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Abstract

This chapter describes the application of big data analytics in healthcare, particularly on electronic
healthcare records so as to make predictive models for healthcare outcomes and discover interesting
insights. A typical workflow for such predictive analytics involves data collection, data transformation,
predictive modeling, evaluation, and deployment, with each step tailored to the end goals of the project.
To illustrate each of these steps, we shall take the example of recent advances in such predictive analytics
on lung cancer data from the Surveillance, Epidemiology, and End Results (SEER) program. This
includes the construction of accurate predictive models for lung cancer survival, development of a lung
cancer outcome calculator deploying the predictive models, and association rule mining on that data
for bottom-up discovery of interesting insights. The lung cancer outcome calculator illustrated here is
available at http://info.eecs.northwestern.edu/LungCancerOutcomeCalculator.

Introduction

The term “big data” has become a ubiquitous buzzword today in practically all areas of science, technology,
and commerce. It primarily denotes datasets that are too large, complex, or both, to be adequately ana-
lyzed by traditional processing techniques. Scientific and technological advances in measurement and sensor
devices, databases, and storage systems have made it possible to efficiently collect, store and retrieve huge
amounts of and different kinds of data. However, when it comes to the analysis of such data, we have to
admit that our ability to generate big data has far outstripped our analytical ability to make sense of it.
This is true in practically all fields, and the field of medicine and healthcare is no exception to it, where
the Fourth paradigm of science (data-driven analytics) is increasingly becoming popular and has led to the
emergence of the new field of healthcare informatics. The Fourth paradigm of science [1] unifies the first
three paradigms of science – namely theory, experiment, and simulation/computation. The need for such
data-driven analytics in healthcare has also been emphasized by large-scale initiatives all around the world,
such as Big Data to Knowledge (BD2K) and Precision Medicine Initiative of National Institutes of Health
in USA, Big Data for Better Outcomes Initiative in Europe, and so on.

The bigness (amount) of data is certainly the central feature and challenge of dealing with the so-called
big data, but it is many times accompanied by one or more of other features that can make the collection
and analysis of such data even more challenging. For example, the data could be from several heterogeneous
sources, may be of different types, may have unknown dependencies and inconsistencies within it, parts of
it could be missing or not reliable, the rate of data generation could be much more than what traditional
systems could handle, and so on. All this can be summarized by the famous Vs associated with big data, as
presented in Figure 1 and briefly described below:

• Volume: It refers to the amount of data. Datasets of sizes exceeding terabytes and even petabytes
are not uncommon today in many domains. This presents one of the biggest challenge in big data
analytics.
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Figure 1: The various Vs associated with big data. Volume, velocity, and variety are unique features of big
data that represent its bigness. Variability and veracity are characteristics of any type of data, including big
data. The goal of big data analytics is to unearth the value hidden in the data, and appropriately visualize
it to make informed decisions.

• Velocity : The speed with which new data is generated. The challenge here is to be able to effectively
process the data in real-time. A good example of high velocity data source is Twitter, where more
than 5000 tweets are posted every second.

• Variety : This refers to the heterogeneity in the data. For instance, many different types of healthcare
data are generated and collected by different healthcare providers, such as electronic health records,
x-rays, cardiograms, genomic sequence, etc. It is important to be able to derive insights by looking at
all available heterogenous data in a holistic manner.

• Variability : The inconsistency in the data. This is especially important since the correct interpretation
of the data can vary significantly depending on its context.

• Veracity : It refers to how trustworthy the data is. The quality of the insights resulting from analysis
of any data is critically dependent on the quality of the data itself. Noisy data with erroneous values
or lot of missing values can greatly hamper accurate analysis.

• Visualization: It means the ability to interpret the data and resulting insights. Visualization can be
especially challenging for big data due to its other features as described above.

• Value: The goal of big data analytics is to discover the hidden knowledge from huge amounts of data,
which is akin to finding a needle in a haystack, and can be extremely valuable. For example, big data
analytics in healthcare can help enable personalized medicine by identifying optimal patient-specific
treatments, which can potentially improve millions of lives, reduce waste of healthcare resources, and
save billions of dollars in healthcare expenditure.

The first three Vs above distinguish big data from small data, and other Vs are characteristics of any
type of data, including big data. Further, each application domain can also introduce its own nuances to
the process of big data management and analytics. For example, in healthcare, the privacy and security
of patients’ data is of paramount importance, and compliance to HIPAA (Health Insurance Portability and
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Accountability Act) and IRB (Institutional Review Board) protocols is necessary to work with many types
of healthcare data. It is also worth noting here that although the size and scale of healthcare data is not as
large as in some other domains of science like high-energy-physics or in business and marketing, but the shear
complexity and variety in healthcare data becoming available nowadays requires the development of new big
data approaches in healthcare. For example, there are electronic healthcare records (EHRs), medical images
(e.g. mammograms), time-series data (e.g. ECG signals), textual data (doctor’s notes, research papers),
genome sequence and related data (e.g. SNPs).

So what can big data analytics do for a real world healthcare application? A variety of personalized
information such as patients electronic health records is increasingly becoming available. What if we could
intelligently integrate the hidden knowledge from such healthcare data during a real-time patient encounter
to complement physicians expertise and potentially address the challenges of personalization, safe and cost-
effective healthcare? Note that the challenge here is to make the insights patient-specific instead of giving
generic population-wide statistics. Why is this important? Let us try to understand with the help of an
example. The benefits of medical treatments can vary depending on one’s expected survival, and thus
not considering an individual patients prognosis can result in poor quality of care as well as non-optimal
use of healthcare resources. Developing accurate prognostic models using all available information and
incorporating them into clinical decision support could thus significantly improve quality of healthcare [2],
both in terms of improving clinical decision support and enhancing informed patient consent. Development
of accurate data-driven models can also have a tremendous economic impact. The Centers for Disease
Control and Prevention estimates that there are more than 150,000 surgical-site infections annually [3], and
it can cost $11,000 to $35,000 per patient, i.e., about $5 billion every year. Accurate predictions and risk
estimation for healthcare outcomes can potentially avoid thousands of complications, resulting in improved
resource management and significantly reduced costs. This requires development of advanced data-driven
technologies that could effectively mine all available historical data, extract and suitably store the resulting
insights and models, and make them available at the point of care in a patient-specific way.

