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Abstract—We analyze lung transplant data from the United
Network for Organ Sharing (UNOS) program with the aim
of developing accurate risk prediction models for mortality
within 1 year of lung transplant using data mining techniques.
The data used in this study is de-identified and consists of 62
predictor attributes, and 1-year posttranplant survial outcome
for patients who underwent lung transplant between the years
2005 and 2009. Our dataset had 5,319 such patient instances.
Several data mining classification techniques were used on
this data along with various data mining optimizations and
validations to build predictive models for the abovementioned
outcome. Prediction results were evaluated using c-statistic
metric, and the highest c-statistic obtained was 0.68. Further,
we also applied feature selection techniques to reduce the
number of attributes in the model from 50 to 8, without any
degradation in c-statistic. The final model was also found to
outperform logistic regression, which is the most commonly
used technique in predictive healthcare informatics. We believe
that the resulting predictive model on the reduced dataset can
be quite useful to integrate in a risk calculator to aid both
physicians and patients in risk assessment.
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I. INTRODUCTION

A lung transplant, or pulmonary transplant, is a surgical
transplant procedure in which a patient’s diseased lungs are
partially or totally replaced by lungs which come from a
donor. [1]. As of 2008, the survival rate for lung trans-
plant after 1 year was 83.6% [2]. Complications of lung
transplantation include rejection of the transplanted lung and
infection [3]. Typical expenses range from around $600,000
to $1,100,000 for single lung, double lung, and heart-lung
transplant [4], [5].

As organs available for transplant remain critically scarce,
achieving maximal benefit from lung transplantation de-
pends upon improved recipient and donor selection [6]. Thus
accurate estimation of lung transplant outcomes can improve
both informed patient consent by helping patients better

understand its risks and benefits, and also aid the physicians
in decision making by assessing the true patient-specific
risks of the operation, rather than relying on population-wide
risk assessments. To this end, accurate outcome prediction
of performing transplantation is extremely important.

The United Network for Organ Sharing (UNOS) is a
private, non-profit organization that manages the nation’s
organ transplant system under contract with the federal
government [7]. UNOS is involved in many aspects of the
organ transplant and donation process, including maintaining
the database that contains all organ transplant data for every
transplant event that occurs in the US.

Applying data mining techniques to lung transplantation
data can be useful to rank and link pretransplantation at-
tributes to the outcome. Here we use data mining tech-
niques on UNOS lung transplantation data to estimate 1-
year survival of lung transplant patients, based on pretrans-
plant characteristics. Experiments with nearly 50 modeling
techniques were conducted and the results compared to
find the best model for the data used in this study. It was
found that rotation forest ensembles of alternation decision
trees resulted in the best discrimination (c-statistic) between
survived and non-survived lung recepients. Further, feature
selection was used to find a smaller subset of attributes that
can potentially achieve similar prediction performance, but
can result in a simpler model.

The rest of the paper is organized as follows: Section
2 describes the data mining techniques used in this study
followed by a brief description of the UNOS data used in
this study in Section 3. Experiments and results are presented
in Section 4, and the conclusion and future work is presented
in Section 5.
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II. DATA MINING TECHNIQUES

A. Modeling

We used 47 classification schemes in this study, including
both direct application of classification techniques and also
constructing their ensembles using various ensembling tech-
niques. Due to space limitations, here we briefly describe
only those classification/ensembling techniques whose re-
sults we present in the next section.

1) Support vector machines: SVMs are based on the
Structural Risk Minimization(SRM) principle from
statistical learning theory. A detailed description of
SVMs and SRM is available in [8]. In their basic
form, SVMs attempt to perform classification by con-
structing hyperplanes in a multidimensional space that
separates the cases of different class labels. It supports
both classification and regression tasks and can handle
multiple continuous and nominal variables.

