fit an EVD to the
shuffled score distribution. A similar approach is also used in HMMER [22]. It
also uses maximum likelihood fitting [23] and also allows for censoring of data
left of a given cutoff, for fitting only the right tail of the histogram. A heuristic
approximation of the gapped local alignment score distribution is also available
[11], and based on these statistics, accurate formulae for statistical parameters
K and λ for gapped alignments are derived and implemented in a program
called ARIADNE [12]. These methods can provide an accurate estimation of
statistical significance for gapped alignments, but currently do not incorporate
the additional features of sequence alignment, like using difference blocks and
multiple parameter sets [8,9].

The contribution of this paper is two-fold: First, we compare various exist-
ing methods to estimate pairwise statistical significance and determine the most
accurate method for estimating it. We found that maximum likelihood fitting
of score distribution censored left of peak (fitting right of peak) is the most ac-
curate method. Secondly, we used this method in the experiments reported in [24]
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on a subset of the CATH2.3 database to compare the retrieval accuracy for pair-
wise statistical significance and database statistical significance. [24] had earlier
created this database to evaluate seven protein structure comparison methods
and the two sequence comparison programs SSEARCH and PSI-BLAST. Com-
parison of the results with those reported in [24] show that pairwise statistical
significance gives comparable and at times better accuracy than the SSEARCH
program, but less than PSI-BLAST.

2 The Extreme Value Distribution for Ungapped and
Gapped Alignments

Just as the distribution of the sum of a large number of independent identically
distributed (i.i.d) random variables tends to a normal distribution (central limit
theorem), the distribution of the maximum of a large number of i.i.d. random
variables tends to an extreme value distribution (EVD). This is an important
fact, because it allows us to fit an EVD to the score distribution from any local
alignment program, and use it for estimating statistical significance of scores
from that program. The distribution of Smith-Waterman local alignment score
between random, unrelated sequences is approximately a Gumbel-type EVD [10].
In the limit of sufficiently large sequence lengths m and n, the statistics of HSP
(High-scoring Segment Pairs which correspond to the ungapped local alignment)
scores are characterized by two parameters, K and λ. The probability that the
optimal local alignment score S exceeds x is given by the P-value:

Pr(S > x) ∼ 1 − e−E,

where E is the E-value and is given by

E = Kmne−λx.

For E-values less than 0.01, both E-value and P-values are very close to each
other. The above formulae are valid for ungapped alignments [10], and the pa-
rameters K and λ can be computed analytically from the substitution scores
and sequence compositions. An important point here is that this scheme allows
for the use of only one substitution matrix. For the gapped alignment, no per-
fect statistical theory has yet been developed, although there exist some good
starting points for the problem as mentioned before [16,17]. Recently, researchers
have also looked closely at the low probability tail distribution, and the work in
[25] applied a rare-event sampling technique and suggested a Gaussian correc-
tion to the Gumbel distribution to better describe the rare event tail, resulting
in a considerable change in the reported significance values. However, for most
practical purposes, the original Gumbel distribution has been widely used to
describe gapped alignment score distribution [26,21,12,27,9].

From an empirically generated score distribution, we can directly observe the
E-value E for a particular score x, by counting the number of times a score x or
higher was attained. Since this number would be different for different number of
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random shuffles N (or number of sequences in the database in case of database
search), a normalized E-value is defined as

Enormalized =
E

N
.

3 Tools and Programs Used

We worked with the alignment programs SIM [28], which is an ordinary align-
ment program (similar to SSEARCH), GAP3 [8], which allows dynamically find-
ing similarity blocks and difference blocks, and GAP4 [9], which can also use mul-
tiple parameter sets (scoring matrices, gap penalties, difference block penalties)
to generate a single pairwise alignment. For estimating the statistical parame-
ters K and λ, we used several programs. First is PRSS from the FASTA package
[6,7,21], which takes two protein sequences and one set of parameters (scoring
matrix, gap penalty), generates the optimal alignment, and estimates the K and
λ parameters by aligning up to 1000 shuffled versions of the second sequence,
and fitting an EVD using maximum likelihood. In addition to uniform shuffling,
it also allows for windowed shuffling. We also used ARIADNE [12], that uses
an approximate formula to estimate gapped K and λ from ungapped K and λ.
Both these methods are currently applicable only for alignment methods using
one parameter set. We also used the linear regression fitting program used in [9]
to estimate K and λ from an empirical distribution of alignment scores. Finally,
we also used the maximum likelihood method [23] and corresponding routines
in the HMMER package [22] to fit an EVD to the empirical distribution. We
compared all these methods on the basis of accuracy in estimating K and λ
values for a pair of sequences.

