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ABSTRACT

Protein interaction networks are one of the most promisipgs of
biological data for the discovery of functional modules &melpre-
diction of individual protein functions. However, it is kwa that
these networks are both incomplete and inaccurate, igy,lthve
spurious edges and lack biologically valid edges. One wadate
dle this problem is by transforming the original interantigraph
into new graphs that remove spurious edges, add biologicalid
ones, and assign reliability scores to the edges constittitie final
network. We investigate currently existing methods, as aspro-
pose a robust association analysis-based method for ghisTais
method is based on the concept of h-confidence, which is aureas
that can be used to extract groups of objects having higHasityi
with each other. Experimental evaluation on several pnateer-
action data sets show that hyperclique-based transfansagn-
hance the performance of standard function predictionrétgos
significantly, and thus have merit.
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1. INTRODUCTION

One of the most promising forms of biological data that ardus
to study the functions of proteins at a genomic scale arejorat-
teraction networks. These networks are generated by toligio-
teractions between two or more proteins, which are in tutaiobd
from various sources such as metabolic or synthetic pathwvyag-
tein complexes and ligand-receptor mechanisms [32]. Thete
works provide a global view of the interactions between oiasi
proteins that are essential for the accomplishment of muséin
functions. Due to the importance of the knowledge of theser-in
actions, several high-throughput methods have been pedpios
discovering them [14]. In fact, several standardized degab, such
as DIP [33] and GRID [4] have now been set up to provide system-
atic access to protein interaction data collected from awatiety
of experiments and sources.

It is easy to see that a protein interaction network can be rep
resented as an undirected graptvhere proteins are represented
by nodes and protein-protein interactions as edges. Duhigo t
systematic representation, several computational appesahave
been proposed for the prediction of protein function froratein
interaction graphs [18, 23, 25, 20, 30, 15, 16]. These aghem
can be broadly categorized into four types, namely neididoma-
based, global optimization-based, clustering-based ssacéation
analysis-based [18]. Due to the rich functional informatiothese
networks, several of these approaches have produced ved/ go
results, particularly those that use the entire interacgiaph si-
multaneously and use global optimization techniques toenmaik-
dictions [16, 30]. Indeed, recently, some studies haveestarsing
protein interaction networks as benchmarks for evaludtisdunc-
tional relationships between two proteins [37].

However, despite the advantages of protein interactionarés,
they have several significant weaknesses which affect thétyju
of the results obtained from their analysis. The most premin
of these problems is that of noise in the data, which masifitst
self primarily in the form of spurious or false positive edd&2].
Studies have shown that the presence of noise has signifidant
verse affects on the performance of protein function pteical-

tUnless otherwise specified, a graph means an undirecteH grap
the rest of this paper. Also, since a graph is the only reptaten
of an interaction network that is used in our study, we useeiras
network and graph interchangeably.



gorithms [7]. Another important problem facing the use dfsh
networks is their incompleteness, i.e., the absence obgicédlly

valid interactions even from large sets of interactions ). This

absence of interactions from the network prevents evenltimp
optimization-based approaches from making effective dsthe
network beyond what is available, thus leading to a loss tépo
tially valid predictions. In this paper, we investigatelteirjues that
try to address these two problems with the objective of iming

function prediction results.

A possible approach to these problems is to transform thyg-ori
nal interaction graph into a new weighted graph such that#ights
assigned to the edges in the new graph more accurately iadica
the reliability and strength of the corresponding inteat, and
their utility for predicting protein function. In our studg graph
transformation converts an undirected gragh=< V, E, W >
to a new graplG’ =< V, E’, W’ >. Interestingly, the alternate
representation of thé&' as an adjacency matrid|v v, where
A(p1,p2) = 1if p1 andp. interact, allows the application of asso-
ciation analysis techniques to the task of creating a newhted
adjacency matrixﬁv‘x‘v‘ corresponding t@:’. Note that the new
weighted graph may have some new edges (i.e., edges that had

new edge weights between all pairs of proteins. Thus, deépgnd
on whether the input graph was weighted or unweighted, we pro
duce one or two transformed graphs, both of which may havesdg
and weights different from the original graph. This tramsfation
is expected to reduce noise in the network since the resatmes
that have a high weight are highly likely to connect protetimest
have a strong association in the original interaction netwo

In order to evaluate the efficacy of the resultant networks fo
protein function prediction, we provided the original ahd trans-
formed graphs as input to tf@inctionalFlowalgorithm [16]. Func-
tionalFlow is a graph theory-based algorithm that enables insuffi-
ciently connected proteins to obtain functional annotetifrom
distant proteins in the network, and has produced muchrbette
sults than several other function prediction algorithmshe Te-
sults obtained from these experiments show that the tremsifb
graphs are significantly more capable of accurately pregjgiro-
tein function as compared to the original network, as webther
recently proposed transformations methods that we ewaludn
addition, the improvement in performance was larger fownelts
for which the reliabilities for the edges were estimatedrixtly
using sources such as gene expression data, as comparkabié re

weight in the original graph) and may skip some edges that are ities computed using experimental means or functional atims

present in the original network. This elimination of spuseedges
can reduces the noise and the addition of viable edges caneed
the incompleteness of the original interaction network.
Association analysis is a field of data mining that is focused
marily on the analysis of objects that co-occur frequentlg data
set, and are thus hypothesized toassociatedo each other [28].
Several types of sudinequent patternsind algorithms for deriving

of the interacting protein.