2) Artificial neural networks: ANNs are networks of
interconnected artificial neurons, and are commonly
used for non-linear statistical data modeling to model
complex relationships between inputs and outputs. The
network includes a hidden layer of multiple artificial
neurons connected to the inputs and outputs with
different edge weights. The internal edge weights are
’learnt’ during the training process using techniques
like back propagation. Several good descriptions of
neural networks are available [9], [10]. It has been
used for accurate estimation in different areas such as
mobile health [11], drug abuse [12], civil engineering
[13], computer vision [14] and video delivery [15],
[16].

3) Decision Table: Decision table typically constructs
rules involving different combinations of attributes,
which are selected using an attribute selection search
method. Simple decision table majority classifier [17]
has been shown to sometimes outperform state-of-the-
art classifiers.

4) KStar: KStar [18] is a lazy instance-based classifier,
i.e., the class of a test instance is based upon the class
of those training instances similar to it, as determined
by some similarity function. It differs from other
instance-based learners in that it uses an entropy-based
distance function.

5) Reduced error pruning tree: Commonly known as
REPTree [19], it is a implementation of a fast decision
tree learner, which builds a decision/regression tree
using information gain/variance and prunes it using
reduced-error pruning.

6) Random forest: The Random Forest [20] classifier
consists of multiple decision trees. The final class
of an instance in a Random Forest is assigned by
outputting the class that is the mode of the outputs
of individual trees, which can produce robust and

accurate classification, and ability to handle a very
large number of input variables. It is relatively robust
to overfitting and can handle datasets with highly
imbalanced class distributions.

7) Alternating decision tree: ADTree [21] is decision
tree classifier which supports only binary classifica-
tion. It consists of two types of nodes: decision nodes
(specifying a predicate condition, like ’age’ > 45)
and prediction nodes (containing a single real-value
number). ADTrees always have prediction nodes as
both root and leaves. An instance is classified by
following all paths for which all decision nodes are
true and summing the values of any prediction nodes
that are traversed. This is different from the J48
decision tree algorithm in which an instance follows
only one path through the tree.

8) Decision stump: A decision stump [19] is a weak tree-
based machine learning model consisting of a single-
level decision tree with a categorical or numeric class
label. Decision stumps are usually used in ensemble
machine learning techniques.

9) Naive Bayes: The naive bayes classifier [22] is a
simple probabilistic classifier that is based upon the
Bayes theorem. This classifier makes strong assump-
tions about the independence of the input features,
which may not always be true. It makes use of the
variables contained in the data sample, by observing
and relating them individually to the target class,
independent of each other. Despite this assumption,
the naive bayes classifier works well in practice for a
wide variety of datasets and often outperforms other
complex classifiers.

10) Bayesian Network: A Bayesian network is a graphical
model that encodes probabilistic relationships among
a set of variables, representing a set of random vari-
ables and their conditional dependencies via a directed
acyclic graph (DAG). Bayesian network learning can
be used with various search algorithms for searching
the network structures, and estimator algorithms for
finding the conditional probability tables of the net-
work.

11) Logistic Regression: Logistic Regression [23] is used
for prediction of the probability of occurrence of an
event by fitting data to a sigmoidal S-shaped logistic
curve. Logistic regression is often used with ridge
estimators [24] to improve the parameter estimates and
to reduce the error made by further predictions.

12) AdaBoost: AdaBoost [25] is a commonly used en-
sembling technique for boosting a nominal class clas-
sifier. In general, boosting can be used to significantly
reduce the error of any weak learning algorithm that
consistently generates classifiers which need only be
a little bit better than random guessing. It usually
dramatically improves performance, but is also prone
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to overfitting.
13) LogitBoost: The LogitBoost algorithm is an ensem-

bling technique implementation of additive logistic
regression which performs classification using a re-
gression scheme as the base learner, and can handle
multi-class problems. In [26], the authors explain the
theoretical connection between Boosting and additive
models.

14) Bagging: Bagging [27] is a meta-algorithm to improve
the stability of classification and regression algorithms
by reducing variance. Bagging is usually applied to
decision tree models to boost their performance. It in-
volves generating a number of new training sets (called
bootstrap modules) from the original set by sampling
uniformly with replacement. The bootstrap modules
are then used to generate models whose predictions
are averaged to generate the final prediction. Bagging
has been shown work better with decision trees than
with linear models.