In the rest of this chapter, we will see one such application of big data analytics on electronic healthcare
records so as to make predictive models on it and discover interesting insights. In particular, we will take
the example of lung cancer data from the Surveillance, Epidemiology, and End Results (SEER) program to
build models of patient survival after 6 months, 9 months, 1 year, 2 years, and 5 years [4] and for conditional
survival as well [5]. We will also see the application of association rule mining on this dataset for 5-year
survival [6] and 5-year conditional survival [7]. Finally, we will discuss the online lung cancer outcome
calculator that resulted from the described predictive analytics on SEER data, and conclude with some
examples of big data analytics in other healthcare-related applications.

Big Data Analytics on SEER Lung Cancer Data

Lung (respiratory) cancer is the second most common cancer and the leading cause of cancer-related deaths
in the USA. In 2012 alone, over 157,000 people in the United States died from lung cancer. The 5-year
survival rate for lung cancer is estimated to be just 15% [8]. The Surveillance, Epidemiology, and End
Results (SEER) Program of the National Cancer Institute (NCI) is an authoritative repository of cancer
statistics in USA [9]. It is a population-based cancer registry covering about 26% of the US population and
is the largest publicly available cancer dataset in USA. It collects cancer data for all invasive and in situ
cancers, except basal and squamous cell carcinomas of the skin and in situ carcinomas of the uterine cervix
[8]. The SEER data attributes can be broadly categorized into demographic attributes, diagnosis attributes,
treatment attributes, and outcome attributes (see Table 1). The presence of outcome attributes makes the
SEER data very useful for doing predictive analytics and making models for cancer survival.

Lung cancer survival prediction system

Till now we have seen what big data is and what big data analytics can do for healthcare applications.
We have also had a brief introduction to SEER and what kind of data is present in the SEER database.
So now let us dive deeper into what a typical workflow for predictive analytics looks like, with the specific
example of lung cancer survival prediction on SEER data. Figure 2 depicts the overall end-to-end workflow.
It is worth mentioning here that this workflow for predictive lung cancer outcome analytics is essentially a
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Table 1: SEER data attributes

Type Examples

Demographic Age, gender, location, race/ethnicity, date of diagnosis
Diagnosis Tumor primary site, size, extension, lymph node involvement

Treatment Primary treatment, surgical procedure, radiation therapy
Outcome Survival time, cause of death

Data 
collection

Data 
transformation

Predictive 
modeling Evaluation Deployment

Raw	
SEER	
data

Figure 2: A typical workflow for predictive analytics, illustrated with the example of outcome prediction
models for lung cancer using SEER data

healthcare adaptation of existing similar data science workflows in other domains, since most of the advanced
techniques for big data management and analytics are invented in the field of computer science and more
specifically high-performance data mining [10, 11], via applications in many different domains like business
and marketing [12], climate science [13], materials informatics [14], and social media analytics [15], among
many others. Here we will only focus on the healthcare application of developing a lung cancer survival
prediction system. As shown in Figure 2, it has five stages described below.

Data collection

This is the obvious first step. Depending on the project, the kind of data required for it, and the license
agreements associated with that data, this can be the easiest or the toughest step in the workflow. SEER
has made it easy to get the ‘SEER limited-use data’ from their website on submitting a SEER limited-use
data agreement form. It creates a personalized SEER research data agreement for every user that allows the
use of the data for only research purposes. In particular, there must be no attempt to identify the individual
patients in the database. Of course, the obvious identification information like patient name, SSN, etc. are
excluded from the data released by SEER, but it still has demographic information like age, sex, race, which
is very useful for research purposes, but should not be misused to try to identify patients in any way. Such
compliance to HIPAA regulations is important to preserve patient privacy.

Data transformation

Once the data is available, the first step is to understand the data format and representation, and do any
necessary transformations to make it suitable for modeling. Let us assume the data is in a row-column
(spreadsheet) format, such as in the case of SEER data. Each row corresponds to a patient’s medical record,
and can also be referred to as an instance, data point, or observation. The columns are the attributes, such
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as age, race, tumor size, surgery, outcome, etc. Data attributes can be of different types – numeric, nominal,
ordinal, interval – and it is important to have the correct representation of each attribute for analysis, for
which some data transformation might be necessary. More broadly, data transformation is needed to ensure
the quality of the data ahead of modeling and remove or appropriately deal with noise, outliers, missing
values, duplicate data instances, etc.

Data transformation is usually unsupervised, which means that it does not depend on the outcome or
target attributes. For example, SEER encodes all attributes as numbers, and many of them are actually
nominal, like marital status, where ”1” represents ”Single”, ”2” represents ”Married”, ”3” represents ”Sep-
arated”, ”4” represents ”Divorced”, ”5” represents ”Widowed”, and ”9” represents ”Unknown”. Numbers
have a natural order and the operations of addition, subtraction, and division are defined, which may be fine
for numeric attributes like ”tumor size”, but not for nominal attributes like marital status, sex, race, etc.,
Such attributes need to be explicitly converted to nominal for correct predictive modeling. Even numeric
attributes need to examined carefully. For example, the tumor size attribute in SEER data gives the exact
size of tumor in mm, if it is known. But in some cases, the doctor notes may say ”less than 2cm”, in which
case it is encoded as ”992”, which could easily be misinterpreted as 992mm if not transformed appropriately.
Another example of a unsupervised data transformation required in SEER data is to construct numeric
survival time in months from the SEER format of YYMM, so that it can be modeled correctly.

The above data transformations are required due to the way SEER data is represented, and may be
necessary for almost any project dealing with this data. But there are also problem-specific data transfor-
mations that may be necessary for building a model as originally intended. For example, if we are interested
in building a predictive model for lung cancer survival, then we should only include those patient records
where the cause of patients’ death was lung cancer, which is given by the “cause of death” attribute. We
also need to remove certain attributes from the modeling that directly or indirectly specify the outcome, e.g.
cause of death, whether the patient is still alive. Further, for binary class prediction, we also need to derive
appropriate binary attributes for survival time, e.g. 5-year survival.

