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Abstract—Massively parallel applications often require peri-
odic data checkpointing for program restart and post-run data
analysis. Although high performance computing systems provide
massive parallelism and computing power to fulfill the crucial
requirements of the scientific applications, the I/O tasks of high-
end applications do not scale. Strict data consistency semantics
adopted from traditional file systems are inadequate for homo-
geneous parallel computing platforms. For high performance
parallel applications independent I/O is critical, particularly
if checkpointing data is dynamically created or irregularly
partitioned. In particular, parallel programs generating a large
number of unrelated I/O accesses on large scale systems often
face serious I/O serializations introduced by lock contention and
conflicts at file system layer. As these applications may not be able
to utilize the I/O optimizations requiring process synchronization,
they pose a great challenge for parallel I/O architecture and
software designs. We propose an I/O mechanism to bridge the
gap between scientific applications and parallel storage systems.
A static file domain partitioning method is developed to align the
I/O requests and produce a client-server mapping that minimizes
the file lock acquisition costs and eliminates the lock contention.
Our performance evaluations of production application I/O
kernels demonstrate scalable performance and achieve high I/O
bandwidths.

Index Terms—Parallel I/O, I/O Delegation, MPI-IO, Non
Collective I/O, Collaborative Caching, Parallel File Systems, File
Locking

I. INTRODUCTION

I/O architectures in modern high performance systems[1],
[2], [3] have been contrived such that the compute nodes
and storage servers are separated in groups and connected
through high speed networking devices. Data generated by
applications must pass through many abstraction layers of I/O
stack before reaching the storage devices. Figure 1 shows a
common perception of I/O stack. The best I/O throughput can
only be guaranteed if all of these layers are utilized to the
best of their capacities. Incidentally, most of these layers have
been designed independently, and hence certain information
that describes the I/O intention at one layer may not have
adequate interfaces to pass to another.

Modern parallel file systems are configured with multiple
I/O servers in order to provide high data throughput. Each
server may contain one or more disk RAIDs (Redundant Array
of Independent Disks) to further improve the data reliability
and performance. A file stored on the parallel file systems can
be partitioned across multiple servers so large requests can be
served by multiple servers simultaneously. However, evolving
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Fig. 1. A Common Parallel I/O Architecture Stack: This figure explains
the way different I/O layers are commonly stacked one over another in large
scale parallel environments. High end application layer leverages its parallel
I/O related tasks directly or through a high level I/O library (PnetCDF, HDF
etc.) to MPI-IO. ROMIO, an MPI-IO’s implementation services these parallel
file accesses by directly interacting with underlying parallel file systems.

from traditional distributed file systems, modern parallel file
systems inherit certain I/O consistency semantics that were
designed to protect data integrity from concurrent file accesses,
a scenarios commonly occurred in a distributed environment.
To achieve desired I/O semantics, file locking mechanism
is used to guarantee the access permissions of individual
I/O requests. Two important consistency requirements from
POSIX standard known to restrict parallel I/O performance
from scaling are atomicity and cache coherence [4], [5]. When
multiple processes concurrently access a shared file, file locks
may cause serialization of the I/O operations which adversely
affects the I/O performance. While a large number of the
application processes are waiting for acquiring locks on the
same file regions, the I/O bandwidth sustainable by a parallel
file system is underutilized. Details of file system locking
issues is discussed in Section V-A.

In the traditional distributed environment, requests from
different clients are seldom related, so the impact of perfor-
mance degradation due to enforcing strict data consistency
semantics is not a frequent problem. However, in the modern
era of science and engineering, computational simulations like
combustion, molecular dynamics, fusion, climate prediction,
etc. are parallel programs that run on hundreds of thousands



of cores to scale with the size of the problem. In contrast
to the distributed computing, processes performing parallel
computations are closely related I/O clients, which often par-
tition global data objects and access shared files concurrently.
For such parallel applications, treating each client process
independently may restrict the I/O scalability.