15) Random subspace: The Random Subspace classi-
fier [28] constructs a decision tree based classifier
consisting of multiple trees, which are constructed
systematically by pseudo-randomly selecting subsets
of features, trying to achieve a balance between over-
fitting and achieving maximum accuracy. It maintains
highest accuracy on training data and improves on
generalization accuracy as it grows in complexity.

16) Rotation Forest: Rotation forest [29] is a method
for generating classifier ensembles based on feature
extraction, which can work both with classification
and regression base learners. The training data for
a the base classifier is created by applying Principal
Component Analysis (PCA) [30] to K subsets of the
feature set, followed by K axis rotations to form the
new features for the base learner, to encourage simul-
taneously individual accuracy and diversity within the
ensemble.

B. Feature Selection

Feature selection techniques are typically used to select a
subset of relevant features for use in a model. It is based
on the assumption that data contains many redundant or
irrelevant attributes that do not add much to the information
provided by other existing attributes. We used 2 feature
selection techniques in this study:

1) Correlation Feature Selection (CFS): CFS is used
to identify a subset of features highly correlated with
the class variable and weakly correlated amongst them
[31]. CFS was used in conjunction with a greedy
stepwise search to find a subset S with best average
merit, which is given by:

MeritS =
n.rfo√

n+ n(n− 1).rff

where n is the number of features in S, rfo is the
average value of feature-outcome correlations, and rff
is the average value of all feature-feature correlations.

2) Information Gain: This is used to assess the relative
predictive power of the predictor attributes, which
evaluates the worth of an attribute by measuring the
information gain with respect to the outcome status:

IG(Class,Attrib) = H(Class)−H(Class|Attrib)

where H(.) denotes the information entropy.
The CFS technique evaluates subsets rather than individ-

ual attributes, so it was first used to find a smaller subset of
attributes. Subsequently, information gain was used on the
reduced set of attributes to get a ranking of the attributes in
the order of their predictive potential, as information gain
evaluates each attribute independently.

III. UNOS DATA

The UNOS STAR Thoracic Organ Transplant and Waiting
List File contains data on all transplant candidates and trans-
plant recipients of heart, lung, and heart-lungs that have been
listed or performed in the U.S. and reported to the OPTN
since October 1987. Data entry by all US transplant centers
is mandated by the 1984 National Transplantation Act. This
cohort totals over 37,000 observations. There is one record
per waiting list registration/transplant event. Each record
includes the most recent follow-up data, including patient
and graft survival, waittime, and the patient’s list status
(e.g., waiting, transplanted, removed prior to transplant, or
dead). This dataset contains nearly 500 fields to charac-
terize candidate/recipient and donor information including
demographics (eg, age, race, sex), social history, and clinical
information (eg, blood type, measures of lung function and
hemodynamic measures, past medical and surgical history,
serologies, and severity of co-morbid illness).

UNOS provided de-identified patient-level data (data
source #01052011-6). These data include all lung transplant
recipients and donors in the U.S. and reported to the Organ
Procurement and Transplantation Network between January
1, 2005 and December 31, 2009. The use of these data is
consistent with the regulations of our Institutional Review
Board.

The study population included 5,319 lung transpalnt pa-
tients aged 18 years and older between January 1, 2005 and
December 31, 2009. Patients were monitored from the date
of transplantation to January 3, 2011, which was the last day
of follow-up provided by UNOS. 62 predictor attributes were
assessed. The primary outcome variable was 1-year post-
transplant survival. We omit the details of all the input 62
attributes here due to space constraints. A brief description
of the selected subset 12 attributes used in the final model
is presented later. Out of 5,319 patients, 1,061 patients
(19.95%) did not survive more than 1 year after transplant.
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IV. EXPERIMENTS AND RESULTS