There are also certain data transformation steps that could be supervised in some cases, meaning that
they depend on the outcome attribute(s). Examples include feature selection/extraction, discretization,
sampling, and all of these can be supervised or unsupervised. If they are supervised, they should in general
be considered together with other supervised analytics so as to avoid over-fitting (more about this later).

Predictive modeling

Once appropriate data transformation has been performed and the data is ready for modeling, we can
employ supervised data mining techniques for feature selection and predictive modeling. Caution needs to
be exercised here to appropriately split the data into training and testing sets (or use cross validation),
else the model may be subject to overfitting and give over-optimistic accuracy. If the target attribute is
numeric (e.g. survival time) regression techniques can be used for predictive modeling, and if it is categorical
(e.g. whether a patient survived at least five years) classification techniques can be used. Some techniques
are capable of doing both regression and classification. Further, there also exist several ensemble learning
techniques that can combine the results from base learners in different ways, and in some cases have shown
to improve accuracy and robustness of the final model. Table 2 lists some of the popular predictive modeling
techniques.

Evaluation

Traditional statistical methods such as logistic regression are typically evaluated by building the model on
the entire available data, and computing prediction errors on the same data, and it has been a common
practice in statistical analysis of medical data as well for many years. Although this approach may work well
in some cases, it is nonetheless prone to over-fitting, and thus can give over-optimistic accuracy. It is easy
to see that a data-driven model can, in principle ”memorize” every single instance of the dataset and thus
result in 100% accuracy on the same data, but will most likely not be able to work well on unseen data. For
this reason, advanced data-driven techniques that usually result in black-box models need to be evaluated
on data that the model has not seen while training. A simple way to do this is to build the model only on
random half of the data, and use the remaining half for evaluation. This is called the train-test split setting
for model evaluation. Further, the training and testing halves can then also be swapped for another round
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Table 2: Popular predictive modeling algorithms

Modeling Technique Brief description

Naive Bayes A probabilistic classifier based on Bayes theorem
Bayesian network A graphical model that encodes probabilistic conditional relationships among variables
Logistic regression Fits data to a sigmoidal S-shaped logistic curve
Linear regression A linear least-squares fit of the data w.r.t. input features
Nearest-neighbor Uses the most similar instance in the training data for making predictions
Artificial neural networks Uses hidden layer(s) of neurons to connect inputs and outputs, edge weights learnt using back

propagation (called deep learning if more than two layers)
Support vector machines Based on the Structural Risk Minimization, constructs hyperplanes multidimensional feature space
Decision table Constructs rules involving different combinations of attributes
Decision stump A weak tree-based machine learning model consisting of a single-level decision tree
J48 (C4.5) decision tree A decision tree model that identifies the splitting attribute based on information gain/gini impurity
Alternating decision tree Tree consists of alternating prediction nodes and decision nodes, an instance traverses all applicable

paths
Random tree Considers a randomly chosen subset of attributes
Reduced error pruning tree Builds a tree using information gain/variance and prunes it using reduced-error pruning to avoid

over-fitting
AdaBoost Boosting can significantly reduce error rate of a weak learning algorithm
Bagging Builds multiple models on bootstrapped training data subsets to improve model stability by re-

ducing variance
Random subspace Constructs multiple trees systematically by pseudo-randomly selecting subsets of features
Random forest An ensemble of multiple random trees
Rotation Forest Generates model ensembles based on feature extraction followed by axis rotations

of evaluation and the results combined to get predictions for all the instances in the dataset. This setting is
called two-fold cross validation, as the dataset is split into two parts. It can further be generalized to k-fold
cross validation, where the dataset is randomly split into k parts. k − 1 parts are used to build the model
and the remaining one part is used for testing. This process is repeated k times with different test splits,
and the results combined to get predictions for the all the instances in the dataset using a model that did
not see them while training. Leave-one-out cross validation (LOOCV) is a special case of the more generic
k-fold cross validation, with k = N , the number of instances in the dataset. LOOCV is commonly used when
the dataset is not very large. To predict the target attribute for each data instance, a separate predictive
model is built using the remaining N − 1 data instances, and the whole process is repeated for each data
instance. The resulting N predictions can then be compared with the N actual values to calculate various
quantitative metrics for accuracy. In this way, each of the N instances is tested using a model that did not
see it while training, thereby maximally utilizing the available data for model building. Cross validation
is a standard evaluation setting to eliminate any chances of over-fitting. Of course, k-fold cross validation
necessitates building k models, which may take a long time on large datasets.

Comparative assessments of how close the models can predict the actual outcome are used to provide
an evaluation of the models’ predictive performance. Many binary classification performance metrics are
usually used for this purpose such as accuracy, precision, recall/sensitivity, specificity, area under the ROC
curve, etc.

1. c-statistic (AUC): The ROC (Receiver operating characteristic) curve is a graphical plot of true
positive rate and false positive rate. The area under the ROC curve (AUC or c-statistic) is one of
the most effective metric for evaluating binary classification performance, as it is independent of the
probability cutoff and measures the discrimination power of the model.

2. Overall accuracy: It is the percentage of predictions that are correct. For highly unbalanced classes
where the minority class is the class of interest, overall accuracy by itself may not be a very useful
indicator of classification performance, since even a trivial classifier that simply predicts the majority
class would give high values of overall accuracy.

Overall accuracy =
(TP + TN)

(TP + TN + FP + FN)

where TP is the number of true positives (hits), TN is number of true negatives (correct rejections),
FP is number of false positives (false alarms), and FN is number of false negatives (misses).

3. Sensitivity (Recall): It is the percentage of positive labeled records that were predicted positive.
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Recall measures the completeness of the positive predictions.

Sensitivity =
TP

(TP + FN)

4. Specificity: It is the percentage of negative labeled records that were predicted negative, thus mea-
suring the completeness of the negative predictions.

Specificity =
TN

(TN + FP )

5. Positive predictive value (Precision): It is the percentage of positive predictions that are correct.
Precision measures the correctness of positive predictions.