Scientific community has started recognizing the problem
of pessimist storage system protocols adopted by the file
systems that are rarely required by the parallel applications
but handicap their I/O parallelism. In recent years, various
contributions have been made both on hardware and software
to address this problems. A noteworthy example in hardware
improvement is the IBM BlueGene systems that add a new
I/O architecture layer sitting in between compute nodes and
I/O servers, specially designed to reduce the scale of I/O con-
tention. The I/O sub-system of BlueGene systems is discussed
in Section V-D. MPI defines a set of programming interfaces
for parallel file access, commonly referred as MPI-IO. With
this framework, many optimizations such as two-phase I/O
[6] and data sieving [7], have been successfully demonstrated
significant performance improvement for the parallel I/O. One
of the prominent software contributions is the collective I/O
functionality proposed in the message passing interface (MPI)
standard [8].

Designed for MPI collective I/O, the two-phase I/O re-
arranges small, non-contiguous requests amongst processes
to form large, contiguous ones that can result in better I/O
latency. Data sieving avoids small-sized I/O by first reading
large file chunks into memory buffers, updating the buffers
with the requests, and then writing the chunks back to the
file. Despite of data sieving technique being available for
MPI independent I/O functions, optimizations for independent
I/O are generally considered to be a challenging task. High
performance independent I/O is critical, particularly for the
applications whose data is dynamically created or irregularly
partitioned amongst processes. An example is the parallel
programs based on Adaptive Mesh Refinement (AMR) algo-
rithm [9]. For such data partitioning patterns, global process
synchronization may not be practical and hence they must rely
on independent I/O to complete the I/O task.

This paper presents an I/O delegation system that aims to
minimize file lock conflicts and improve the MPI independent
I/O performance. The I/O delegation work was initiated in [5]
which provided an intermediate software layer between the
application processes and parallel file systems to enable several
I/O optimizations. I/O delegation system employs a set of
additional compute processes to carry out the I/O requests for
the application processes. These additional compute processes
are alternatively referred to as I/O delegates or delegate
processes. Application’s I/O requests are forwarded to the
delegate processes, where they are rearranged to best match
the file locking characteristics, such as lock granularity, of the
underlying file system.

In this paper, we present a new strategy for I/O delegate sys-
tem, a static file domain mapping method that statically maps
evenly partitioned file regions to the delegates in a round robin
fashion. This essentially means that a unique I/O delegate can
only access the assigned file regions, termed as the file domain

of this delegate. The motivation is to minimize the number of
I/O clients accessing an I/O server and hence potentially min-
imize the number of conflicted locks. We exercise this design
in ROMIO, a popular MPI-IO implementation developed at
Argonne National Laboratory [10]. With the static mapping
of file domains, lock contentions that frequently occur in
the parallel I/O operations can be mostly eliminated. A file
caching mechanism[11] is implemented in delegate system that
enables data aggregation across multiple requests aiming for
improving MPI independent I/O performance. Implementation
details and additional experimental analysis for caching system
has been provided in supplementary sections VI-B and VII-C.
This feature is also considered an optimization that spans mul-
tiple MPI-IO requests, collectives and/or independents, which
have been ignored by existing MPI-IO optimizations. The
I/O delegation system thins the performance gap between the
collective and independent I/O, while latter’s performance has
long been considered much worse than that of former’s. Most
importantly, I/O delegate system achieves such performance
improvement, while still fulfilling the MPI-IO data consistency
semantics.

We conducted our experiments on two production parallel
machines with real application I/O kernels. Franklin, a Cray
XT4 system at National Energy Research Scientific Comput-
ing Center [3], and Abe, the TeraGrid Intel-64 Cluster at the
National Center for Supercomputing Applications [12], were
used to evaluate I/O delegate system. Two application I/O
kernels FLASH[13], [14] and S3D[15], and an MPI-IO test
program taken from ROMIO[10] are used in the evaluation.
With only 4 to 6% of additional compute resources allocated
as delegates, independent I/O achieves up to 2.5 times faster
than the native collective I/O method on Franklin. On Abe,
we achieved up to 15 times I/O bandwidth improvement over
the collective I/O.