An association analysis based approach to graph transfiorma
is just one of the possible approaches. For comparison, see al
consider a couple of other approaches as well. One such algo-
rithm [23] computes the strength of the edge between two siode
in the transformed graph as the probability that they shargigien
number of neighbors in the original graph by chance. Othefies

them have been proposed, the most common ones being frequenhave more directly used the number of common neighbors legtwe

itemsets and th&priori algorithm respectively [1, 3, 2]. Recently,

a new type of frequent pattern knownlagercliquehas been pro-
posed for addressing the problem of skewed distributionghef
ject frequencies in binary data [36]. This pattern is basedhe
h-confidencemeasure. This measure is just the number of times
items appear together divided by the maximum number of times
that one of the items occurs by itself. Thus, objects thapareof

a hyperclique derived at a high h-confidence are tightly @ased
with each other, and those that are not a part of any hypeekge
often noisy objects.

Indeed, this idea has produced good results when appliedtto fi
ing patterns in a number of situations, including those lving
noisy data. In one study [35], hyperclique patterns weral use
remove noise from document and gene expression data. lhexnot
study [34], hyperclique pattern discovery was applied totgin
complex data to find functional modules. Specifically, thenptex
data was represented as a binary data set whose attributes co
sponded to the presence or absence of proteins, while ther-hyp
clique patterns found in such data were treated as candigate
tional modules, i.e., groups of proteins have related fonst Ex-
amination of the hyperclique patterns showed that manyehth
percliques did contain several functionally related prate

This success of hypercliques in noise removal from binatg,da
coupled with the representation of protein interactiorpbggaas a
binary matrix to which association analysis techniqueshmap-
plied, motivated us to address the graph transformatiobl@no
using an approach based on h-confidence. We perform thisrtask
two ways. In the first, we compute new edge weights for pairs of
proteins by computing the h-confidence between them basttton
binary adjacency graphi. This is equivalent to the process of find-
ing size two hyperclique patterns in the adjacency grapleois
if the weighted adjacency matrix of the original graph is avail-
able, we employ a continuous version of h-confidence to céenpu

two proteins, or a minor variation thereof, to estimate #&labil-
ity of an interaction between the two proteins in the tramsfed
network [5, 15]. These approaches are detailed in Section 3.

1.1 Contributions of our work

This paper makes a contribution to the task of protein famcti
prediction by proposing novel association analysis-basetsfor-
mation methods based on h-confidence for protein interacti-
works represented as graphs. This includes a techniquevdtur-e
ating the reliabilities of the edges for unweighted netwsorénd
a method to produce more noise-resistant weights for weight
networks. Through extensive evaluation, we show that tlee pr
posed transformations and weighting methods produce noore a
rate functional annotations for proteins in the networkisTit due
to the smaller amount of noise and a more complete set ofdiiolo
cally viable interactions in the transformed network.

More generally, this work provides a novel example of aniappl
cation where frequent patterns (hypercliques here) aracted in
the traditional market-basket setting from a symmetri@abjmma-
trix. In addition, we propose a new formulation for the h-idance
measure for pairs of vectors containing continuous valuak.
though the focus for both these techniques is on producitigrbe
graphs for protein function prediction, both approachesidde
profitably applied to other data mining problems.

This paper builds upon our preliminary work on a relatedagpi],
that investigates the utility of association analysis fatgin com-
plex and interaction data to enhance SwissProt keyword/eggo

Overview The remainder of the paper is organized as follows.
Sections 2 and 3 provide the necessary background infaymér
the rest of the paper by describing the function predictimhgraph
transformation techniques used. Sections 4 and 5 detaiihfirzes-
tructure of the study in the form of data sources and the atialu
methodology used respectively. Finally, we present theltesf



this evaluation in Section 6 and make concluding remarkseitt S
tion 7.

2. PROTEIN FUNCTION PREDICTION

USING FUNCTIONALFLOW

As mentioned earlier, due the richness of functional infation
in protein interaction networks and their systematic repn¢ation
as a graph, several computation approaches have been @ddpos
inferring protein function from one or several interactiwgtworks
[15, 16]. These approaches can be broadly classified intocku
egories [18]:

e Neighborhood-based approachesThese approaches assign
functional labels to an unannotated protein by transfgian
bels from its neighborhood [25, 15].

e Clustering-based approachesThese approaches construct
functional modules by discovering densely connected regjio
in the interaction network, and assign unannotated pretein
the most dominant label(s) in their corresponding mody[2(.

e Global optimization-based approachesThese approaches
utilize the entire connectivity structure of the networkoin
der to transfer the annotations of distantly connecteceprst
to the query protein(s) [16, 30].

e Association analysis-based approache3hese approaches
use association analysis algorithms to detect frequemntly o
curring sets of interactions in interaction networks, agé h
pothesize that these subgraphs denote function modulgs [34

Due to their ability to gather predictions from the wholevnestk
and confidently assign them to unannotated proteins, apipesan
the last category have generally produced the best resufisok
tein function prediction from interaction networks [18h partic-
ular, the FunctionalFlow algorithm [16] was shown to oufpen
several other function prediction approaches in a compshe
evaluation study by its authors. It also has the advantadeeof
ing backed by well-founded graph theoretic concepts. Duledse
merits, we chose FunctionalFlow as the base algorithm faiuet-
ing the effectiveness of various transformed graphs fotdbk of
protein function prediction.