Positive predictive value =
TP

(TP + FP )

6. Negative predictive value: It is the percentage of negative predictions that are correct, thereby
measuring the correctness of negative predictions.

Negative predictive value =
TN

(TN + FN)

7. F-measure: It is not too difficult to have a model with either good precision or good recall, at the
cost of each other. F-measure combines the two measures in a single metric such that it is high only
if both precision and recall are high.

F −measure =
2.precision.recall

(precision + recall)

Deployment

After the predictive models have been constructed and properly evaluated, they need to be deployed ap-
propriately to make the resulting healthcare insights available to various stakeholders at the point of care.
For the lung cancer survival prediction project, the predictive models were incorporated in a web-tool that
allows users to enter patient attributes and get patient-specific risk values. More details about the lung
cancer outcome calculator are described later in this chapter.

Conditional survival prediction

Survival prediction from time of diagnosis can be very useful as we have seen till now, but for patients who
have already survived a period of time since diagnosis, conditional survival is a much more clinically relevant
and useful measure, as it tries to incorporate the changes in risk over time. Therefore, the above-described
lung cancer survival prediction system was adapted to create additional conditional survival prediction
models. Since 5-year survival rate is the most commonly used measure to estimate the prognosis of cancer,
the conditional survival models were designed to estimate patient-specific risk of mortality after five years
of diagnosis of lung cancer, given that the patient has already survived for 3 months, 6 months, 12 months,
18 months, and 24 months.

In order to construct a model for estimating mortality risk after five years of diagnosis of patients already
survived for time T , only those patients were included in the modeling data that survived at least time T .
Note that this is equivalent to taking the data used in the calculator to build 5-year survival prediction
model, and removing the instances where the survival time was less than T . Thus, five new datasets were
created for five different values of T (3 months, 6 months, 12 months, 18 months, and 24 months), and the
same binary classification techniques were used to build five new models.
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Association rule mining

Association rule mining is useful to discover patterns in the data. In contrast with predictive modeling
where one is interested in predicting the outcome for a given patient, here one is interested in bottom-up
discovery of associations among the attributes. If a target attribute is specified, such association rule mining
can help identify segments (subsets of data instances) in the data defined by specific attributes’ values such
that those segments have extreme average values of the target attribute. Note that this is tantamount to
the inverse question of retrieval in databases, where one gives the segment definition in terms of attribute
values, and the database system returns the segment, possibly along with the average value of the target
attribute in that segment. However, such database retrieval cannot automatically discover segments with
extreme average values of the target attribute, which is exactly what association rule mining can do. Let us
take the example of the SEER dataset to make it clear. In this case, we have patient attributes including
an outcome/target attribute (survival time). Let us say the average survival time in the data is tavg. It
would then be of interest to automatically discover from the data under what conditions – as defined by
the combination of patient attribute-values – is the survival time t′avg significantly greater or significantly
lower than tavg. Similarly, if the target attribute is nominal like 5-year-survival (whether or not a patient
survived for at least five years), and the fraction of survived patients in the entire dataset is f , then it would
be interesting to find segments where this fraction f ′ is significantly higher or lower than f .

Illustrative data mining results on SEER data

We now present some examples of the results of above-described big data analytics on lung cancer EHR
data from SEER. In [5], the SEER November 2008 Limited-Use Data files [9] were used, which was released
in April 2009. It had a follow-up cutoff date of December 31, 2006, i.e., the patients were diagnosed and
followed-up up to this date. Data was selected for the patients diagnosed between 1998 and 2001. Since the
follow-up cutoff date for the SEER data in study was December 31, 2006 and the goal of the project was to
predict survival up to five years, data of 2001 and before was used. Also, since several important attributes
were introduced to the SEER data in 1998 (like RX Summ-Surg Site 98-02, RX Summ-Scope Reg 98-02, RX
Summ-Surg Oth 98-02, Summary stage 2000 (1998+)), data of 1998 and after was used. There were a total
of 70,132 instances of patients with cancer of the respiratory system between 1998 and 2001, and there were
118 attributes in the raw data from SEER.

The SEER-related preprocessing resulted in modification and splitting of several attributes, many of
which were found to have significant predictive power. In particular, 2 out of 11 newly created (derived)
attributes were within the top 13 attributes that were eventually selected to be used in the lung cancer
outcome calculator. These were a) the count of regional lymph nodes that were removed and examined by
the pathologist; and b) the count of malignant/in-situ tumors. These attributes were derived from ’Regional
Nodes Examined’ and ’Sequence Number-Central’ respectively from raw SEER data, both of which had
nominal values encoded within the same attribute, with the latter also encoding non-malignant tumors.
After performing various steps of data transformation and feature selection, the data was reduced to 46,389
instances of lung cancer patients and 13 attributes (excluding the outcome attribute).

Predictive analytics

For predictive analytics, binary outcome attributes for 6-month, 9-month, 1-year, 2-year, and 5-year survival
were derived from survival time. The dataset of 5-year survival was subsequently filtered to generate five
new datasets for modeling conditional survival after five years of diagnosis, given that the patient has already
survived 3 months, 6 months, 12 months, 18 months, and 24 months.

Many predictive modeling techniques were found to give good accuracy measures that were statistically
indistinguishable with the best accuracy. From amongst those, we chose the model based on alternating
decision trees with additional logistic modeling on top for better calibration. Ten-fold cross validation was
used to estimate the accuracy of all the ten models. Table 3 presents the results for all the models (only
accuracy and AUC included here for simplicity), along with the distribution of survived and not-survived
patients in the data used to build the corresponding model.
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Table 3: Model classification performance (10-fold cross-validation)

Model %Survived
%Not %Model

AUC
survived Accuracy

5yr 12.8 87.2 91.8 0.924
2yr 23.4 76.6 85.6 0.859
1yr 40.2 59.8 74.5 0.796

9mon 48.8 51.2 71.0 0.779
6mon 60.1 39.9 69.8 0.765

5yr|3mon 16.9 83.1 89.8 0.912
5yr|6mon 21.4 78.6 87.3 0.900

5yr|12mon 31.9 68.1 82.1 0.875
5yr|18mon 43.9 56.1 78.1 0.850
5yr|24mon 54.9 45.1 76.1 0.830

Association rule mining

For association rule mining analysis, all missing/unknown values were removed, since we are interested in
finding segments with precise definitions in terms of patient attributes. The survival time (in months) was
chosen as the target attribute for the HotSpot algorithm. The dataset had 13,033 instances, 13 input patient
attributes, and 1 target attribute. The average survival time in the entire dataset (tavg) was 24.45 months.
So it would be interesting to find segments of patients where the average survival time is significantly higher
than or significantly lower than 24.45 months. Two independent analyses were performed to find segments
in which average survival time was higher and lower than overall average survival, represented in the form of
association rules. Lift of a rule/segment is a multiplicative metric that measures the relative improvement
in the target (here survival time) as compared to the average value of the target across the entire dataset.