The paper is organized as follows. Section II explains the
strategy of static file domain mapping to the delegates in detail.
Section III presents our evaluations and analysis of the I/O
performance for different I/O benchmarks. Section IV draws
conclusions and discusses future work.

Additional sections have been added in supplementary file
which are as follows. Section V discusses the research back-
ground and motivation from the perspective of existing I/O
optimizations and characteristics of parallel file systems. This
section also discusses a number of related works including
Cray MPI-IO library [16] and I/O forwarding techniques [17].
Section VI discusses the intrinsic implementation details of
basic I/O delegation operations. Section VII provides the
details on experimental setup and additional evaluations of
I/O delegation system.

II. DESIGN AND DEVELOPMENT

This section discusses of file domain assignment strategy
in I/O delegation system. Details about I/O delegation system
architecture, and other I/O delegation functions, such as ini-
tialization, I/O request flow, and caching etc. may be found in
Section VI.
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Fig. 2. File access region is partitioned among the application processes P0,
P1, and P2. Different colors represent data accessed by different application
processes. From Lustre file system’s perspective, the entire file is partitioned
into 16 stripes S0, S1, · · · , S15 which are distributed across the I/O servers,
OST0, OST1, and OST2. Even though file accesses are non-overlapping
among the processes, when requests from two processes access the same
stripe, lock conflict occurs.
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Fig. 3. Lock conflicts can be eliminated by identical partitioning of data
across same number of delegate processes and I/O servers. Each of the
delegate processes stores data in the form of cache pages directly mapped
to the file stripes stored on a unique I/O server. Perfect cache page to file
stripe mapping has been shown for the case of D2-to-OST2 mapping. This
figure shows that with perfect mapping lock acquisition can be reduced to
only 1.

A. Static File Domain Mapping

Lock conflict at the file system occurs when two processes
compete with each other to acquire the lock to the same file re-
gion. We investigated Lustre [18] for exploring it’s scalability
issues, so that an adaptive solution for large scale systems and
their underlying parallel file system can be developed. Modern
parallel file systems, in order to meet high data throughput
requirements, employ multiple I/O servers each managing a
set of disks. Files stored on these systems can be striped across
the I/O servers, so large requests can be served concurrently.
Due to the nature of file striping, lock granularity is usually
set to be the file block or stripe size instead of a byte.
Details about locking mechanisms implemented in popular file
systems, GPFS and Lustre may be found in Section V-A.

As described in Section V-A, Lustre’s locking mechanism
is an implementation of extent-based locking protocol. Extent-
based locking protocol is implemented such that the I/O
server tends to grant locks to as many stripes as possible.
For example, on any given server, the first requesting process
will be granted a lock over all the file stripes managed by
that server. Future requests made by the same client process
need not to acquire the lock for those stripes. Second lock
acquisition to those stripes, will only be required if a different
process has already held the locks to those stripes. Ideally, if
we can arrange a one-to-one mapping between the I/O clients
and servers, then lock conflicts can be entirely avoided.

Figure 2 illustrates a parallel I/O situation, where lock
conflicts occur. In this example, three processes P0, P1, and
P2 concurrently write to a shared file, each covering multiple
non-contiguous, non-overlapping file regions. The aggregate
access region occupies 16 consecutive stripes, S0, S1, · · · , S15,
which are stored on three I/O servers (Object storage Targets in
Lustre), OST0, OST1 and OST2 in a round robin fashion. Data
written by different application processes is depicted in differ-
ent colors. In this figure, each I/O server receives requests from
all three processes, which essentially means that each process
repeatedly acquires, relinquishes, and reacquires the lock in the
midst of accesses from other processes. Considering OST0, if
the first request is made by process P0 to write stripe S0, then
a lock covering all stripes S0, S3, S6, · · · S15 is granted to
P0. However, if P1’s lock request to stripe S6 arrives while P0

is still writing S0, then locks to stripe S6 and onward will be
relinquished from P0 and granted to P1. Later, P0 must wait
behind P1 for acquiring the lock to S9. Parallel I/O can cause
lock permissions to oscillate from one process to another. In
addition, partial accessing stripes S6 and S9 results in I/O
serialization, given the lock granularity being of a file stripe
size. Such conflicts are observed on all other I/O servers in this
figure as well. Obviously, the lock conflicts can easily carry
away when applications run on thousands of processes. With a
large number of processes competing for locks to file stripes,
I/O becomes a serious bottleneck for parallel applications [19].