4 Experiments and Results

4.1 Accurate Estimation of K and for λ a Specific Sequence Pair

For each sequence pair, we need to find accurate estimates of the statistical
parameters K and λ. Here, we are not too much concerned with the time taken
for estimating K and λ since we are interested in determining the method which
gives the most accurate estimates of the parameters. Therefore, we can afford to
spend more time for accurate estimates.

To decide on the method for estimating statistical parameters for a sequence
pair, we used the following approach: a pair of remotely homologous protein
sequences was selected using PSI-BLAST by giving a G protein-coupled recep-
tor sequence (GENE ID: 55507 GPRC5D) as query and running two iterations
of PSI-BLAST. The second sequence was selected from the new results after
second iterations that were not present in the results of the first iteration. The
sequence was a novel protein similar to vertebrate pheromone receptor protein
[Danio rerio] (emb|CAM56437.1|). We used this pair of real protein sequences
to generate eleven large scale simulations of alignment score distributions using
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different alignment programs and scoring schemes described in Section 3. Each
of the eleven simulations involved aligning one million pairs of randomly shuffled
versions of the sequence pair (with different seeds for the random number genera-
tor). Because we are mostly interested in the tail distribution of scores, we looked
at the distribution of scores for which the normalized E-value was less than 0.01.
We got eleven empirically derived random distributions, and although theoret-
ically they should have been same, there was slight variation within the eleven
distributions (because of random sampling). Here we combined the eleven distri-
butions by taking the mean of the E-values for each score from each of the eleven
distributions. This is equivalent to doing one big simulation with eleven million
shuffles. We assume that the resulting mean distribution is the most accurate
representation of the actual distribution and subsequently used this distribution
to validate the predicted E-values from different methods of estimating K and λ.
Fig. 1 shows the mean score distribution (complementary distribution function
in terms of statistics) based on the simulations, which is same as the normalized
E-value, for three alignment schemes. The solid line curve shows the mean of
the normalized E-values from the eleven different simulations. The vertical bars
for each alignment score indicates the variation in normalized E-values observed
within the eleven different simulations.

For evaluating various methods of estimating statistical parameters, the K
and λ estimates from different programs for the same sequence pair were ex-
amined. For the PRSS program, both uniform and windowed shuffling was used
with two values of window size: 10 and 20. The ARIADNE program was also
used to estimate gapped K and λ. Since we are interested in accurate fitting
of the tail distribution, for the curve fitting methods like maximum likelihood
(ML) and linear regression (LR), we used the censored distribution for fitting.
Here type-I censoring is defined as the one in which we fit only the data right
of the peak of the histogram [23], and type-II censoring is defined as one where
the cutoff is set to the score that corresponds to a normalized E-value of 0.01.
We also show results for uncensored fitting with ML method, applied to the
eleven empirical distributions (with a million shuffles each) to make a realistic
comparison of other fitting schemes with the methodology used in PRSS, which
also uses maximum likelihood method, but only up to 1000 shuffles. Since we
generated eleven independent score distributions, we used them individually to
estimate eleven pairs of K and λ using both ML and LR, so that we can perform
the best case, worst case and average case prediction analysis for fitting meth-
ods. The estimated K and λ values from each program are used to predict the
E-values for different alignment scores using the EVD formula, and the resulting
distribution is compared with the mean empirical distribution generated from
eleven independent simulations as described above.

Table 1 shows the comparison of the sum of squares of differences (SSD)
between predicted normalized E-values and actual normalized E-values for dif-
ferent methods and alignment schemes. Since we had eleven estimates of K and
λ for the ML and LR methods, we report the minimum, maximum and aver-
age SSD. PRSS and ARIADNE report one set of parameters, and thus there is
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Fig. 1. Distribution of alignment scores generated (a) using SIM program and BLO-
SUM62 matrix, (b) using SIM program and BLOSUM100 matrix and (c) using GAP4
program and BLOSUM62 and BLOSUM100 matrices. The solid line curve represents
the mean of the eleven distributions generated, and the vertical bars represent the
variation within the eleven distributions.