For association rule mining analysis on conditional survival data, a new dataset was constructed using
only the cases in which the patient survived at least 12 months from the time of diagnosis. The conditional
survival dataset had 6,788 instances, the same 13 input patient attributes and 1 target attribute. The average
survival time in the conditional survival dataset was 42.54 months. So, the above analysis was repeated on
the conditional survival dataset with tavg = 42.54.

Tables 4 and 5 present the non-redundant association rules obtained with ‘higher’ and ‘lower’ mode
respectively. Tables 6 and 7 present the same for the conditional survival dataset.

Lung cancer outcome calculator

The web-tool is available at http://info.eecs.northwestern.edu/LungCancerOutcomeCalculator, and uses the
following 13 attributes:

1. Age at diagnosis: Numeric age of the patient at the time of diagnosis of lung cancer.

2. Birth place: The place of birth of the patient. There are 198 options available to select for this
attribute (based on the values observed in the SEER database).

3. Cancer grade: A descriptor of how the cancer cells appear and how fast they may grow and spread.
Available options are - well-differentiated, moderately differentiated, poorly differentiated, undifferen-
tiated, and undetermined.

4. Diagnostic confirmation: The best method used to confirm the presence of lung cancer. Available
options are - positive histology, positive cytology, positive microscopic confirmation (method unspec-
ified), positive laboratory test/marker study, direct visualization, radiology, other clinical diagnosis,
and unknown if microscopically confirmed.

5. Farthest extension of tumor: The farthest documented extension of tumor away from the lung,
either by contiguous extension (regional growth) or distant metastases (cancer spreading to other organs
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Table 4: Non-redundant association rules denoting segments where average survival time is significantly
higher than 24.45 months

Segment Avg. Segment
Liftdescription survival size

time

The tumor is well-differentiated and localized, regional lymph
nodes examined is between 4 and 17, age of the patient at time
of diagnosis is less than 79, current tumor is patient’s first or sec-
ond tumor, and resection of lobe/bilobectomy is performed by the
surgeon

68.18 100 2.79

The tumor is localized, age of patient is between 39 and 52, num-
ber of regional lymph nodes examined is between 1 and 14, and
resection of lobe/bilobectomy is performed by the surgeon

68.11 100 2.79

Tumor is well-differentiated, number of regional lymph nodes ex-
amined is less than 15, resection of lobe/bilobectomy is performed,
and regional lymph nodes are removed

66.83 101 2.73

Tumor is localized, age of patient is between 41 and 52, tumor
is confined to one lung, and resection of lobe/bilobectomy is per-
formed

66.26 111 2.71

Patient is born in Hawaii, patient’s age is less than 76, there is
no lymph node involvement, and resection of lobe/bilobectomy is
performed

64.98 106 2.66

Tumor is localized, patient is born in Hawaii, patient’s age is less
than 83, and surgery is performed

63.96 101 2.62

Tumor is well-diffentiated, number of lymph nodes examined is
between 7 and 18, there is no lymph node involvement, and pa-
tient’s age is less than 81

63.86 101 2.61

Tumor is localized, patient is born in Connecticut, tumor is con-
fined to one lung, number of lymph nodes examined is greater
than 2, and resection of lobe/bilobectomy is performed

63.10 103 2.58

Tumor is well-differentiated, there is no lymph node involvement,
patient’s age is less than 76, and intrapulmonary/ipsilateral hi-
lar/ipsilateral peribronchial nodes are removed

62.16 100 2.54

Tumor is localized (confined to one lung), patient is born in Hawaii
and is less than 82 years old

60.38 101 2.47

Tumor is localized (confined to one lung), patient is born in
Hawaii, and cancer is confirmed by positive histology

60.18 103 2.46

Tumor is localized, patient is born in California, and resection of
lobe/bilobectomy is performed by the surgeon

58.71 100 2.40

Table 5: Non-redundant association rules denoting segments where average survival time is significantly
lower than 24.45 months

Segment Avg. Segment
Liftdescription survival size

time

Tumor has metastasized and is poorly differentiated, lymph nodes
are involved in metastasis, and no lymph nodes are removed

5.21 100 4.69

Tumor has metastasized and is poorly differentiated, no surgery
is performed, and the patient is born in Hawaii

5.67 110 4.31

Tumor has metastasized, no surgery is performed, cancer is con-
firmed by positive histology, and patient is born in Hawaii

5.73 128 4.26

Tumor has metastasized, surgery is contraindicated and not per-
formed, and cancer is confirmed by positive histology

5.78 132 4.23

Pleural effusion has taken place, tumor is poorly differentiated,
subcarinal/carinal/mediastinal/tracheal/aortic/ pulmonary liga-
ment/pericardial lymph nodes are involved, and no surgery is per-
formed

7.53 205 3.25

Pleural effusion has taken place, cancer is confirmed by positive
cytology, surgery is not recommended and hence not performed

8.60 112 2.84

far from primary site through bloodstream or lymphatic system). There are 20 options available to
select for this attribute. The original SEER name for this attribute is ‘EOD extension’.