I/O delegate system adopts a new static file domain mapping
strategy that aims to minimize file lock conflicts. This strategy
divides the whole file into blocks of size each equal to the file
system stripe size and statically assigns the I/O responsibilities
of the blocks to the delegate processes in a round robin fashion
(identical to file system stripping configuration). All file blocks
assigned to a delegate process are collectively termed as the
file domain of this delegate. In order to achieve an optimal
mapping between the delegates and servers, we specifically
adjust the number of delegate processes to be a factor or
multiple of the number of I/O servers. For the same number
of delegate processes as I/O servers, each delegate process
is uniquely mapped to a single server. When the number
of delegate processes is a factor of the number of servers,
each delegate is uniquely mapped to a group of servers which
serve requests from that delegate only. When the number of
delegates is a multiple of the number of servers, a group
of delegates is mapped to a unique server which serves no
requests other than this group of delegates. Since the mapping
is static from one I/O request to another, most of the lock
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Fig. 4. Lock conflicts are completely eliminated if number of delegate
processes are equal or a factor of the number of I/O servers. If number of
delegates are more than I/O servers, lock conflicts can occur. To minimize
lock conflicts, number of delegates should be kept a multiple of I/O servers. In
this example delegate processes are double of I/O servers so each I/O server is
shared by only two delegate processes. Lock conflicts can still occur between
these two delegate processes but on a reduced level.

conflicts can be avoided, given any arbitrary I/O pattern from
the clients. Figure 3 shows an example of static file domain
mapping on delegate processes D0, D1, and D2 with the same
number of I/O servers OST0, OST1, and OST2. Static one-to-
one delegate-to-server mapping enables only a unique delegate
process requesting lock from a given I/O server. On the first
I/O request a delegate process will be granted locks for all the
stripes stored by the uniquely mapped I/O server. Therefore,
despite the number of application processes and arbitrariness
of application’s I/O access pattern, there is only one lock
acquisition necessary for writing all the stripes in a given I/O
server. In this case where the number of delegate processes
and number of I/O servers are the same, lock conflicts are
completely eliminated.

B. Delegate-to-Server Mapping

Most of the high-performance computing systems, have
only a few dozens to a few hundreds I/O servers, which is
a small fraction of the total available compute nodes. One can
expect that if the number of delegate processes is kept equal to
the number of I/O servers, then the performance will not scale
beyond thousands of nodes. For I/O delegate system design,
the question becomes how we can still avoid lock conflicts
or at least keep the conflicts minimal when the number of
delegate processes is more than the I/O servers. This section
discusses the strategy to minimize the lock conflicts if the
number of delegate processes is more than I/O servers.

Figures 4 and 5 demonstrate how two different delegate-
to-server mappings affect lock confliction. In both mappings,
file domain is logically partitioned in to file stripe sized
regions that are statically assigned to the delegates in a round
robin fashion. Small write requests can be aggregated at the
cache pages and later flushed to the file system. Collaborative
caching mechanism enables aggregation of data across the
multiple I/O calls, generates stripe sized I/O which matches
the stripe boundary of underlying file system, avoids read-
modify-write by flushing the cache pages which are already
full, and reduces the network communication by keeping I/O
size multiple of system page size. Section VI-B describes
the details of caching mechanism implemented in the I/O
delegation.
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Fig. 5. If delegate processes are not a factor or multiple of I/O servers
then all the delegate processes might be accessing all the I/O servers causing
serious lock acquisition competition between the processes. In this example,
each I/O server is contended by all the delegates which may deteriorate I/O
performance.

In Figure 4, the number of delegates is a multiple of the
number of I/O servers. Each server is accessed by unique
group of delegates. The potential lock conflicts happen only
within the group of delegate processes that map to the single
server. Such conflicts can be resolved by exchanging dirty
cache pages within the same group of delegates, or coordinat-
ing the order of cache page flushing among different groups.

