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Abstract—Formation energy is one of the most important prop-
erties of a compound that is directly related to its stability. More
negative the formation energy, the more stable the compound is
likely to be. Here we describe the development and deployment
of predictive models for formation energy, given the chemical
composition of the material. The data-driven models described
here are built using nearly 100,000 Density Functional Theory
(DFT) calculations, which is a quantum mechanical simulation
technique based on the electron density within the crystal struc-
ture of the material. These models are deployed in an online web-
tool that takes a list of material compositions as input, generates
over hundred composition-based attributes for each material and
feeds them into the predictive models to obtain the predictions
of formation energy. The online formation energy predictor is
available at http://info.eecs.northwestern.edu/FEpredictor
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I. MOTIVATION

The field of materials science and engineering involves
conducting experiments and simulations to understand the
science of materials in order to discover and engineer new ma-
terials with superior properties. Like most scientific domains,
materials science too has strong experimental, theoretical, and
computational (simulation) branches of study. Over the last
few years, the data being generated by such experiments and
simulations is exploding, making it amenable to knowledge
extraction via data-driven techniques. The realization of the
fourth paradigm of science [1] (data-driven science, unifying
the first three paradigms of experiment, theory, and simulation)
in materials science has led to the emergence of the new
field called materials informatics [2], [3], [4], and a surge in
research efforts for data-driven materials property prediction
and optimization [5], [6], [7], [8], [9], [10].

In June 2011, the US government launched the Materials
Genome Initiative (MGI) [11] to realize the vision of develop-
ment of advanced materials necessary for economic security
and human well-being. In particular, the Materials Genome
Initiative “will enable discovery, development, manufacturing,
and deployment of advanced materials at least twice as fast
as possible today, at a fraction of the cost”. Currently, the
time lag between the discovery of advanced materials and
their deployment stands at more than 20 years, which this
initiative aims to reduce to half. The Materials Genome

Initiative Strategic Plan released in 2014 [12] also identifies
data analytics as one of the key objectives as part of integrating
experiments, computation, and theory, in order to realize the
vision of MGI.

It is in the spirit and pursuit of the vision and approach of
MGI that we discuss and present in this demonstration paper,
an online data informatics tool to predict formation energy of
a material, which is a crucial material property directly related
to its stability. Some of these predictive models were recently
used to scan (almost) the entire ternary composition space,
and resulted in a first-of-its-kind computational discovery of
about 4,500 new stable compounds [13].

II. MATERIALS SCIENCE BACKGROUND

Density functional theory (DFT) is a quantum mechanical
simulation technique based on the electron density within
the crystal structure of the material, and is one of the most
commonly used computational tools for studying the elec-
tronic scale properties of a material (a many-body system of
interacting electrons). DFT calculations are extremely time
consuming, and they also require the atomistic structure of
the material as an input, which in turn is also very costly
computationally. Depending on the size and complexity of the
material being studied, a single DFT calculation can take from
hours to days to months on modern computing systems.

Formation energy is one of the most important properties
of a compound that is directly related to its stability. It is the
energy released or required in forming the compound from its
constituent elements. A negative formation energy (i.e. energy
is released) indicates that the compound is more stable than its
constituent elements, while a positive formation energy (i.e.,
energy is required) implies the opposite. The units of formation
energy is electron-volts per atom (eV/atom).

III. DESIGN

The overall data-driven process is depicted as a block
diagram in Figure 1. DFT calculations were performed for
nearly 100,000 materials with known composition and struc-
ture to obtain the values of formation energy. Over hundred
composition-based attributes are derived and mapped to the
DFT calculated formation energy to construct the formation
energy prediction database. Supervised learning techniques are
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Fig. 1. The design of the data mining workflow used in this work.

then used to learn predictive models for formation energy,
given only the composition of the material, without any
explicit structure information. The models are evaluated using
standard validation techniques, and the most accurate models
are deployed in an online user-friendly web-tool that can
predict the formation energy of arbitrary material compositions
without the need for any structure information.

