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ABSTRACT
Protein interaction networks are one of the most promising types of
biological data for the discovery of functional modules andthe pre-
diction of individual protein functions. However, it is known that
these networks are both incomplete and inaccurate, i.e., they have
spurious edges and lack biologically valid edges. One way tohan-
dle this problem is by transforming the original interaction graph
into new graphs that remove spurious edges, add biologically valid
ones, and assign reliability scores to the edges constituting the final
network. We investigate currently existing methods, as well as pro-
pose a robust association analysis-based method for this task. This
method is based on the concept of h-confidence, which is a measure
that can be used to extract groups of objects having high similarity
with each other. Experimental evaluation on several protein inter-
action data sets show that hyperclique-based transformations en-
hance the performance of standard function prediction algorithms
significantly, and thus have merit.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing; J.3 [Life and Medical Science]: Biology and genetics; E.1
[Data Structures]: Graphs and networks

General Terms
Algorithms, Performance, Reliability, Experimentation

Keywords
Association analysis, h-confidence, protein interaction networks,
noise reduction, protein function prediction
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1. INTRODUCTION
One of the most promising forms of biological data that are used

to study the functions of proteins at a genomic scale are protein in-
teraction networks. These networks are generated by collecting in-
teractions between two or more proteins, which are in turn obtained
from various sources such as metabolic or synthetic pathways, pro-
tein complexes and ligand-receptor mechanisms [32]. Thesenet-
works provide a global view of the interactions between various
proteins that are essential for the accomplishment of most protein
functions. Due to the importance of the knowledge of these inter-
actions, several high-throughput methods have been proposed for
discovering them [14]. In fact, several standardized databases, such
as DIP [33] and GRID [4] have now been set up to provide system-
atic access to protein interaction data collected from a wide variety
of experiments and sources.

It is easy to see that a protein interaction network can be rep-
resented as an undirected graph1, where proteins are represented
by nodes and protein-protein interactions as edges. Due to this
systematic representation, several computational approaches have
been proposed for the prediction of protein function from protein
interaction graphs [18, 23, 25, 20, 30, 15, 16]. These approaches
can be broadly categorized into four types, namely neighborhood-
based, global optimization-based, clustering-based and association
analysis-based [18]. Due to the rich functional information in these
networks, several of these approaches have produced very good
results, particularly those that use the entire interaction graph si-
multaneously and use global optimization techniques to make pre-
dictions [16, 30]. Indeed, recently, some studies have started using
protein interaction networks as benchmarks for evaluatingthe func-
tional relationships between two proteins [37].

However, despite the advantages of protein interaction networks,
they have several significant weaknesses which affect the quality
of the results obtained from their analysis. The most prominent
of these problems is that of noise in the data, which manifests it-
self primarily in the form of spurious or false positive edges [22].
Studies have shown that the presence of noise has significantad-
verse affects on the performance of protein function prediction al-

1Unless otherwise specified, a graph means an undirected graph in
the rest of this paper. Also, since a graph is the only representation
of an interaction network that is used in our study, we use theterms
network and graph interchangeably.



gorithms [7]. Another important problem facing the use of these
networks is their incompleteness, i.e., the absence of biologically
valid interactions even from large sets of interactions [30, 15]. This
absence of interactions from the network prevents even the global
optimization-based approaches from making effective use of the
network beyond what is available, thus leading to a loss of poten-
tially valid predictions. In this paper, we investigate techniques that
try to address these two problems with the objective of improving
function prediction results.

A possible approach to these problems is to transform the origi-
nal interaction graph into a new weighted graph such that theweights
assigned to the edges in the new graph more accurately indicate
the reliability and strength of the corresponding interactions, and
their utility for predicting protein function. In our study, a graph
transformation converts an undirected graphG =< V, E, W >
to a new graphG′ =< V, E′, W ′ >. Interestingly, the alternate
representation of theG as an adjacency matrixA|V |×|V |, where
A(p1, p2) = 1 if p1 andp2 interact, allows the application of asso-
ciation analysis techniques to the task of creating a new weighted
adjacency matrixA′

|V |×|V | corresponding toG′. Note that the new
weighted graph may have some new edges (i.e., edges that had0
weight in the original graph) and may skip some edges that are
present in the original network. This elimination of spurious edges
can reduces the noise and the addition of viable edges can reduce
the incompleteness of the original interaction network.