If number of delegates are not a multiple of I/O servers
then, each I/O server may receive lock requests from all
the delegate processes as shown in figure 5. In contrast to
perfect delegate-to-server mapping case (figure 4 ), lock server
needs to resolve the lock conflicts among all the delegates.
Therefore, to minimize lock conflicts at the I/O servers, the
number of delegate processes are adjusted such that they are
always a factor or multiple of the number of I/O servers.
Our experimentation conforms that performance is adversely
affected if such delegate-to-server mapping is not enforced.
Section VII-D evaluates I/O performance for mapped and
unmapped delegate-to-server cases.

III. EXPERIMENT RESULTS

I/O Delegate System is evaluated on two large production
machines; Franklin, a Cray XT4 system at National Energy
Research Scientific Computing Center [3] and the TeraGrid
Intel-64 Cluster named Abe at the National Center for Super-
computing Applications [12]. Details about experimental setup
is given in Section VII.

Performance evaluation consists of comparison of 1) inde-
pendent MPI-IO with I/O delegation, 2) native MPI indepen-
dent I/O, and 3) native MPI collective I/O. The latter two
native methods use the default MPI library on the machines.
We did not explicitly evaluate the MPI collective I/O over the
I/O delegation method, because our delegation system treats
collective I/O the same as independent I/O. Under the static
file domain assignment strategy, data of an I/O request will be
split and sent to delegates based on their file offsets. Hence,
communication related to collective I/O optimizations will be
redundant as delegate system will rearrange data according to
the predefined file domain mapping. Therefore, if the collec-
tive I/O is changed to use independent I/O underneath, the
advantage of I/O delegation can be fully utilized. We expect
the significance of I/O delegation system is for independent
I/O as independent I/O traditionally performs poorly.
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Fig. 6. I/O Performance Evaluation of S3D I/O Kernel, FLASH I/O Kernel and ROMIO Benchmark with Franklin and Abe machines. (a),
(e), and (i) show the comparison of write bandwidths of three I/O methods: Independent I/O with I/O delegation, native independent MPI-IO,
and native collective MPI-I/O on Franklin. These charts show the effect of changing the ratio of number of delegates to the application
processes. Franklin’s Theoretical peak I/O bandwidth is approximately 16 GB/sec [3]. I/O delegate provides independent I/O performance
scaling up to the peak I/O bandwidth on Franklin. (c), (g), and (k) provide the similar comparison on Abe. (b), (f), and (j) report write
bandwidths by utilizing more cores-per-delegate-node with 4-6% delegates allocation. These charts show that there is no advantage in terms
of I/O performance by using more than one core-per-delegate. (d), (h), and (l) provide the similar comparison on Abe.

A. S3D I/O Kernel

The S3D I/O benchmark is the I/O kernel of S3D [15], a par-
allel turbulent combustion application using a direct numerical
simulation solver developed at Sandia National Laboratories.
Section VII-A provides further information about the S3D I/O
kernel. For performance evaluation, we keep the sub-array size
of globally block-partitioned array along X-Y-Z dimensions,
a constant 50 × 50 × 50. This produces about 15.26 MB of
write data per process per checkpoint.

Evaluation shows that independent I/O with I/O delegation
performs bout twice better than the default MPI collective I/O
on Franklin and more than ten time better on Abe. Figure
6 show I/O performance evaluation of S3D I/O kernel on
Franklin ((a), (b)) and Abe ((c),(d)) with the increasing number
of application processes. Figure 6(a) shows the comparison of

native independent I/O, native collective I/O, and independent
I/O using 4-6% and 9-12% of additional computer resources
as delegate processes. Keeping everything else constant, more
delegates perform better because of the bigger cache pool
and less communication contention for multiple application
processes sending data to the same delegates. On Franklin, the
native collective I/O performs better for the case of 256 appli-
cation processes and less, but the bandwidths flatten thereafter.
However, both I/O delegate methods keep scaling up beyond
256 processes. We provide our analysis of this observation in
Section V-C. In the case of 8192 processes, we achieves up to
two times performance improvement over the native collective
I/O with just 4% to 12% of delegate processes. Figures (c) and
(d) show the results of similar experimentation setups on Abe.
Native independent and collective I/O perform so slow on Abe
that their curves are almost coinciding with horizontal axis. On
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the other hand, the independent I/O using delegation system
outperforms both native cases by a significant margin.