FunctionalFlow is based on the concept of network flow in grap
theory [31]. However, since network flow is defined for diestt
graphs, FunctionalFlow uses an iterative algorithm foerattion
networks, which are represented as undirected graphs. debr e
functiona, the set of proteins annotated witlare treated asources
the other proteins asinks and the weights are used as capacities
of the corresponding edges in the graph. The algorithm tteen i
atively "flows" the functional annotations from the sourteghe
sinks, using a downhill flow strategy. In this strategy, timaa
tations flow only from a more full node to a less full one dihgct
connected to it, while maintaining the constraint that the/fbn the
edge does not exceed its capacity. At the end of the prefsgukci
number of iterations, all the nodes in the network have aawert
functional score fom, from which annotations are made using a
threshold on this score. Repeating this process for allithetfons
in the given set of annotations produces the required fanatian-
notations for the set of query proteins.

The above description indicates that the good results ot+un
tionalFlow can be attributed to the use of annotations frarth b
close and distant neighbors in the network, as well as tleetfe
use of edge weights to control the flow of annotations from one
protein to another. In other words, an interaction grapimnwibre

accurate edges and weights is expected to yield betteridurate-
dictions.

3. GRAPH TRANSFORMATION

This section describes the various techniques that we wsed f
graph transformation, i.e., to transform the originaliation graph
G =<V,E,W >toanew graplG’ =< V, E', W’ >. As men-
tioned, edges may be either deleted or added to addressahe pr
lems of the noisiness and incompleteness of the data, rtasggc
A number of recent techniques that have been developed ifor th
purpose are described next. They employ a variety of appesac
but the goal is to transform the graph by adding or deletingesd
in order to produce a new graph that is more suitable for prote
function prediction.

3.1 Adjacency Matrix

The simplest technique is to treat the protein interactietwork
as an adjacency matrix for the set of proteins, i.e., to ma&etge
weights of all interacting pairs of proteins equal to 1. & triginal
matrix does not have weights, than this transformation dums
change the graph. If the original graph has weights, thesnadt
threshold is applied to eliminate weak edges. Thus, thiscagh
is primarily used to show the value of weighted interactioapds
for function prediction.

3.2 Common Neighbor

This graph transformation technique is based on the obsenva
that proteins that share a number of neighbors are morey ltkel
have a function in common. Indeed, the evaluation of this@ggh
on real interaction data sets [15] showed that predictiegftimc-
tion of a protein based on the proteins with which it sharesmalver
of common neighbors has better accuracy than predictingtifum
based on proteins that are merely neighbors of the proteiso, A
unlike the neighborhood approach, which typically seesismy
rise and then decline as the number of neighbors increasap-an
proach based on common neighbors attains a relativelyesig@|
of accuracy as the number of common neighbors increases.

Using the common neighbor strategy for graph transformatio
is straightforward. Specifically, an edge is placed betwien
proteins only if those proteins have at least one neighbat,the
weight of that edge is the number of common neighbors. Neate th
some proteins that originally had an edge in the origingblgrean
become disconnected, i.e., edges may be lost, while tweipsot
that did not originally have an edge, may be connected inréimst
formed graph.

This approach is closely related to the shared nearest bmigh
approach for clustering [13, 8]. In the SNN approach, theesta
neighbors of the objects are determined from their sintylami dis-
tance. Then, a new distance measure is defined based on the num
ber of neighbors that appear on both of the nearest neigtdteof
the objects [13]. This approach has been shown to have goed pe
formance for clustering in dealing with noisy and high-direienal
data [8].

3.3 P-value

The motivation for this graph transformation method is thes
as the Common Neighbor approach, namely that those prdteins
share many neighbors are more strongly connected, i.es likely
to be functionally similar. However, this approach addessthe
fact that the significance of two proteins sharing a parsicaum-
ber of neighbors depends on the number of neighbors thateasch
To illustrate, if two proteins, each having only two neightyshare
both these neighbors, then this is more significant, in texfpsob-



ability, than two proteins, each having 20 neighbors, thats only 3.5 H-confidence for Continuous Data

two. As originally defined, h-confidence is only applicable toawn
The formula for the probability (p-value) of an edge is givsn data or, in the context of protein interaction graphs, ugweid

Equation 1, which is taken from Samanta and Liang [24]. Note graphs [34]. However, the notion of h-confidence can be hgadi

that IV is the number of proteing,, is the number of neighbors of  generalized to continuous ddt#or the situation of weighted inter-

proteinpi, n: is the number of neighbors of protein, andm is action networks, this amounts to replacing the coumtsp,, and

the number of neighbors shared by the two proteins. In madte nz in Equation 4 by numbers based on the weights. In particular,
negative log of this probability is easier to work with andshibe n1 andns are the sum of the weights of all edges involvingand
property that larger numbers imply stronger edges. In atlueds, p2, respectively, whilen is defined to be the sum of the minimum
typically we takew(pi,p2) = — log(prob(N, n1, n2, m)). of the edge weights of, andp; on their shared edges. As with