Association analysis is a field of data mining that is focusedpri-
marily on the analysis of objects that co-occur frequently in a data
set, and are thus hypothesized to beassociatedto each other [28].
Several types of suchfrequent patternsand algorithms for deriving
them have been proposed, the most common ones being frequent
itemsets and theApriori algorithm respectively [1, 3, 2]. Recently,
a new type of frequent pattern known ashypercliquehas been pro-
posed for addressing the problem of skewed distributions ofob-
ject frequencies in binary data [36]. This pattern is based on the
h-confidencemeasure. This measure is just the number of times
items appear together divided by the maximum number of times
that one of the items occurs by itself. Thus, objects that arepart of
a hyperclique derived at a high h-confidence are tightly associated
with each other, and those that are not a part of any hyperclique are
often noisy objects.

Indeed, this idea has produced good results when applied to find-
ing patterns in a number of situations, including those involving
noisy data. In one study [35], hyperclique patterns were used to
remove noise from document and gene expression data. In another
study [34], hyperclique pattern discovery was applied to protein
complex data to find functional modules. Specifically, the complex
data was represented as a binary data set whose attributes corre-
sponded to the presence or absence of proteins, while the hyper-
clique patterns found in such data were treated as candidatefunc-
tional modules, i.e., groups of proteins have related functions. Ex-
amination of the hyperclique patterns showed that many of the hy-
percliques did contain several functionally related proteins.

This success of hypercliques in noise removal from binary data,
coupled with the representation of protein interaction graphs as a
binary matrix to which association analysis techniques canbe ap-
plied, motivated us to address the graph transformation problem
using an approach based on h-confidence. We perform this taskin
two ways. In the first, we compute new edge weights for pairs of
proteins by computing the h-confidence between them based onthe
binary adjacency graph,A. This is equivalent to the process of find-
ing size two hyperclique patterns in the adjacency graph. Second,
if the weighted adjacency matrix of the original graphAw is avail-
able, we employ a continuous version of h-confidence to compute

new edge weights between all pairs of proteins. Thus, depending
on whether the input graph was weighted or unweighted, we pro-
duce one or two transformed graphs, both of which may have edges
and weights different from the original graph. This transformation
is expected to reduce noise in the network since the resultant edges
that have a high weight are highly likely to connect proteinsthat
have a strong association in the original interaction network.

In order to evaluate the efficacy of the resultant networks for
protein function prediction, we provided the original and the trans-
formed graphs as input to theFunctionalFlowalgorithm [16].Func-
tionalFlow is a graph theory-based algorithm that enables insuffi-
ciently connected proteins to obtain functional annotations from
distant proteins in the network, and has produced much better re-
sults than several other function prediction algorithms. The re-
sults obtained from these experiments show that the transformed
graphs are significantly more capable of accurately predicting pro-
tein function as compared to the original network, as well asother
recently proposed transformations methods that we evaluated. In
addition, the improvement in performance was larger for networks
for which the reliabilities for the edges were estimated indirectly
using sources such as gene expression data, as compared to reliabil-
ities computed using experimental means or functional annoations
of the interacting protein.

An association analysis based approach to graph transformation
is just one of the possible approaches. For comparison, we also
consider a couple of other approaches as well. One such algo-
rithm [23] computes the strength of the edge between two nodes
in the transformed graph as the probability that they shareda given
number of neighbors in the original graph by chance. Other studies
have more directly used the number of common neighbors between
two proteins, or a minor variation thereof, to estimate the reliabil-
ity of an interaction between the two proteins in the transformed
network [5, 15]. These approaches are detailed in Section 3.

1.1 Contributions of our work
This paper makes a contribution to the task of protein function

prediction by proposing novel association analysis-basedtransfor-
mation methods based on h-confidence for protein interaction net-
works represented as graphs. This includes a technique for evalu-
ating the reliabilities of the edges for unweighted networks, and
a method to produce more noise-resistant weights for weighted
networks. Through extensive evaluation, we show that the pro-
posed transformations and weighting methods produce more accu-
rate functional annotations for proteins in the network. This is due
to the smaller amount of noise and a more complete set of biologi-
cally viable interactions in the transformed network.