The bandwidth numbers obtained on these two machines
show a significant difference for the native collective I/O
method. The latest Cray MPI-IO adopts a strategy similar to
the static file domain assignment that provides much better
performance over the traditional collective I/O implementa-
tion. More discussion on this aspect is given in Section V-C.

1) I/O Delegation on Multi-core Platform: As modern
computers moving toward multi-core architecture, it would be
interesting to understand the performance impact of running
I/O delegate processes on such systems. One of two possible
implementations is to run delegate processes on a group of
compute nodes separated from those running the application
processes. The other is to run one delegate on one of the cores
of each compute node and the rest of the cores for application
processes. In this paper, we focus on the former scenario.
We choose the 4-6% delegates cases on both machines and
compare the I/O bandwidths by varying the number of cores
as delegates in each compute node. The charts (b) and (d)
show that if all other parameters are kept constant, having
different number of cores per delegate node does not make
any deterministic difference in I/O bandwidth. In theory, as the
number of delegate processes increases, the requests arrived
at the same I/O server from different delegates also increase
which can potentially cause more the lock contentions. The
similar bandwidths of our delegation system with more dele-
gate cores can be explained by the fact that Lustre’s distributed
lock management scheme is implemented such that locks are
held by nodes and not processes. In other words, lock requests
originated by all processes belonging to the same compute
node do not compete with each other for lock acquisition.

The adoption of static file domain mapping in delegate
system aims to improve the costs of read()/write()
calls made from the application side to the file system. In
fact, this strategy reduces such costs so significantly that
they no longer dominate the overall I/O performance. To
understand the performance bottleneck, we profile the timing
in the delegate system. We measured the time spent in the
read()/write() calls and refer them as I/O time in this
section. The rest of the time is referred as communication time,
as the operations are mostly data transfer between application
and delegate processes. We choose the case of S3D I/O on
Franklin with 2048 application processes to investigate the
I/O bandwidth trends with the changing number of delegates
and number of cores per delegates. The profiling results are
given in Figure 7.

Figure 7(a) shows the overall write bandwidth trend with
the increasing number of delegates with different number of
cores used per delegate. To maintain perfect mapping between
delegate processes and I/O servers, the number of delegates are
kept a multiple of 48, the number of I/O servers on Franklin.
It can be observed that best I/O bandwidth is achieved when
only 1 core per delegate node is used. Figures 7(b) and (d)
report total time taken in the interprocess communication as
a function of number of delegates and the number of cores
per delegates respectively. As the total amount of data is
kept constant, increasing the number of delegates results into

smaller amount of data received by each delegate but more
messages passing from application processes to delegates.
Such changes of the communication patterns add complexity
to the measured communication costs. We observed that in
Figure 7(b) with the increase in the number of delegates,
mostly communication time decrease except the cases of 48
to 96 delegates for 3 and 4 cores.

Figure 7(d) shows the effect of changing number of cores
per delegate nodes while keeping everything else constant. As
no other parameter is changed except the number of cores
per delegate node, total data received by each delegate node
does not change. As the number of cores per delegate node
increases, number of messages received by each delegate node
increases and size of individual message decreases. So, overall
interprocess communication time does not improve as the
number of cores per delegate node increases.

Exception is the 96-delegate case where the communication
cost increases significantly. The S3D-IO kernel has the write
amount proportional to the number of application processes
and almost all of the individual write request sizes are not
aligned to the file stripe size and hence the lock boundaries.
Hence, using different number of delegates can results in
different distributions of communication from the application
processes to the delegates. We speculate the increasing com-
munication time in the 96 delegates case might attributes to
such distribution changes. However, the communication time
is also affected by the hardware (hotspots) on the parallel
machine and contention from other applications running at
the same time (as the inter-process communication network is
shared by all applications).