6. Lymph node involvement: The highest specific lymph node chain that is involved by the tumor.
Cancer cells can spread to lymph nodes near the lung, which are part of the lymphatic system (the
system that produces, stores, and carries the infection-fighting-cells). This can often lead to metastases.
There are 8 options available for this attribute. The original SEER name for this attribute is ‘EOD
Lymph Node Involv’.
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Table 6: Non-redundant association rules denoting segments in the conditional survival dataset where average
survival time is significantly higher than 42.54 months

Segment Avg. Segment
Liftdescription survival size

time

Tumor is well-differentiated and localized, patient’s age is less
than 71, less than 13 regional lymph nodes are examined, and
resection of lobe/bilobectomy is performed

72.92 104 1.71

Tumor is well-differentiated and localized (confined to one lung),
patient’s age is less than 71, surgery is performed, less than 8
regional lymph nodes are examined

72.50 103 1.70

Tumor is well-differentiated, patient’s age is less than 84, regional
lymph nodes are removed, no lymph node involvement, no radia-
tion therapy, and resection of lobe/bilobectomy is performed

71.95 100 1.69

Tumor is localized (confined to one lung), patient’s age is between
41 and 52, surgery is performed, and resection of lobe/bilobectomy
is performed

69.66 105 1.64

Tumor is well-differentiated, patient’s age is less than 79, no
lymph node involvement, between 5 and 9 regional lymph nodes
are examined

68.44 100 1.61

Tumor is localized (confined to one lung), patient’s age is
less than 77, patient is born in Connecticut, and resection of
lobe/bilobectomy is performed

67.99 119 1.60

Patient’s age is less than 76, patient is born in Hawaii, no lymph
node involvement, and resection of lobe/bilobectomy is performed

67.81 101 1.59

Patient’s age is less than 75, patient is born in California, no
lymph node involvement, and resection of lobe/bilobectomy is
performed

65.37 102 1.54

Tumor is localized, no regional lymph nodes removed, and resec-
tion of lobe/bilobectomy is performed

62.14 102 1.46

Table 7: Non-redundant association rules denoting segments in the conditional survival dataset where average
survival time is significantly less than 42.54 months

Segment Avg. Segment
Liftdescription survival size

time

Tumor is undifferentiated and has metastasized, subcarinal/ cari-
nal/mediastinal/tracheal/ aortic/ pulmonary ligament/ pericar-
dial lymph nodes are involved, no regional lymph nodes are re-
moved, and no surgery is performed

17.18 100 2.48

Tumor is spread, surgery not recommended, patient is born in
Iowa

20.28 137 2.10

Tumor is spread and undifferentiated, surgery not recommended,
subcarinal/ carinal/mediastinal/tracheal/ aortic/ pulmonary lig-
ament/ pericardial lymph nodes are involved, and cancer is con-
firmed by positive histology

20.35 124 2.09

Pleural effusion has taken place, and tumor is poorly differentiated 22.96 101 1.85

7. Type of surgery performed: The surgical procedure that removes and/or destroys cancerous tissue
of the lung, performed as part of the initial work-up or first course of therapy. There are 25 options
available for this attribute, like cyrosurgery, fulguration, wedge resection, laser excision, pneumonec-
tomy, etc. The original SEER name for this attribute is ‘RX Summ-Surg Prim Site’.

8. Reason for no surgery: The reason why surgery was not performed (if not). Available options
are - surgery performed, surgery not recommended, contraindicated due to other conditions, unknown
reason, patient or patient’s guardian refused, recommended but unknown if done, and unknown if
surgery performed.

9. Order of surgery and radiation therapy: The order in which surgery and radiation therapies
were administered for those patients who had both surgery and radiation. Available options are -
no radiation and/or surgery, radiation before surgery, radiation after surgery, radiation both before
and after surgery, intraoperative radiation therapy, intraoperative radiation with other radiation given
before/after surgery, and sequence unknown but both surgery and radiation were given. The original
SEER name for this attribute is ‘RX Summ-Surg/Rad Seq’.
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10. Scope of regional lymph node surgery: It describes the removal, biopsy, or aspiration of regional
lymph node(s) at the time of surgery of the primary site or during a separate surgical event. There are
8 options available for this attribute. The original SEER name for this attribute is ‘RX Summ-Scope
Reg 98-02’.

11. Cancer stage: A descriptor of the extent to which the cancer has spread, taking into account the
size of the tumor, depth of penetration, metastasis, etc. Available options are - in situ (noninvasive
neoplasm), localized (invasive neoplasm confined to the lung), regional (extended neoplasm), distant
(spread neoplasm), and unstaged/unknown. The original SEER name for this attribute is ‘Summary
Stage 2000 (1998+)’.

12. Number of malignant tumors in the past: An integer denoting the number of malignant tumors
in the patient’s lifetime so far. This attribute is derived from the SEER attribute ‘Sequence Number-
Central’, which encodes both numeric and categorical values for both malignant and benign tumors
within a single attribute. As part of the preprocessing, the original SEER attribute was split into
numeric and nominal parts, and the numeric part was further split into 2 attributes representing
number of malignant and benign tumors respectively.

13. Total regional lymph nodes examined: An integer denoting the total number of regional lymph
nodes that were removed and examined by the pathologist. This attribute was derived by extracting
the numeric part of the SEER attribute ‘Regional Nodes Examined’.

Figure 3 shows a screenshot of the lung cancer outcome calculator. This calculator is widely accessed from
more than 15 countries, including many medical schools and hospitals. A previous version of this calculator
were presented in [4]. The current calculator incorporates faster models as described in this chapter, and
has a redesigned interface. It allows the user to enter values for the above-described 13 attributes and get
patient-specific risk. For all the ten models, it also shows the distribution of survived and not survived
patients in the form of pie charts. Upon entering the patient attributes on the website, the patient-specific
risk calculated by all the ten models is depicted along with the healthy and sick patient risk, which are
essentially the median risk of death of patients who actually survived and did not survive respectively, as
calculated by the corresponding model. It generates bar charts corresponding to each of the ten models,
and each of them has three bars. The middle bar denotes the patient-specific risk, and the left (right) bars
denote the healthy (sick) patient risk. The patient-specific risk is thus put in context of the healthy and sick
patient risk for an informative comparison.

Any data-driven tool like this in the field of healthcare has a disclaimer about its use, stating that it is
meant to complement and not replace the advice of a medical doctor. Many such calculators are becoming
popular in healthcare.