h-confidence defined on binary data, h-confidence on contguo
( N ) ( N-m ) ( N —mn; ) data is between 0 and 1, with 1 indicating the strongest amnne
m np—m nz —m 1) tion. More specifically, thé, — con fidence of two vectors will
( N ) ( N ) be non-zero only if they both contain a non-zero value at #mees
n1 n2 position, while it will be high if both these values are highhus,
. . in the domain of interaction networks, two proteins will lireked
3.4 H-confidence for Blnary Data with an edge carrying a high weight only if they are connec¢ted
H-confidence [36], also known as all-confidence [17], is aimea an overlapping set of proteins with highly reliable inteiais.
sure of the association of items (binary attributes). Ifttoféems To illustrate the difference between binary and continubus
has an h-confidence more than a user-specified threshglthen confidence, consider the following example of two proteinsand
the itemset is called a hyperclique. Definition 1 defines hype p,. In the weighted adjacency matrix, the two proteins occur to
cligues and h-confidence more formally. The quantities op-s gether in two rows and have weights 0.2 and 0.4, respectivetlye
port’ and ‘confidence’ are as defined in standard associatiaiy- first row, and weights 0.3 and 0.1, respectively, in the sdaom.
sis [1, 28]. In addition,p; also occurs by itself in another row and has a weight
of 0.5. Disregarding the weights, and considering only thiper
of edges,ni = 3, n2 = 2, andm = 2. Using Equation 4, binary

prob(N,n1,n2, m) =

DEFINITION 1. Hyperclique A set of items (binary attributes),
X, forms a hyperclique with a particular level of h-confidence

where h-confidence is defined as h-confidence =¥nin(2/3, 2/2) = 2/3. However, using weights in
] _ _ the manner just described; = 0.2+ 0.3+ 0.5=1.0p2 =0.1 +
heonf(X) = min{confidence({i} — {X —{i}})} (2) 0.4=0.5, andn = min(0.2, 0.4)+min(0.3,0.1) = 0.3. This im-

. . plies that continuous h-confidencersn(0.3/1.0, 0.3/0.5) = 0.3.
- Support(X)/Igé%?{support({z})} ) Thus, for this example, continuous h-confidence is sigmflga

H-confidence is between 0 and 1, with a value of 0 indicating smaller than binary h-confidence.
no association and a value of 1 indicating the strongestassm

between a group of items, i.e., the items always occur tegeth 3.6 .Prumng o . .
Thus, h-confidence can be used as a measure of similaritebatw Pruning refers to the elimination of edges having a weight be
the attributes in a binary data matrix. low a specified threshold. This approach is sometimes applie

Specifically, the adjacency matrik of a protein interaction net-  to the raw interaction graph to eliminate less reliable, i@ver
work is considered as a binary data matrix by treating itssreaw ~ weight edges. However, the transformed graphs producedeby t
transactions and columns as items. (Note that both comesfmo techniques described above typically have substantiateradges
protein). Then a weighted adjacency matrX of the same di- than the original graphs since all potential pairwise preprotein
mensions as the original one can be generated u4ifg j) =h- interactions are evaluated. Some of these interactiorfseitrans-
confidencéi, j). Informally, the h-confidence of a pair of proteins, ~ formed graph may have small non-zero weights due to factams s
p1 andpz, will be high if p; tends to be a neighbor of a protein  as a random common neighbor in the original graph. Hence; pru
wheneverp, is and, vice-versa. Using Equation 3 and the termi- ing of the edges is conducted on the basis of the weightsresig
nology introduced for the p-value transformation, h-coerfice for in the transformed graph to remove unreliable edges.

a pair of proteins is given by the following equation:

4. DATA SOURCES
In this section, we discuss the functional classificatidmesoe
Using the h-confidence of two proteins as the weight of theedg and the interaction data sets used in our study.

between the proteins, a new graph can be created. However, in . . . .
addition to an h-confidence threshold, it is also necessatgke 4.1 Functional Classification Scheme: FunCat

m

heonf({p1, p2}) = min <ﬂ, —) @)

ny mn2

into account the absolute number of times two proteins appea Since our evaluation of the various graph transformatisbssed
gether ¢n) as well as the fraction of times that the occurrence of on the improvement provided by each of them over the raw nétwo
one protein as a neighbor implies the occurrence of the qitwer in the task of protein function prediction, it is importaotdefine a
tein as a neighbor (ming /m, n2/m)). For example, if proteins set of reliable functional labels to be assigned to eacheproiVe
p1 andpo both have only one edge, which is to proteiy then chose the set of functional labels at a depth of two in the tinC

their h-confidence will be one. On the other hand, protginand

> - . ) .

p2, may have edges with 10 other proteins, 8 of which they share. - We had previously extended the notion of h-confidence toiont
A ] : uous data [26], but in a manner slightly different from thateg

They will have an h-confidence of 0.8 and thus, seem not to be @Spere. The previous approach addressed the general cageiwhic

strongly connected as the first pair. To deal with such problé volved continuous attributes that could have widely difgrscales.
is common to set a support threshold, i.e., to requiresthhgve at The current formulation is better suited when all the atitiéls have
least some specified value. similar scales.



classification scheme of the MIPS database [21]. We made¢his
lection since this scheme has been widely used in functiedigr
tion literature [18], and the selected labels representoal grade-
off between the generality and specificity of the labels ia ther-
archy. Also, all our experiments are performed on yeasepist

and there are about500 proteins in yeast that can be annotated

using the labels that we selected. Since we use a crossiiafid
based evaluation methodology, we only consider this setaéms
in our study.