Table 1. Comparison of the Sum of Squares of Differences (SSD) between predicted
normalized E-values and actual normalized E-values for different methods and align-
ment schemes

Program: SIM Matrix: BLOSUM62 GapOpenPen.: 14, GapExtPen.: 3
Statistic Ariadne PRSS Maximum Likelihood LinRegr Minimum

Uniform -w 10 -w 20 Full Censor-I Censor-II Censor-II
Min(SSD) 8.05E-09 9.11E-09 2.67E-08 8.58E-08 8.05E-09
Max(SSD) 5.6× 3.46× 4.22× 7.5× 6.03E-07 2.75E-07 2.15E-06 5.20E-06 2.75E-07
Avg(SSD) E-04 E-05 E-02 E-03 3.02E-07 7.91E-08 6.08E-07 1.48E-06 7.91E-08

Program: SIM Matrix: BLOSUM100 GapOpenPen.: 16, GapExtPen.: 4
Statistic Ariadne PRSS Maximum Likelihood LinRegr Minimum

Uniform -w 10 -w 20 Full Censor-I Censor-II Censor-II
Min(SSD) 1.88E-09 1.76E-09 8.16E-10 8.27E-09 8.16E-10
Max(SSD) 1.02× 4.58× 8.3× 4.38× 3.90E-08 2.50E-08 1.62E-07 4.20E-07 2.50E-08
Avg(SSD) E-05 E-05 E-04 E-04 8.51E-09 9.18E-09 4.54E-08 1.13E-07 8.51E-09

Program: GAP4 Matrix: BL62,BL100 GapOpen:14,16 GapExt:3,4
Statistic Ariadne PRSS Maximum Likelihood LinRegr Minimum

Uniform -w 10 -w 20 Full Censor-I Censor-II Censor-II
Min(SSD) 2.20E-07 2.05E-08 1.35E-08 9.34E-08 1.35E-08
Max(SSD) NA NA NA NA 1.62E-06 6.86E-07 2.97E-06 9.77E-06 6.86E-07
Avg(SSD) 9.88E-07 2.42E-07 6.49E-07 2.83E-06 2.42E-07
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only one SSD corresponding to these methods. Further, for alignment method
GAP4 which can use multiple parameter sets, there is no entry corresponding
to ARIADNE and PRSS, as these methods do not currently support the use of
multiple parameter sets. The last column gives the minimum SSD obtained, and
its second and third entries correspond to the minimum worst case and minimum
average case error in prediction. We can see that the minimum SSD is obtained
for the ML method in all cases. Specifically, ML fitting with type-I censoring
gives the minimum Max(SSD), (i.e. minimum worst case error) for all the three
cases. Therefore, we conclude that ML fitting with type-I censoring gives the
most accurate estimates of statistical parameters K and λ.

4.2 Using Pairwise Statistical Significance to Infer Homology

To evaluate our method, we used a non-redundant subset of the CATH 2.3
database (Class, Architecture, Topology, and Hierarchy, [29]) provided by [24]
and available at ftp://ftp.ebi.ac.uk/pub/software/unix/fasta/prot sci 04/. As
described in [24], this dataset consists of 2771 domain sequences and includes 86
selected test query sequences, each representing at least five members of their re-
spective CATH sequence family (35% sequence identity) in the data set. We used
this database and query set for experimenting with pairwise statistical signifi-
cance. For each of the 86×2771 comparisons, we used the maximum likelihood
method with type-1 censoring with 2000 shuffles to fit the score distribution
from the GAP3 program with a very high difference block penalty (to not use
that feature), which essentially reduces it to an ordinary alignment program like
SIM. Alignments were obtained using the BLOSUM50 substitution matrix (in
1/3 bit units as used by SSEARCH) with gap open penalty as 10, and gap ex-
tension penalty as 2. The same combination of parameters was used in [24] to
report the results obtained with the SSEARCH program. The parameters K and
λ resulting from the ML fitting were then used to find the pairwise statistical
significance of the pairwise comparison, and the P-value was recorded. Follow-
ing [24], Error per Query (EPQ) versus Coverage plots were used to present the
results. To create these plots, the list of pairwise comparisons were sorted based
on statistical significance, and subsequently, the lists were examined, from best
score to worst. Going down the list, the coverage count is increased by one if the
two members of the pair are homologs, and the error count is increased by one
if they are not. At a given point in the list, EPQ is the total number of errors
incurred so far, divided by the number of queries. Coverage at that point is the
fraction of homolog pairs detected at this significance level.