Nevertheless, observations from Figures 7(b) and 7(d) help
us conclude that the best practice of I/O delegation configu-
ration is to use only one core in a multi-core platform.

Figures 7(c) and (e) show the effect on I/O with varying
number of delegates and number of cores-per-delegate respec-
tively. Figure 7(e) shows that the number of cores per delegate
node do not affect the I/O time much. We attribute this to the
fact that locks are granted on the basis of nodes and not cores.
So, as long as static file domain mapping is maintained on
delegate node basis, no I/O time change should be observed.
So, we conclude that to obtain a good overall I/O bandwidth
(Figure 7(a)) using only one delegate process per node is the
best option as additional cores do not provide further benefit.

Figure 7(c) shows very important fact about lock contention
at file servers. As discussed in Section II-A, using more
delegate nodes than I/O servers may introduce some lock
conflict but this chart does not show any definite increase
in I/O time when the number of I/O delegates is more than
the number of I/O servers. We attributed this observation to
the extent based locking mechanism of Lustre file system. As
explained in Section V-A, each I/O server is the lock manager
of the stripes stored on that server and it grants the locks
growing downwards covering all the stripes to the largest
uncontended extent. If a couple of requests from the same
delegate node reach an I/O server, only first of them needs to
acquire the lock and rest of the requests can proceed without
any lock acquisition overhead.

For example, for 96 delegates only 2 will be accessing any
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Fig. 7. S3D I/O Kernel, 2048 application processes, Franklin: Breakdown analysis of two major time consuming operations: (i) Data Communication between
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given I/O server at a time writing to alternate file stripes. As
shown in the figure 4 if a write requests for S0 from D0

arrives at OST0 before any write request from D2, then a
downward grown lock for all the stripes on this server will
be granted to D0. In case write requests for S4, S8 and S12

from D0 also arrive before any write request from D2 then
these additional 3 stripes will be written without any further
lock acquisition. While D0 is writing S12 and a request for
S2 arrives from D2 then a downward grown lock from S2

to S10 will be granted to D2. So, requests for S2, S6, and
S10 can be serviced with a single lock request. D2 will have
to send another write request to write D14 though. Section
VII-D further explores the possible lock acquisition patterns
to understand the figure 7(c) better. It also includes additional
evaluation to compare mapped and unmapped delegate-to-
server assignment strategies shown in figures 4 and 5.

An important observation from Figure 7 is that the I/O
costs are about the same as the communication. Traditionally,
in a parallel I/O operation, the I/O part dominates the entire
performance. Optimizations such as two-phase I/O was pro-
posed to addressed this problem by rearranging request data
among processes to produce fastest I/O part, i.e. scarifying the
interprocess communication for better I/O to the file system.
I/O delegation system changes such scenario and raises the
attention on the optimization for the communication part. The
relative constant I/O cost also explains why increasing the
number of delegate from 4-6% to 9-12% does not produce
proportional performance improvement.

We conclude here that a substantial post of the maximum
I/O bandwidth for an I/O server has been achieved with 4-6%
of delegate processes. Any increase in number of delegates
hence does not provide linear improvement to the overall
performance. This observation also implies that I/O delegation
system does not require many delegate processes in order to
achieve a scalable performance.

B. FLASH I/O Kernel
The FLASH I/O benchmark suite [14] is the I/O kernel

of the FLASH application, a block-structured adaptive mesh
hydrodynamics code that solves fully compressible, reactive
hydrodynamic equations, developed mainly for the study of

nuclear flashes on neutron stars and white dwarfs [13]. The
computational domain is divided into blocks that are dis-
tributed across a number of MPI processes. A block is a three-
dimensional array with an additional 4 elements as guard cells
in each dimension on both sides to hold information from its
neighbors. Further detail of FLASH I/O is given in Section
VII-B. In our experiments, we used 16× 16× 16 block size.
There are 24 variables per array element, and about 80 blocks
on each MPI process. So, total of 60 MB data is generated
per process.