4.2 Protein Interaction Data Sets

In order to be able to conduct a general evaluation studyef th
graph transformation methods, we selected the high-thmmutgprotein-

protein interaction networks of budding yeaSt €erevisiaglisted
in Table 2, since each of these data sets follows a differeighing
scheme for the constitent interactions. Table 2 specifiesittes of
these networks in terms of the number of proteins and intierac
constituting them, considering only the proteins annotaising
our selection of functional labels. We removed any instarofee-
dundant interactions, such as the interactior A whenA — B is
already present in the data set, and self interactions,asidh- A,

whereA andB are proteins. A short description of each of the data

sets and the weighing scheme adopted by them follows.

4.2.1 DIPCore

Deaneet al [6] proposed two methods for assessing the reliabil-

ity of high-throughput protein interactions, namely thegbegous
verification method (PVM) and the expression profile religpin-

dex (EPRI). Using this method, they prepared the DIPCora dat

set, which is a set of highly reliable interactions seledteth the
Database of Interacting Proteins [33]. This set consist&af in-
teractions betwee526 yeast proteins. However, in its publicly

available format, the interactions in DIPCore do not have any as-
sociated weights. Hence, in our study, we assumed thesétseig

to bel for all interactions.

4.2.2 Thecombinedlata set

In order to illustrate the case of interaction data sets wheka-
bilities are estimated indirectly using other types of gaitodata,
we constructed a combination of three high-throughputtyieger-
action sets, namely those of Gaw al [9], Uetz et al [29] and
Ito et al [12], and refer to it as theombineddata set. This data
set consists of 753 interactions betweef781 proteins, and the
weights for these interactions are derived as follows. HEtiaili-
ties of each of the individual data sets was estimated ubm&PR
Index [6] tool provided by DIF*, which computes the reliability
of a data set by comparing the distribution of gene exprasiis
tances between the pairs of interacting proteins in thengdaga
set, with that obtained from the DIPCore data set. The riiliab
ties computed for the above three data sets are tabulatedbia T.
Finally, the individual edge weights are calculated usimg ¢om-
monly used formula ofv(e) = 1 —[],(1 —r;) [16, 19], where the
product runs over all the data seétwhere edge: is found, and-;
is the corresponding reliability of data setOverall, this method-
ology provides us a set of indirectly derived weights for dages
constituting thecombineddata set.

4.2.3 Kroganet als data set

Recently, Krogaet al[10] have reported a large high-throughput

and reliable data set @f123 interactions amon@708 yeast pro-
teins. In addition, they have also assigned likelihood e=ltor

3di p. doe- nbi . ucl a. edu/ di p/ Downl oad. cgi ?SM=6
4di p. doe- nbi . ucl a. edu/ di p/ Servi ces. cgi 2SMEL

Data set # Interactions | Reliability
Gavinet al[9] 3210 0.744
Uetzet al [29] 822 0.492

Ito et al[12] 3959 0.201

Table 1: Reliabilities of data sets computed using EPRI

each interaction in their data set using various machirmaileg al-
gorithms that tried to estimate the experimental reprdalligyi of

these interactions. Thus, we treated these likelihoodescas the

edge weights and used the entire set as an example of a data set
whose edges are weighted directly using experimentallgroks
interaction data.

In summary, our selection of interaction data sets doeseithde
reflect a variety of weighing schemes used. Also, it can be see
that none of these data sets cover the entire yeast genothtien
are highly likely to be incomplete.

5. EVALUATION METHODOLOGY

The previous sections detailed the different data setsinsmat
study and the graph transformations that were used to [golcem
and produce different transformed variants of the originadrac-
tion graph. These graphs were then input into the Functidoal
algorithm to produce predictions of functions for the cdansnt
proteins. However, since it is hard to evaluate the presfistmade
for unannotated proteins, we restricted our evaluatiorhéopro-
teins annotated with at least one functional label at depthin
the FunCat hierarchy. Table 2 details the number of protairts
interactions after imposing this restriction on each ofdaéa sets
used in this study.

Data set | # Annotated | # Corresponding
Proteins Interactions
DIPCore 2315 5413
Combined 3026 6490
Kroganet al 2291 6180

Table 2: Details of interaction sets used

Using this set of annotations, we used the FunctionalFlew al
gorithm in a five-fold cross validation procedure, which guoes
a likelihood score for each protein being annotated witthdae
bel (henceforth referred to as a protein-label pair). Nawpi-
der to convert these scores into annotations, we follow aajlo
scoring strategy. In this strategy, we sort the entire sgtrofein-
label scores in descending order, and then selectekfthecore as
the threshold for annotation, i.e., all protein-label paiith scores
greater than this threshold are predicted as annotatiamsstantly
increasing the value df thus provided us a set of functional an-
notation at different stringencies, and we used these atiantto
calculate the following metrics for evaluating the perfame of
the algorithm.

5.1 Precision-Recall

In order to evaluate the overall performance, we used thegioa-
recall framework of evaluation [28]. However, since thelitianal
precision and recall metrics are defined only for binary sifas-
tion problem, it needs to be modified for function predictigiven
that a protein may ideally have multiple labels. Thus, wepadioe
following definition of precision and recall used by othendtion
prediction studies [7, 15].