IV. DEVELOPMENT AND FUNCTIONALITY

A. Data

We used the same dataset as used in [13]. It was generated
as a result of a large number of DFT calculations on crystalline
compounds from the Inorganic Crystal Structure Database
(ICSD). To better teach the model about interactions between
all pairs of elements, the binary phase diagrams generated by
the DFT calculations were discretized to cover A0.05B0.95

to A0.95B0.05, for all pairs of elements A and B. In other
words, formation energy was obtained at different fractions of
all AB systems. The final dataset consisted of 83,728 chemical
compositions of crystalline compounds, which corresponded to
9,324 stable ternary compounds and 74,404 discretized points
on binary A-B phase diagrams. One attribute for each element
was defined that represented the fraction of that element in
the compound based on its stoichiometry. The number of
such attributes was 112, one for each element. For Fe2O3

(ferric oxide or iron(III) oxide), the value of Fef would be
0.4 and Of would be 0.6. Remaining 110 elemental fractions
(e.g. Naf , Clf , etc. would be set as 0. Some additional
attributes that are based on elemental properties and derivable
by composition alone were included in a bid to capture the
general chemistry of the compound. These were 17 in number
and are listed in Table I, along with their values for Fe2O3.

TABLE I
COMPOSITION-DERIVED ATTRIBUTES

Attribute Value for Fe2O3

Average atomic mass 0.4x55.845 + 0.6x15.999 = 31.94
Average column on periodic table 0.4x8 + 0.6x16 = 12.8
Average row on the periodic table 0.4x4 + 0.6x2 = 2.8
Maximum difference in atomic number 26 - 8 = 18
Average atomic number 0.4x26 + 0.6x8 = 15.2
Maximum difference in atomic radii (pm) 140 - 60 = 80
Average atomic radius 0.4x140 + 0.6x60 = 92.0
Maximum difference in electronegativity 3.44 - 1.83 = 1.61
Average electronegativity 0.4x3.44 + 0.6x1.83 = 2.474
Average number of s valence electrons 0.4x4 + 0.6x2 = 2.8
Average number of p valence electrons 0.4x0 + 0.6x4 = 2.4
Average number of d valence electrons 0.4x6 + 0.6x0 = 2.4
Average number of f valence electrons 0.4x0 + 0.6x0 = 0.0
s fraction of valence electrons 2.8 / (2.8+2.4+2.4+0.0) = 0.368
p fraction of valence electrons 2.4 / (2.8+2.4+2.4+0.0) = 0.316
d fraction of valence electrons 2.4 / (2.8+2.4+2.4+0.0) = 0.316
f fraction of valence electrons 0.0 / (2.8+2.4+2.4+0.0) = 0.0

B. Methods

We used 30 regression schemes including both direct appli-
cation of regression techniques and constructing their ensem-
bles using ensembling techniques (compatible combinations).
Evaluation metrics included the coefficient of correlation
(R), explained variance (R2), Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), Relative Absolute Error
(RAE), and Root Relative Squared Error (RRSE).

C. Results

Table II presents the top five modeling techniques with
respect to MAE. All results are based on 10-fold cross-
validation. In addition, the training and testing times for each
model, and the model size is also listed. WEKA software
[14] verison 3.7.13 was used for all analytics with default
parameters, unless otherwise stated. The predictive model
used in [13] ranks 4th in our current experiments. Statistical



TABLE II
TOP FIVE MODELING TECHNIQUES (10-FOLD CROSS-VALIDATION RESULTS)

Modeling Scheme MAE R R2 RMSE RAE RRSE TrainTime TestTime ModelSize
(eV/at) (eV/at) (%) (%) (s) (s) (bytes)

RotationForest RandomTree 0.0400 0.9887 0.9775 0.0857 10.75 15.13 175.36 9.21 36748860
RandomCommittee RandomTree 0.0442 0.9869 0.9740 0.0925 11.89 16.35 27.09 0.18 41176273
RandomForest 0.0460 0.9879 0.9759 0.0911 12.36 16.09 159.78 2.31 285658456
RotationForest REPTree 0.0470 0.9866 0.9734 0.0934 12.64 16.51 291.69 8.41 11057773
RandomCommittee REPTree 0.0472 0.9855 0.9712 0.0965 12.70 17.05 172.34 0.08 8802355