Other applications of big data analytics in healthcare

We will conclude with a sampling of some other applications of big data in healthcare. There has been
abundant work on mining electronic health records in addition to what is described in this chapter. Some
of these include mining data from a particular hospital [16], ACS NSQIP (American College of Surgeons
National Surgical Quality Improvement Program) [17], and UNOS (United Network for Organ Sharing) [18].

Apart from electronic health records, a very important source of healthcare data is social media. We
are in the midst of a revolution in which, using social media, people interact, communicate, learn, influence
and make decisions. This data includes multi-way communications and interactions on social media (e.g.,
Facebook, Twitter), discussion forums and blogs in the area of health-care, public-health and medicine.
The emergence and ubiquity of online social networks has enriched this data with evolving interactions
and communities at mega-scale and people are turning to social media for various kinds of health-care
guidance and knowledge, including proactive and preventive care. Patients with like conditions - often
chronic conditions, such as flu, cancer, allergy, multiple sclerosis, diabetes, arthritis, ALS, etc. find patients
with the same condition on these networking sites and in public forums. And these virtual peers can very
much become a key guiding source of data unlike in the past, when all information emanated from physicians.
This big data, being produced in social media domain offers a unique opportunity for advancing, studying
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the interaction between society and medicine, managing diseases, learning best practices, influencing policies,
identifying best treatment, and in general, to empower people. It thus has numerous applications in public
health informatics, and we are already seeing several studies in this domain [19, 20, 21].

Technological advances in sensors, micro- and nano-electronics, advanced materials, mobile computing,
etc. have had an immense impact towards enabling future Internet of Things (IoT) applications in several
fields including healthcare. We are currently witnessing a rapid adoption of wearable devices under the IoT
paradigm for a variety of healthcare applications [22]. These wearable and implantable sensors along with
smart phones that are ubiquitously used all over the world form another source of healthcare big data, and
provide unprecedented opportunities for continuous healthcare monitoring and management.

The field of genomics is another area where big data analytics can play an important role. It is well recog-
nized that in genomics and life sciences, almost everything is based on complex sequence-structure-function
relationships, which are far from being well understood. With genomic sequencing becoming progressively
easier and affordable, we have arrived at a point in time where huge amounts of biological sequence data
have become increasingly available, thanks to the advent of Next Generation Sequencing (NGS). Functional
interpretation of genomic data is the major task in fundamental life science. Research results in this area in
turn feed research in other important areas such as cell biology, genetics, immunology and disease-oriented
fields. There has been a lot of work in bioinformatics on sequence data in terms of computationally mining
the genomic sequences for interesting insights such as homology detection [23, 24]. Furthermore, biological
sequencing data also ushers an era of personal genomics enabling individuals to have their personal DNA
sequenced and studied to allow more precise and personalized ways of anticipating, diagnosing and treating
diseases on an individual basis (precision medicine). Genome assembly and sequence mapping techniques
[25, 26] form the first step of this process by compiling the overlapping reads into a single genome. While it is
a fact that personalized medicine is becoming more and more common, it is nonetheless in its infancy and we
are still far from realizing the dream of personalized medicine by optimally utilizing the flood of genomic data
that we are able to collect now. Clearly, computational sequence analysis techniques are critical to unearth
the hidden knowledge from such genomic sequence data, and big data analytics is expected to play a big
role in that. For further reading on big data analytics in genomics, the following articles are recommended
[27, 28, 29].

Summary

Big data has become a very popular term denoting huge volumes of complex datasets generated from various
sources at a rapid rate. This big data potentially has immense hidden value that needs to be discovered by
means of intelligently-designed analysis methodologies that can scale for big data, and all of that falls in the
scope of big data analytics. In this chapter, we have looked at some of the big data challenges in general,
and also what they mean in context of healthcare. As an example on big data mining in healthcare, some
recent works dealing with the use of predictive analytics and association rule mining on lung cancer data
from SEER were discussed, including a lung cancer outcome calculator that has been deployed as a result of
this analytics. Finally, we also briefly looked at a few other healthcare-related areas where big data analytics
is playing an increasingly vital role.

Acknowledgments

The authors would like to thank the SEER program to make the limited-use data available for the works
described in this chapter.

References

[1] T. Hey, S. Tansley, and K. Tolle, eds., The Fourth Paradigm: Data-Intensive Scientific Discovery.
Redmond, Washington: Microsoft Research, 2009.

[2] G. S. Collins, J. B. Reitsma, D. G. Altman, and K. G. Moons, “Transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis (tripod): The tripod statement,” Annals of
Internal Medicine, vol. 162, no. 1, pp. 55–63, 2015.

13



[3] S. S. Magill, J. R. Edwards, W. Bamberg, Z. G. Beldavs, G. Dumyati, M. A. Kainer, R. Lynfield,
M. Maloney, L. McAllister-Hollod, J. Nadle, S. M. Ray, D. L. Thompson, L. E. Wilson, and S. K.
Fridkin, “Multistate point-prevalence survey of health care-associated infections,” New England Journal
of Medicine, vol. 370, no. 13, pp. 1198–1208, 2014. PMID: 24670166.

[4] A. Agrawal, S. Misra, R. Narayanan, L. Polepeddi, and A. Choudhary, “A lung cancer outcome calcu-
lator using ensemble data mining on seer data,” in Proceedings of the Tenth International Workshop on
Data Mining in Bioinformatics (BIOKDD), (New York, NY, USA), pp. 1–9, ACM, 2011.

[5] A. Agrawal, S. Misra, R. Narayanan, L. Polepeddi, and A. Choudhary, “Lung cancer survival prediction
using ensemble data mining on seer data,” Scientific Programming, vol. 20, no. 1, pp. 29–42, 2012.

[6] A. Agrawal and A. Choudhary, “Identifying hotspots in lung cancer data using association rule mining,”
in 2nd IEEE ICDM Workshop on Biological Data Mining and its Applications in Healthcare (BioDM),
pp. 995–1002, 2011.