Precision = ==——
i=1 "
K
Recall = E}{;l
i=1 T

Here, K is the total number of proteins with known functional
labels, and for each proteinm; is the number of labels predicted
by the algorithmp; is the actual number of labels possessed by the
protein, andk; is the number of labels common to the actual and
predicted set of labels. Sccording to these definitidhsgcision
denotes the proportion of correctly predicted annotatmirtof all
the functional predictions made, whifeecall measures of the pro-
portion of correctly predicted functions out of all the knoanno-
tations [28]. Thus, these measures are a suitable geratiaiiof
the original precision-recall framework to the multi-ldbeenario.

5.2 Accuracy of Top-k Predictions

A biological researcher in the area of functional genomiey m
choose a number of predictions of protein function for expen-
tal investigation. Since the number of experiments thatazaper-
formed is quite limited, it is important to choose the mostmpising
candidates for investigation, i.e., to focus on those fioned pre-
dictions most likely to be correct. Thus, for this situatianist of
the topk predictions is often more relevant than a precision-recall
or ROC curve.

The details of the tof-evaluation methodology are as follows.
First, using the global scoring method, therotein-label pairs with
the highest functional score are identified, and are pratiasghe
functional predictions of the algorithm. Next, the preitintaccu-
racy, or the precision, of this set of predictions is evadaivith
respect to the known protein-label annotations. Then, aecaf
prediction accuracy versus number of protein-label paieslipted
is produced by considering various valueskoWe used values of
k up to500 or 1000 in our experiments.

Note that these two metrics are related by the following &qoa

Recall k
Precision  Total # true protein — label annotations

Thus, they provide two related perspectives on the perfocama
of a function prediction algorithm.

6. EXPERIMENTAL RESULTS

We evaluated several graph transformation methods usindea w
variety of protein interaction data sets by testing the qgrenfince
of the FunctionalFlow algorithm on the resultant interactgraph.
Our data sets were selected to reflect the various typesearbiyt
tion weighting schemes currently in use to estimate thaldiiies
of protein-protein interactions. The following sectionstall the
results of our evaluation on each of these data sets. Notealtha
the results reported were obtained by a five-fold cross attid-
based evaluation of the predictions produced by Functioal
Also, itwas mentioned in Section 3.6 that the three tramsédions,
namely p-value-based, common neighbor-based and h-cooéee
based, may contain some spurious links in the tranformephgra
Hence, we tried several pruning thresholds for each of thestb-
ods, the details of which are provided in Table 3. Note thattbst
value is the most commonly best performing value for the para
eter, and is used to report the evaluation results, unlaae sther
value is specified.

Method Parameter Values tried | Best value
P-value Max(p) 1,107%,107° 1072
Common nbr| Min(cmn nbrs) 1,2,3 2
Cont hconf Min(hconf) 0,0.1,0.2 0.1
. Min(support) 1,2,3 2
Binhconf | "\ rin(hconf) 0,0.1,0.2 0

Table 3: Paramater values tried for different transformati ons

Finally, in order to make the discussion clearer, we use dhe f
lowing notation in the rest of this section. The transforiorabf
the binary adjacency matrix of an interaction graph to igs$r
formed h-confidence-based adjacency matrix is referred tine
bin hconf (binary h-confidence) method, while the transformation
of the weighted adjacency matrix of a graph to its transfatine
confidence-based adjacency matrix is referred to asdhehconf
(continuous h-confidence) method. The other notations alfe s
explanatory. Also, note that the plots in this section a biewed
in color.

6.1 The combined data set

In this experiment, we investigated the applicability ofigas
graph transformation methods to enhance the weighted netwo
produced by indirect weighting methods such as EPRI [6]. The
representative of this category was tlmenbineddata set described
earlier in Section 4. We transformed this weighted netwask u
ing the continuous h-confidence-based method, and its gmezl
version using three transformation methods, namely tharbih-
confidence-based, the p-value-based and the common neighbo
based. Figure 1 shows the performance of the Functional&low
gorithm on the the originatombinedgraph, its unweighted adja-
cency matrix, and the four transformations computed abidwan
be seen from Figure 1(a) that continuous h-confidence haesrbet
overall performance in terms of precision and recall. Timpriove-
ment is shown much more clearly by Figure 1(b), which shows th
the continuous h-confidence-based transformed graph pesdbe
most accurate predictions when only the td®0 predictions are
considered, and outperforms the raw weighted network bylynea
10% throughout. For instance, if only the t&00 predictions are
considered, the accuracy of the predictions made usingaive r
weighted network is only abo@0%, while that of the predictions
made using the continuous h-confidence-based transfamsais
over 80%. Also, for this data set, p-value-based transformation
outperforms the raw network, though by a smaller margin than
h-confidence-based transformations.

6.2 Krogan et al’'s data set

Kroganet alf's data set was discussed earlier in Section 4, and
was used in their study [10] to discover overlapping protsm-
plexes, which were subsequently categorized into coreslutas
and isoforms. In addition to the good results obtained, @ntam-
ponent of this study was the use of machine learning algostto
compute the likelihood of an observed interaction to bedvaln
this experiment, we tested if the use of h-confidence coubdece
these weights for effective function prediction. Thus, veedithe
continuous version of the h-confidence measure, defineddtdBe
3.5, to transform the original weighted interaction netwand cal-
culate the reliability of an edge connecting two protei@®d; on
the basis of the strengths of their interactions with ea¢teroor
with other proteins. Similar computations are carried autthe
other transformation methods such as p-value and commgh-nei
bor.