We used the WEKA toolkit 3.6.7 for the implementation
of data mining techniques described earlier [32]. 3-fold
cross-validation was used for evaluation. Cross-validation is
routinely used to evaluate the prediction performance of data
mining models to eliminate any chances of over-fitting. In
k-fold cross-validation, the input data is randomly divided
into k segments. k−1 segments are used to build the model
and the remaining 1 segment unseen by the model is used
to test/evaluate it. This is repeated k times with different
test segments, and the results are aggregrated. In this way,
each instance of the dataset is run through a model that
has not seen it during the training phase. Running a test
instance through a trained model generates a probability
distribution for that instance to belong to different possible
class values (here, binary 1-year survival). A probability
cutoff is required to actually classify the test instance into
one of the classes. For binary classification, 50% cutoff is
most commonly used.

A. Evaluation metrics

Binary classification performance can be evaluated using
various metrics. We use the following in this work:

1) c-statistic (AUC): The ROC (Receiver operating char-
acteristic) curve is a graphical plot of true positive
rate and false positive rate. The area under the ROC
curve (AUC or c-statistic) is an effective metric for
evaluating binary classification performance, as it is
independent of the probability cutoff and measures the
discrimination power of the model. This is the primary
metric used in this work for inter-model comparison.

2) Overall accuracy: It is the percentage of predictions
that are correct. For highly unbalanced classes where
the minority class is the class of interest, overall
accuracy by itself may not be a very useful indica-
tor of classification performance, since even a trivial
classifier that simply predicts the majority class would
give high values of overall accuracy.

Overall accuracy =
(TP + TN)

(TP + TN + FP + FN)

where TP is the number of true positives (hits), TN
is number of true negatives (correct rejections), FP
is number of false positives (false alarms), and FN is
number of false negatives (misses).

3) Sensitivity (Recall): It is the percentage of positive
labeled records that were predicted positive. Recall
measures the completeness of the positive predictions.

Sensitivity =
TP

(TP + FN)

4) Specificity: It is the percentage of negative labeled
records that were predicted negative, thus measuring

the completeness of the negative predictions.

Specificity =
TN

(TN + FP )

5) Positive predictive value (Precision): It is the per-
centage of positive predictions that are correct. Preci-
sion measures the correctness of positive predictions.

Positive predictive value =
TP

(TP + FP )

6) Negative predictive value: It is the percentage of neg-
ative predictions that are correct, thereby measuring
the correctness of negative predictions.

Negative predictive value =
TN

(TN + FN)

7) F-measure: It is in general, possible to have either
good precision or good recall, at the cost of the other,
and F-measure combines the two measures in a single
metric by taking the harmonic mean of precision and
recall.

F −measure =
2.precision.recall

(precision+ recall)

B. Modeling and Feature Selection

As mentioned before, we used 47 classification schemes
on this data. Fig. 1 present the results on 15 classification
schemes for 1-year survival, consisting of most of the
popular classifiers. For each of the ensembling techniques,
many underlying classfiers were tried in the experiments
but only the one with the best c-statistic is preented in the
figure. Blue bars represent the c-statistic with the entire set
of 62 attributes, and red bars represent the results with the
reduced set after feature selection. Using correlation based
feature selection (CFS) technique yielded a subset of only
12 features for the given outcome of 1-year survival.

The figures clearly show that many of the evaluated
classification schemes perform comparably well for 1-year
survival. Of all the models used in this study, Rotation Forest
with Alternate Decision Trees as the underlying classifier
gave the best c-statistic of 0.677 with 62 attributes, and of
0.680 with 12 attributes. Thus, feature selection techniques
were able to identify a much smaller subset without a loss
in c-statistic.

Figure 2 presents the relative predictive power of the
resulting smaller subset of attributes identified by CFS for
1-year survival. Following is a brief description of these 12
attributes:

1) Ability to perform daily activities: Functional status
is an individual’s ability to perform normal daily
activities required to meet basic needs, fulfill usual
roles, and maintain health and well-being. Decline in
functional status is measured by an individual’s loss
of independence in activities of daily living (ADLs)
over a period of time [33].
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Figure 1. Prediction performance comparison for 1-year survival in terms of area under the ROC curve (c-statistic).