More generally, this work provides a novel example of an appli-
cation where frequent patterns (hypercliques here) are extracted in
the traditional market-basket setting from a symmetric binary ma-
trix. In addition, we propose a new formulation for the h-confidence
measure for pairs of vectors containing continuous values.Al-
though the focus for both these techniques is on producing better
graphs for protein function prediction, both approaches could be
profitably applied to other data mining problems.

This paper builds upon our preliminary work on a related topic [11],
that investigates the utility of association analysis for protein com-
plex and interaction data to enhance SwissProt keyword recovery.

Overview The remainder of the paper is organized as follows.
Sections 2 and 3 provide the necessary background information for
the rest of the paper by describing the function prediction and graph
transformation techniques used. Sections 4 and 5 detail theinfras-
tructure of the study in the form of data sources and the evaluation
methodology used respectively. Finally, we present the results of



this evaluation in Section 6 and make concluding remarks in Sec-
tion 7.

2. PROTEIN FUNCTION PREDICTION
USING FUNCTIONALFLOW

As mentioned earlier, due the richness of functional information
in protein interaction networks and their systematic representation
as a graph, several computation approaches have been proposed for
inferring protein function from one or several interactionnetworks
[15, 16]. These approaches can be broadly classified into four cat-
egories [18]:

• Neighborhood-based approaches: These approaches assign
functional labels to an unannotated protein by transferring la-
bels from its neighborhood [25, 15].

• Clustering-based approaches: These approaches construct
functional modules by discovering densely connected regions
in the interaction network, and assign unannotated proteins
the most dominant label(s) in their corresponding module(s) [20].

• Global optimization-based approaches: These approaches
utilize the entire connectivity structure of the network inor-
der to transfer the annotations of distantly connected proteins
to the query protein(s) [16, 30].

• Association analysis-based approaches: These approaches
use association analysis algorithms to detect frequently oc-
curring sets of interactions in interaction networks, and hy-
pothesize that these subgraphs denote function modules [34].

Due to their ability to gather predictions from the whole network
and confidently assign them to unannotated proteins, approaches in
the last category have generally produced the best results in pro-
tein function prediction from interaction networks [18]. In partic-
ular, the FunctionalFlow algorithm [16] was shown to outperform
several other function prediction approaches in a comprehensive
evaluation study by its authors. It also has the advantage ofbe-
ing backed by well-founded graph theoretic concepts. Due tothese
merits, we chose FunctionalFlow as the base algorithm for evaluat-
ing the effectiveness of various transformed graphs for thetask of
protein function prediction.

FunctionalFlow is based on the concept of network flow in graph
theory [31]. However, since network flow is defined for directed
graphs, FunctionalFlow uses an iterative algorithm for interaction
networks, which are represented as undirected graphs. For each
functiona, the set of proteins annotated witha are treated assources,
the other proteins assinks, and the weights are used as capacities
of the corresponding edges in the graph. The algorithm then iter-
atively "flows" the functional annotations from the sourcesto the
sinks, using a downhill flow strategy. In this strategy, the anno-
tations flow only from a more full node to a less full one directly
connected to it, while maintaining the constraint that the flow on the
edge does not exceed its capacity. At the end of the pre-specified
number of iterations, all the nodes in the network have a certain
functional score fora, from which annotations are made using a
threshold on this score. Repeating this process for all the functions
in the given set of annotations produces the required functional an-
notations for the set of query proteins.

The above description indicates that the good results of Func-
tionalFlow can be attributed to the use of annotations from both
close and distant neighbors in the network, as well as the effective
use of edge weights to control the flow of annotations from one
protein to another. In other words, an interaction graph with more

accurate edges and weights is expected to yield better function pre-
dictions.