Figure 6 (e), (f), (g) and (h) show the similar performance
trends as S3D-IO benchmark shown in the previous section. In
Figures 6(e) and (g), independent I/O with I/O delegate system
performs the best on both Franklin and Abe. An interesting
observation from Figure 6(g) is that native independent I/O
performs better than native collective I/O in Abe’s case. This
can be explained by the I/O access pattern from each process
being already contiguous. As most part of the I/O accesses
consists of large contiguous data, synchronization and data
exchange has become not as critical as in the S3D-IO case. On
the other hand, Figure 6(e) shows that although independent
I/O does not perform as bad as in the case of other applica-
tions, collective I/O still performs better than independent I/O.
We attribute this observation to the new collective buffering
algorithm used for collective I/O on Franklin. Figures 6(f) and
6(h) show the effect of using multiple cores per delegate nodes
on Franklin and Abe respectively. As discussed in Section
III-A, using multiple cores per delegate node has no significant
impact to the I/O performance.

C. ROMIO Benchmark
ROMIO software package includes a set of test programs

in which the collective I/O test, named coll perf, writes and
reads a three-dimensional integer array that is block partitioned
along all three dimensions among processes. The subarray
size in each process is kept constant, independent from the
number of processes used, and hence the total I/O amount is
proportional to the number of processes. We set the subarray
size to 100 × 100 × 100. In order to get stable performance
numbers, we measured ten iterations of the write operations.
So, total of 38.15 MB data is generated per process.
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Figure 6 (i), (j), (k), and (l) show the similar performance
results as the S3D-IO and FLASH I/O cases. Figures 6(i)
and (k) show that, independent I/O with the proposed I/O
delegation performs best among the native collective I/O and
native independent I/O on both Franklin and Abe. Native
independent I/O performs very poorly, but when used with the
I/O delegation architecture, its performance is improvement
significantly on both machines. Figures 6 (j) and (l) show the
effect of using multiple cores per delegate nodes on Franklin
and Abe. As discussed in section III-A, using multiple cores
per delegate node does not affect the I/O performance.

IV. CONCLUSIONS AND FUTURE WORK

We have proposed an I/O software architecture, I/O dele-
gation system with static file domain mapping for large-scale
parallel applications and file systems. The proposed architec-
ture bridges the gap between modern scientific applications’
requirements and old fashioned parallel storage protocols. For
many high performance scientific applications independent I/O
is becoming critical, particularly for the applications whose
data is dynamically created or irregularly partitioned amongst
processes. For very large scale systems, global process syn-
chronization may not be feasible for such data partitioning
patterns.

Performance evaluation demonstrates very high I/O band-
width for independent I/O which outperforms even optimized
collective I/O. I/O delegate system can be used by parallel
I/O library, such as MPI-IO, and enabled by automatically de-
tecting the underlying system configurations like stripe count,
stripe size, and stripe offset to choose the most optimal values
of cache page size and number of cores per node and achieve
optimal performance. The best practice for I/O delegation
configuration is to produce perfect delegate-to-server mapping
that requires choosing the number of delegates being either a
factor or multiple of underlying stripe count.

We have observed that using multiple delegate processes per
node does not provide any noticeable I/O benefit over single
delegate process per node. This observation implies the extra
compute cores can be used for computation best run closely to
where data reside, such as data analytics, statistical operations,
and subsetting operations. These extra compute cores can also
be utilized for running application processes, thus reducing the
overall resource allocation significantly.

We have demonstrated experimentation evaluation up to a
few thousand application processes with 4-12% of delegates.
For even larger application size, number of delegates may grow
to a few thousands. For such a large number of delegates, lock
contention between a larger number of delegate processes may
also emerge. In order for I/O delegate system to scale for very
large number of application processes, we plan to investigate
new methods for lock conflicts avoidance.

We believe that scientific applications involving parallel
reads can benefit from I/O delegate system. Collaborative
caching on delegate processes can provide the benefits of read
ahead as file system reads are performed on stripe basis and
data is cached in memory. This prefetching mechanism can
save many read requests from traveling across the network

over to the parallel file system. We plan to study read perfor-
mance of I/O delegation system with different applications.
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