TABLE III
TOP FIVE MODELING TECHNIQUES WITH PART OF TERNARY COMPOSITIONS USED AS TESTING SET

Modeling Scheme MAE R R2 RMSE RAE RRSE
(eV/at) (eV/at) (%) (%)

RotationForest RandomTree 0.1343 0.9744 0.9495 0.2035 15.90 16.89
RotationForest REPTree 0.1389 0.9751 0.9508 0.2025 16.45 16.81
RandomForest 0.1393 0.9752 0.9510 0.2094 16.49 17.38
RandomCommittee RandomTree 0.1399 0.9716 0.9440 0.2145 16.56 17.80
RandomCommittee REPTree 0.1434 0.9690 0.9390 0.2204 16.97 18.29

significance testing revealed that the MAE obtained by the
best model (RotationForest RandomTree) is significantly
lower than the MAE from all other models at p=0.05.

It is important to note that since we had discretized all
binary systems while building the training data, we expect
the above accuracy numbers to be over-optimistic. This is
because having the discretized binary compositions of a given
system split across training and testing sets could artificially
boost the accuracy. We thus performed a more difficult test for
these models in order to evaluate their true predictive power
by withholding 5% of the training data that consisted entirely
of ternaries (compounds with three elements, e.g. CaCO3) as
the test set, and redid the entire modeling comparison with
all the 30 modeling configurations. Results for the above-
described setting are summarized in Table III. As expected,
the accuracy went down, but the models were still found to
be very useful for predictive purposes (R2 of ∼0.95 and RAE
of ∼15%). Rotation forest ensembling with random tree as
the base modeling technique still gave the best MAE=0.1343
eV/atom, which was again found to be significantly better than
all other techniques at p=0.05.

It is important to remember that DFT itself is a simulation
technique and has discrepancies with experimentally observed
formation energy values. The current MAE between DFT
and experiment is 0.136 eV/atom [15], which is comparable
to the MAE of the best model developed here. Further, it
has also been reported that there is discrepancy even across
experiments, with a surprising large MAE of 0.082 eV/atom
[15]. Given these numbers, we believe that the machine
learning models developed and deployed in this work could
be very useful for quickly estimating the formation energy
of materials with reasonable accuracy, which can help scan
a large number of compositions in a short time without
expensive DFT calculations or experiments. Fig. 2. A screenshot of the deployed formation energy predictor.



D. Formation energy predictor
We have created an online formation energy predictor that

can take as input a list of chemical compositions satisfying
the charge balance condition respecting the common oxida-
tion states of individual elements, and generate predictions
of formation energy for each composition. Two models are
deployed in this tool: RotationForest REPTree (the one
used in [13]) and RotationForest RandomTree (that was
found to be most accurate in our current experiments). The
results are presented in the form of a sortable table of
compositions with predicted formation energy values from
the two models. In addition, histograms of actual/predicted
formation energy values, and that of the prediction errors
are also presented. The screenshot of the formation energy
predictor is depicted in the Figure 2, and the tool is available
online at: http://info.eecs.northwestern.edu/FEpredictor.

V. SIGNIFICANCE

From a research perspective, this work investigates the
applicability of predictive modeling techniques to predict ma-
terial properties. In particular, here we focus on predicting the
formation energy of a material given its chemical composition,
by comparing over 30 supervised modeling configurations on
a dataset of DFT calculations, and have identified the most
accurate model till date for this problem, which is significantly
better than the one used in [13].

From a practical point of view, we have deployed the most
accurate predictive models in a user-friendly web-tool for easy
access. Most data-driven models are, in general, not simple
equations as in the case of something like linear regression,
and are more like black box models that are not easily usable
with traditional spreadsheet software. To make the developed
predictive models for formation energy readily accessible for
use by the materials science and engineering community,
we have created an online formation energy predictor that
can take arbitrary materials compositions and predict their
stability. The primary advantage of this tool is the capability
of quickly and accurately predicting formation energy using
just the chemical composition of the material without needing
any structure information, which is hard to obtain and is
an essential prerequisite for performing a DFT calculation.
The deployed tool is expected to be a useful resource for
researchers and practitioners in the materials science and
engineering community, to assist in their search for better
materials with improved properties.
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