Figure 2. Relative information gain of features resulting from the CFS technique for 1-year survival.
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2) ICU at transplant: It represents whether the patient
was in Intensive Care Unit at the time of transplant.
Intensive Care Units cater to patients with the life-
threatening conditions that require close monitoring
and support in order to maintain normal bodily func-
tions [34].

3) Hospitalized at transplant: It represents whether the
patient was already hospitalized when transplantation
was done. In general, patients who are already in
hospital tend to have lot of existing complications,
infections, limited mobility, etc., which increases the
risks of complications in addition to reducing the
chance of successful outcomes.

4) Lung Allocation Score at transplant: The lung
allocation score (LAS) is a numerical value used
by UNOS to assign relative priority for distributing
donated lungs for transplantation within the US. It
takes into account various measures of a patient’s
health in order to direct donated organs towards the
patients who would best benefit from a lung transplant
[35]. This attribute represents the lung allocation score
at the time of translplant.

5) Lung Allocation Score at Listing: Patients who are
determined to be eligible for a lung transplant are
placed on a waiting list. This waiting list is part of
a national allocation system for donor organs run by
the Organ Procurement and Transplantation Network
(OPTN) [36]. This attribute represents the lung allo-
cation score at the time of listing.

6) Intubated at transplant: Intubation refers to the
insertion of a tube into an external or internal orifice
of the body for the purpose of adding or removing
fluids [37].

7) GFR at transplant: Glomerular filtration rate (GFR)
is a test used to check how well the kidneys are work-
ing. Specifically, it estimates how much blood passes
through the tiny filters in the kidneys (glomeruli) per
minute [38]. This attribute represents the GFR at the
time of transplant.

8) Previous lung transplant: It indicates whether the
patient has undergone a lung transplant in the past.

9) Age at transplant: The age of the patient at the time
of transplant.

10) ECMO at transplant: Extracorporeal membrane oxy-
genation (ECMO) is an extracorporeal technique of
providing both cardiac and respiratory support oxygen
to patients whose heart and lungs are so severely
diseased or damaged that they can no longer serve
their function [39]. This is maximal life support, but
requires continuous infusion of heparin and blood
circulating through large tubes that exit the body.
This attribute represents the ECMO at the time of
transplant.

11) Previous lung transplant <90 days: It indicates

whether the patient has undergone a lung transplant
within 90 days prior to the current transplant.

12) Previous cardiac surgery: It indicates whether the
patient has undergone a cardiac surgical procedure in
the past.

Using a predicted 1-year mortality risk ≥50% as a
cutoff, the sensitivity of the final model for predicting 1-
year mortality was 12%, the specificity 98%, and the F-
measure 20%. Table I summarizes the performance of the
final model comparing it to logistic regression, which is the
most widely used technique in healthcare informatics for
predictive modeling.

We believe that the preliminary results obtained in this
work are quite encouraging and the fact that we can signif-
icantly reduce the number of attrbutes in the model without
sacrificing accuracy motivates integration of such models in
clinical decision making.

V. CONCLUSION AND FUTURE WORK

In this workshop paper, we present our preliminary results
of data mining on UNOS data on lung transplantation out-
come. We evaluated nearly 50 classification schemes for pre-
dicting 1-year survival after the transplant. c-statistic of up
to 0.68 was achieved. Further, feature selection techniques
were able to significantly reduce the number of attributes in
the model, incurring no cost in c-statistic. We believe that
the resulting models can be very useful to aid physicians
in decision making by providing them with patient-specific
risk estimations.

Future work includes developing more sophisticated mod-
els for the studied outcome, and also exploring conditional
outcome models using some post-transplant information
(e.g. risk of 2-year mortality, given that the patient has
already survived 1 year after transplant), and exploring
the use of undersampling/oversampling to deal with unbal-
anced data. We also plan to do similar analysis for other
transplants, and integrate the current and future work into
healthcare and clinical decision making in practice, in the
form of risk calculators.
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