The results of this experiment are shown in Figure 2. Fig(ag 2
shows that h-confidence-based transformation was inddedab
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Figure 1: Performance of graph transformation methods on tte
combined interaction set

obtain better results under the precision-recall framéwas com-
pared to the raw weighted graph and other transformatiomss T
difference in performance between the various methodscisrdia-
ated by the relative performance of the different transtirams
of the original networks when only the tag0 predictions are
considered. As shown by Figures 2(b), continuous h-configlen
and binary h-confidence-based transformations outperfioemaw
weighted graph by a large margin. For instance, for the foppre-
dictions, a margin 06% and10% is observed respectively. These
results show the merits of using association analysisebas@s-
formation methods for this data set.

6.3 DIPCore

The final category of protein interaction data sets that we co
sidered were those that did not contain the reliabilitiethefedges
explicitly, and since they form a single data set, it is diffico
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Figure 2: Performance of graph transformation methods on
Krogan et al’s interaction set [10]

the DIPCore [6] data set for this experiment, which is a setbafut
6000 highly reliable unweighted interactions selected fronmhimit
DIP. The interaction graph was represented as a binary extjsc
matrix A, and was transformed using the binary h-confidence, p-
value and common neighbor methods.

We executed the FunctionalFlow algorithm with the four dgxap
(one original and three transformed) as input, and obtathed
overall precision-recall curves for each of them, which strewn
in Figure 3(a). These curves show that the transformed goaph
tained using binary h-confidence perform better than thgiraal
graph for a large part of the precision-recall range, wititest pro-
duced by the p-value and common neighbor methods performed
worse throughout. It is important to point out that even titothe
improvement in performance may seem small, it is indeedfsign
cant when seen in the light of the fact that DIPCore is a vdiglvk
data set [6], and is expected to be much richer in functiocoatent

weigh their edges using an approach such as the one used to eshan several other interaction data sets [15, 27].

timate the edge weights of ttombineddata set. Thus, we fo-
cused this experiment on investigating the utility of gréqaimsfor-
mation methods for unweighted interaction networks. Wected

As shown in Figure 3(b), even among these top predictionsrevh
most methods are expected to produce good results due tarite f
tional richness of the network, the binary h-confidencesdagaph
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Figure 3: Performance of graph transformation methods on tte
DIPCore data set [6]

performs significantly better than the raw network. Morecsipe
cally, there is a significant improvement of aba% throughout
the top1000 predictions. Also, graphs produced by p-value- and
combined neighbor-based transformations perform worse the
original adjacency matrix.

Finally, it should also be noted that we applied our evabrati
methodology for weighted interaction networks to the dataised
by Nabievaet alto compare FunctionalFlow against other function
prediction algorithms [16]. Even here, the continuous hfictence-
based transformation is able to outperform the original rest+
work. However, the difference between the performanceefo
graphs is very small, since the weights of Nabievals data set
are assigned using the functional labels of the interagiimtgins.
Thus, although it would be hard to outperform this netwosdssl
its weights’ performance at the task of protein functiondizgon,
the improvement achieved by the h-confidence-based trnanafo
tion demonstrates its ability to enhance the functionadrimiation
even in very precise networks.

In summary, through the evaluation of several protein atton
data sets that use a wide variety of reliability estimatiohesnes
for their interaction, we showed that the h-confidence-th@asaph
transformation method produces the most precise netwdnighw
can be used to predict protein function accurately. We belibat
the success of this method is due to the changes made by & to th
original network, namely removal of noisy edges and addité
biologically viable ones, in combination with effectiveliadility
estimation of the edges in the resultant data set. We telstedbt
lidity of this hypothesis in the following final component otir
study.

6.4 Effect of Noise on H-confidence-based
Graph Transformation

We designed the following test in order to test the effectaén
interactions in the input interaction graph on the accurafcthe
graph produced by transforming it using the binary h-comioge
based transformation method. Given an interaction gr@on-
tainingn edges, and a noise level @%, we generated== edges
that are not already present@ and added these "spurious" edges
to G to create a noisy interaction gragi{. However, it is diffi-
cult to generate weights randomly to these new edges, sirece t
edge weights in each data set follow some unknown distohuti
Thus, we applied this test only to the DIPCore data set, sisce
edges do not carry weights. The spurious edges generated are
added as they are to the original data set without assigihieig t
any weights. Next, the function prediction algorithm Fumat
alFlow is executed using the raw and this noisy interacti@pls,
as well as their transformed versions, which in this experihare
generated only using the binary h-confidence method. (Tthes,
transformed graph in the following text refers only to theygr
transformed using this method.) The results are compileti bo
in the precision-recall, as well the accuracy of the kopredic-
tions frameworks. The precision-recall results show theeeted
result that the precision-recall curves of the noisy versiof the
raw graph and the transformed graph are inferior to thegioai
counterparts (data not shown). However, the encouragingopa
these results is that the gap between the performance obihg n
and the transformed noisy graphs is larger than that betwreen
raw and the transformed raw araphs.
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A more interesting result is presented by Figures 4 and S;hwhi
illustrate the results of the accuracy of the &) predictions made
using each of the noisy and original versions of the raw DIfeCo
network and their transformed counterparts which werd&mpruned
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using a minimum h-confidence thresholdof. These plots show
that while the performance of FunctionalFlow deterioratigsifi-
cantly when spurious edges are added to the original nefwioek
corresponding loss in performance using the transformephgis
much less in comparison. For instance, it can be easily seen f