[7] A. Agrawal and A. Choudhary, “Association rule mining based hotspot analysis on seer lung cancer
data,” International Journal of Knowledge Discovery in Bioinformatics (IJKDB), vol. 2, no. 2, pp. 34–
54, 2011.

[8] L. A. G. Ries and M. P. Eisner, Cancer of the lung, ch. 9, pp. 73–80. National Cancer Institute, SEER
Program, 2007.

[9] SEER, “Surveillance, epidemiology, and end results (seer) program (www.seer.cancer.gov) limited-use
data (1973-2006).” National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics
Branch, 2008. released April 2009, based on the November 2008 submission.

[10] A. Agrawal, M. Patwary, W. Hendrix, W.-k. Liao, and A. Choudhary, High performance big data
clustering, pp. 192–211. IOS Press, 2013.

[11] Y. Xie, D. Palsetia, G. Trajcevski, A. Agrawal, and A. Choudhary, “Silverback: Scalable association
mining for temporal data in columnar probabilistic databases,” in Proceedings of 30th IEEE Inter-
national Conference on Data Engineering (ICDE), Industrial and Applications Track, pp. 1072–1083,
2014.

[12] Y. Xie, D. Honbo, A. Choudhary, K. Zhang, Y. Cheng, and A. Agrawal, “Voxsup: a social engage-
ment framework,” pp. 1556–1559, ACM, 2012. Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD) (Demo paper).

[13] A. R. Ganguly, E. Kodra, A. Agrawal, A. Banerjee, S. Boriah, S. Chatterjee, S. Chatterjee, A. Choud-
hary, D. Das, J. Faghmous, P. Ganguli, S. Ghosh, K. Hayhoe, C. Hays, W. Hendrix, Q. Fu, J. Kawale,
D. Kumar, V. Kumar, W.-k. Liao, S. Liess, R. Mawalagedara, V. Mithal, R. Oglesby, K. Salvi, P. K.
Snyder, K. Steinhaeuser, D. Wang, and D. Wuebbles, “Toward enhanced understanding and projections
of climate extremes using physics-guided data mining techniques,” Nonlinear Processes in Geophysics,
vol. 21, pp. 777–795, 2014.

[14] A. Agrawal and A. Choudhary, “Perspective: Materials informatics and big data: Realization of the
fourth paradigm of science in materials science,” APL Materials, vol. 4, no. 053208, pp. 1–10, 2016.

[15] Y. Xie, Z. Chen, K. Zhang, Y. Cheng, D. K. Honbo, A. Agrawal, and A. Choudhary, “Muses: a
multilingual sentiment elicitation system for social media data,” IEEE Intelligent Systems, vol. 99,
pp. 1541–1672, 2013.

[16] J. S. Mathias, A. Agrawal, J. Feinglass, A. J. Cooper, D. W. Baker, and A. Choudhary, “Development of
a 5 year life expectancy index in older adults using predictive mining of electronic health record data,”
Journal of the American Medical Informatics Association, vol. 20, pp. e118–e124, 2013. JSM and AA
are co-first authors.

14



[17] A. Agrawal, R. Al-Bahrani, R. Merkow, K. Bilimoria, and A. Choudhary, “Colon surgery outcome
prediction using acs nsqip data,” in Proceedings of the KDD Workshop on Data Mining for Healthcare
(DMH), pp. 1–6, 2013.

[18] A. Agrawal, R. Al-Bahrani, J. Raman, M. J. Russo, and A. Choudhary, “Lung transplant outcome
prediction using unos data,” in Proceedings of the IEEE Big Data Workshop on Bioinformatics and
Health Informatics (BHI), pp. 1–8, 2013.

[19] K. Lee, A. Agrawal, and A. Choudhary, “Real-time disease surveillance using twitter data: Demonstra-
tion on flu and cancer,” in Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD), pp. 1474–1477, 2013.

[20] Y. Xie, Z. Chen, Y. Cheng, K. Zhang, A. Agrawal, W.-k. Liao, and A. Choudhary, “Detecting and
tracking disease outbreaks by mining social media data,” in Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI), pp. 2958–2960, 2013.

[21] K. Lee, A. Agrawal, and A. Choudhary, “Mining social media streams to improve public health allergy
surveillance,” in Proceedings of IEEE/ACM International Conference on Social Networks Analysis and
Mining (ASONAM), pp. 815–822, 2015.

[22] J. Andreu-Perez, D. R. Leff, H. Ip, and G.-Z. Yang, “From wearable sensors to smart implants—toward
pervasive and personalized healthcare,” IEEE Transactions on Biomedical Engineering, vol. 62, no. 12,
pp. 2750–2762, 2015.

[23] A. Agrawal and X. Huang, “Pairwise statistical significance of local sequence alignment using sequence-
specific and position-specific substitution matrices,” IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics, vol. 8, no. 1, pp. 194–205, 2011.

[24] A. Agrawal and X. Huang, “Psiblast pairwisestatsig: Reordering psi-blast hits using pairwise statistical
significance,” Bioinformatics, vol. 25, no. 8, pp. 1082–1083, 2009.

[25] X. Huang and A. Madan, “Cap3: A dna sequence assembly program,” Genome research, vol. 9, no. 9,
pp. 868–877, 1999.

[26] S. Misra, A. Agrawal, W.-k. Liao, and A. Choudhary, “Anatomy of a hash-based long read sequence
mapping algorithm for next generation dna sequencing,” Bioinformatics, vol. 27, no. 2, pp. 189–195,
2011.

[27] D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, W. Hide, D. P. Hill, R. Kania, M. Schaeffer,
S. St Pierre, et al., “Big data: The future of biocuration,” Nature, vol. 455, no. 7209, pp. 47–50, 2008.

[28] A. ODriscoll, J. Daugelaite, and R. D. Sleator, “big data, hadoop and cloud computing in genomics,”
Journal of biomedical informatics, vol. 46, no. 5, pp. 774–781, 2013.

[29] V. Marx, “Biology: The big challenges of big data,” Nature, vol. 498, no. 7453, pp. 255–260, 2013.

15



Figure 3: Screenshot of the Lung Cancer Outcome Calculator (available at
http://info.eecs.northwestern.edu/LungCancerOutcomeCalculator).
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