For each of the 86 queries, 2771 comparisons were done, and EPQ vs. Cov-
erage curves were plotted. Since the EPQ vs. Coverage curves on the complete
dataset can be distorted due to poor performance by one or two queries (if those
queries produce many errors at low coverage levels), reference [24] examined the
performance of the methods with individual queries. Fig. 2(a) shows the level of
coverage generated by the median query (43 queries performed better, 43 worse)
at the 1st, 3rd, 10th, 30th, and 100th false positive for homologs. Fig. 2(b) shows
the same results for 25th percentile of coverage (i.e. 21 of the queries have worse
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Fig. 2. Errors per Query vs. Coverage plots for individual queries. (a) The median level
of coverage for 86 queries; (b) 1st quartile (25th percentile) coverage; (c) 3rd quartile
(75th percentile) coverage. Along with the curve for pairwise statistical significance,
the curves for SSEARCH and PSI-BLAST in (a) and (b) are derived from figures 2A
and 2B in [24]. The corresponding results for (c) were not available in [24].
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coverage, and 65 have better coverage). And fig. 2(c) shows the same results for
75th percentile of coverage (i.e. 65 of the queries have worse coverage, and 21
have better coverage). Along with the curve for pairwise statistical significance,
the curves for SSEARCH and PSI-BLAST in fig. 2(a) and (b) are derived from
the figures 2A and 2B in [24]. The results corresponding to Fig. 2(c) were not
available in [24], and hence, only the results of pairwise statistical significance
are reported. This figure shows that pairwise statistical significance performs
comparable to and sometimes significantly better than database statistical sig-
nificance (with SSEARCH program), particularly at higher error rates. However,
the results using PSI-BLAST are clearly the best.

Since the SSEARCH program used the same substitution matrix as we used
for our experiments (BLOSUM50) [24], the results indicate that pairwise statis-
tical significance works better in practice than database statistical significance.
However, even better results with PSI-BLAST using database statistical signif-
icance indicates that sequence specific substitution matrices should be used for
the pairwise comparisons, and to fairly compare pairwise statistical significance
with the database statistical significance reported by PSI-BLAST, more experi-
ments need to be performed with pairwise statistical significance using sequence
specific substitution matrices.

The time required to estimate pairwise statistical significance for a given pair
of sequences is certainly expected to depend on the length of the two sequences.
Therefore, to get an idea of the average time needed to estimate pairwise statisti-
cal significance using the proposed method, we used the following approach. We
took a real sequence from the CATH2.3 database of length 135 (1que01) and es-
timated its pairwise statistical significance with more than a thousand other real
sequences. It took 2574.151 seconds for finding 1013 pairwise statistical signifi-
cance estimates on an Intel processor 2.8GHz, which means on an average 2.54
seconds per comparison. Certainly, this is much faster than a database search,
if we are only interested in a specific (or a few) pairwise comparison(s), but will
take a huge amount of time if applied for all pairwise comparisons in a large
database search.

The program PairwiseStatSig is available for free academic use at
www.cs.iastate.edu/∼ankitag/PairwiseStatSig.html

5 Conclusion and Future Work

This paper explores the use of pairwise statistical significance, and compares it
with database statistical significance for the application of homology detection.
Large scale experimentation was done to determine the most accurate method
for determining pairwise statistical significance. Further, preliminary experimen-
tation for homology detection with a benchmark database (a subset of CATH2.3
database) shows that the pairwise statistical significance performs better than
database statistical significance (using SSEARCH program), but still the accu-
racy of retrieval results is best for PSI-BLAST.



60 A. Agrawal, V. Brendel, and X. Huang

We believe that PSI-BLAST gives best results because of the use of sequence
specific substitution matrices, although it also uses database statistical signif-
icance to estimate the E-value. Using pairwise statistical significance is shown
to be better than database E-value (used in SSEARCH), and thus, we believe
that the results of pairwise statistical significance can be further improved by
using sequence specific substitution matrices, which is the significant part of our
future work. Also, more experimentation with other standard databases such as
SCOP can be done to compare the performance. Another major contribution
can be to estimate the pairwise statistical significance accurately in less time,
as the method used in this paper was to use maximum likelihood to fit a score
distribution generated by simulation, which is not time-efficient. Faster methods
for determining pairwise statistical significance are thus required. We have made
some progress in this direction [30]. Another aspect of future work is to exper-
iment with other sample space for shuffling of protein sequences for generating
score distribution, which may provide better significance estimates.
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