3. GRAPH TRANSFORMATION
This section describes the various techniques that we used for

graph transformation, i.e., to transform the original interaction graph
G =< V, E,W > to a new graphG′ =< V, E′, W ′ >. As men-
tioned, edges may be either deleted or added to address the prob-
lems of the noisiness and incompleteness of the data, respectively.
A number of recent techniques that have been developed for this
purpose are described next. They employ a variety of approaches,
but the goal is to transform the graph by adding or deleting edges
in order to produce a new graph that is more suitable for protein
function prediction.

3.1 Adjacency Matrix
The simplest technique is to treat the protein interaction network

as an adjacency matrix for the set of proteins, i.e., to make the edge
weights of all interacting pairs of proteins equal to 1. If the original
matrix does not have weights, than this transformation doesnot
change the graph. If the original graph has weights, then often a
threshold is applied to eliminate weak edges. Thus, this approach
is primarily used to show the value of weighted interaction graphs
for function prediction.

3.2 Common Neighbor
This graph transformation technique is based on the observation

that proteins that share a number of neighbors are more likely to
have a function in common. Indeed, the evaluation of this approach
on real interaction data sets [15] showed that predicting the func-
tion of a protein based on the proteins with which it shares a number
of common neighbors has better accuracy than predicting function
based on proteins that are merely neighbors of the protein. Also,
unlike the neighborhood approach, which typically sees accuracy
rise and then decline as the number of neighbors increase, anap-
proach based on common neighbors attains a relatively stable level
of accuracy as the number of common neighbors increases.

Using the common neighbor strategy for graph transformation
is straightforward. Specifically, an edge is placed betweentwo
proteins only if those proteins have at least one neighbor, and the
weight of that edge is the number of common neighbors. Note that
some proteins that originally had an edge in the original graph can
become disconnected, i.e., edges may be lost, while two proteins
that did not originally have an edge, may be connected in the trans-
formed graph.

This approach is closely related to the shared nearest neighbor
approach for clustering [13, 8]. In the SNN approach, the nearest
neighbors of the objects are determined from their similarity or dis-
tance. Then, a new distance measure is defined based on the num-
ber of neighbors that appear on both of the nearest neighbor lists of
the objects [13]. This approach has been shown to have good per-
formance for clustering in dealing with noisy and high-dimensional
data [8].

3.3 P-value
The motivation for this graph transformation method is the same

as the Common Neighbor approach, namely that those proteinsthat
share many neighbors are more strongly connected, i.e., more likely
to be functionally similar. However, this approach addresses the
fact that the significance of two proteins sharing a particular num-
ber of neighbors depends on the number of neighbors that eachhas.
To illustrate, if two proteins, each having only two neighbors, share
both these neighbors, then this is more significant, in termsof prob-



ability, than two proteins, each having 20 neighbors, that share only
two.

The formula for the probability (p-value) of an edge is givenby
Equation 1, which is taken from Samanta and Liang [24]. Note
thatN is the number of proteins,n1 is the number of neighbors of
proteinp1, n2 is the number of neighbors of proteinp2, andm is
the number of neighbors shared by the two proteins. In practice, the
negative log of this probability is easier to work with and has the
property that larger numbers imply stronger edges. In otherwords,
typically we takew(p1, p2) = − log(prob(N, n1, n2, m)).

prob(N, n1, n2, m) =

„

N

m

« „

N − m

n1 − m

« „

N − n1

n2 − m

«

„

N

n1

« „

N

n2

« (1)

3.4 H-confidence for Binary Data
H-confidence [36], also known as all-confidence [17], is a mea-

sure of the association of items (binary attributes). If a set of items
has an h-confidence more than a user-specified threshold,hc, then
the itemset is called a hyperclique. Definition 1 defines hyper-
cliques and h-confidence more formally. The quantities of ‘sup-
port’ and ‘confidence’ are as defined in standard associationanaly-
sis [1, 28].

DEFINITION 1. Hyperclique A set of items (binary attributes),
X, forms a hyperclique with a particular level of h-confidence,
where h-confidence is defined as

hconf(X) = min
i∈X

{confidence({i} → {X − {i}})} (2)

= support(X)/max
i∈X

{support({i})} (3)

H-confidence is between 0 and 1, with a value of 0 indicating
no association and a value of 1 indicating the strongest association
between a group of items, i.e., the items always occur together.
Thus, h-confidence can be used as a measure of similarity between
the attributes in a binary data matrix.