Figure 4 that the performance of the transformed noisy giaph
very close in performance to the transformed raw graph. @n th

other hand, the performance of the noisy network is sigmiflga
worse than that of the raw network. More specifically, in Feg,

if only the first300 predictions are considered, then the accuracy of

the raw network is approximateB7%, which deteriorates t84%

using the noisy raw network. On the other hand, the perfooman

of both the binary h-confidence-based graphs is alrp8%. Al-
though these precise values fluctuate throughout thesfitspre-
dictions, the general trend is that noise effects the raeraation
network much more adversely than the binary h-confidensesa
network. This behavior of the binary h-confidence methodtzan
explained on the basis of the noise resilience charadgteashy-
perclique patterns, as well as the incompleteness of tkediction
data sets.

In an earlier study [35], we showed that hypercliques arg ver

effective in identifying large number of noisy objects frdaimary
data sets, i.e., objects that are expected to have beeratghéry
processes other than that used for the regular objectssish@avn
that this removal of noisy objects significantly improved tlsults
of important data mining operations such as clustering ast-a
ciation analysis. A similar phenomenon is expected to redbe
effect of the spurious edges added to the interaction grifure
specifically, protein interaction networks, particulagmall ones
such as DIPCore, are expected to be significantly incompléte
30], and several interactions other than those alreadyerdtta
set are expected to be biologically valid. Thus, among thefke

noisy edges added to the original network, many are expeoted
be noisy, while a substantial number are also expected tadie b

logically valid. Now, due to their noise removal abilityetbinary
h-confidence-based transformation is able to identify tloéobi-
cally more viable edges, and use them for prediction. On thero
hand, the performance of the raw noisy network suffers,esthe
positive contribution of these valid edges is negated Biamitly
by the noisy edges.

In summary, this test shows that our hypothesis that thetifumc
prediction performance of the h-confidence-based grapisfoa
mation is significantly better than that of the raw interactnet-

work due to the three important changes made to the origietal n

work, namely the removal of spurious edges, the additioniaf b

logically viable ones, and effective weighting of the réant set of
edges, is indeed highly likely to be true.

7. CONCLUDING REMARKS

The previous sections detailed several experiments thabwe
ducted to evaluate the use of the various methods for tremgig
a given protein interaction network. Several detailed tsions
can be derived from these results, which we discuss below:

1. Given a variety of interaction networks, such as tloen-

bined Kroganet als and the DIPCore interaction sets, the
h-confidence-based transformations generally produce mor
accurate and more reliably weighted interaction graph#twh
produce better results for protein function predictiomttiee
original network.

. Throughout our extensive evaluation, we observe that the

transformed graphs produced by the p-value- and the com-
mon neighbor-based methods perform worse than the raw in-
teraction networks when used for protein function predicti
task. This phenomenon may occur due to several reasons.
Firstly, these methods operate on the binary adjacency ma-
trix of the input graph, which leads to a loss of information
in the case of weighted interaction networks. Also, the fil-
tering operation on these matrices usually leads to theolfoss
all the interactions of some proteins, thus disconnectiegt
from the rest of the network. For instance, for the common
neighbor-based transformed graph of Krogan et al’'s data set
derived using a filtering threshold @f there are as many as
1136 such disconnected proteins, out22b1 proteins in the
data set. Clearly, FunctionalFlow can not produce any pre-
dictions for these proteins. Since our definition of preaisi
and recall does not take this case of disconnected proteins
into account, the results of these two methods will natyrall
be affected adversely. However, a more detailed analysis of
these methods is needed to evaluate their performance.

. Looking deeper into the results of the experiments on sev-

eral interaction networks, it can be seen that the less reli-
able the weights assigned to the edges in the raw network,
the greater improvement in performance obtained by using
a continuous h-confidence-based graph transformation. For
instance, Figure 1(b) shows that for tbembineddata set,
whose weights are derived from gene expression data, our
proposed transformation is able to improve predictions by
nearly10% throughout, which is very encouraging. On the
other hand, Figure 3(b) shows that for the DIPCore data set,
which is known to be very reliable [15, 6], the performance
benefits obtained by h-confidence, though significant, are of
arelatively smaller magnitude, i.e., approximat&ly through-
out. Thus, for applications using protein interaction rerks
whose edge weights are not available or are inappropriate,
continuous h-confidence is expected to produce betterperfo
mance than the raw weights and other transformations such
as p-value- and common neighbor-based ones.

. Finally, through a test on the DIPCore data set, in which a

certain number of spurious edges were added to the original
interaction network, it was shown that the performance of
the h-confidence-based transformation suffers much less as
compared to the noisy interaction network. This illustsate
that the significantly better performance of the h-configenc
based graph transformation method is indeed due to the re-
moval of spurious edges, the addition of biologically veabl
ones, and effective weighting of the resultant set of edges.



This detailed analysis of results indicates that assaciathalysis-
based graph transformation methods are useful, both froata d

mining, as well as a functional genomics perspective.
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