Specifically, the adjacency matrixA of a protein interaction net-
work is considered as a binary data matrix by treating its rows as
transactions and columns as items. (Note that both correspond to
protein). Then a weighted adjacency matrixA′ of the same di-
mensions as the original one can be generated usingA′(i, j) =h-
confidence(i, j). Informally, the h-confidence of a pair of proteins,
p1 andp2, will be high if p1 tends to be a neighbor of a protein
wheneverp2 is and, vice-versa. Using Equation 3 and the termi-
nology introduced for the p-value transformation, h-confidence for
a pair of proteins is given by the following equation:

hconf({p1, p2}) = min

„

m

n1

,
m

n2

«

(4)

Using the h-confidence of two proteins as the weight of the edge
between the proteins, a new graph can be created. However, in
addition to an h-confidence threshold, it is also necessary to take
into account the absolute number of times two proteins appear to-
gether (m) as well as the fraction of times that the occurrence of
one protein as a neighbor implies the occurrence of the otherpro-
tein as a neighbor (min(n1/m, n2/m)). For example, if proteins
p1 andp2 both have only one edge, which is to proteinp3, then
their h-confidence will be one. On the other hand, proteinsp1 and
p2, may have edges with 10 other proteins, 8 of which they share.
They will have an h-confidence of 0.8 and thus, seem not to be as
strongly connected as the first pair. To deal with such problems it
is common to set a support threshold, i.e., to require thatm have at
least some specified value.

3.5 H-confidence for Continuous Data
As originally defined, h-confidence is only applicable to binary

data or, in the context of protein interaction graphs, unweighted
graphs [34]. However, the notion of h-confidence can be readily
generalized to continuous data.2 For the situation of weighted inter-
action networks, this amounts to replacing the counts,m, n1, and
n2 in Equation 4 by numbers based on the weights. In particular,
n1 andn2 are the sum of the weights of all edges involvingp1 and
p2, respectively, whilem is defined to be the sum of the minimum
of the edge weights ofp1 andp2 on their shared edges. As with
h-confidence defined on binary data, h-confidence on continuous
data is between 0 and 1, with 1 indicating the strongest connec-
tion. More specifically, theh − confidence of two vectors will
be non-zero only if they both contain a non-zero value at the same
position, while it will be high if both these values are high.Thus,
in the domain of interaction networks, two proteins will be linked
with an edge carrying a high weight only if they are connectedto
an overlapping set of proteins with highly reliable interactions.

To illustrate the difference between binary and continuoush-
confidence, consider the following example of two proteins,p1 and
p2. In the weighted adjacency matrix, the two proteins occur to-
gether in two rows and have weights 0.2 and 0.4, respectively, in the
first row, and weights 0.3 and 0.1, respectively, in the second row.
In addition,p1 also occurs by itself in another row and has a weight
of 0.5. Disregarding the weights, and considering only the number
of edges,n1 = 3, n2 = 2, andm = 2. Using Equation 4, binary
h-confidence =min(2/3, 2/2) = 2/3. However, using weights in
the manner just described,n1 = 0.2 + 0.3 + 0.5 = 1.0,n2 = 0.1 +
0.4 = 0.5, andm = min(0.2, 0.4)+min(0.3, 0.1) = 0.3. This im-
plies that continuous h-confidence =min(0.3/1.0, 0.3/0.5) = 0.3.
Thus, for this example, continuous h-confidence is significantly
smaller than binary h-confidence.

3.6 Pruning
Pruning refers to the elimination of edges having a weight be-

low a specified threshold. This approach is sometimes applied
to the raw interaction graph to eliminate less reliable, i.e., lower
weight edges. However, the transformed graphs produced by the
techniques described above typically have substantially more edges
than the original graphs since all potential pairwise protein-protein
interactions are evaluated. Some of these interactions in the trans-
formed graph may have small non-zero weights due to factors such
as a random common neighbor in the original graph. Hence, prun-
ing of the edges is conducted on the basis of the weights assigned
in the transformed graph to remove unreliable edges.

4. DATA SOURCES
In this section, we discuss the functional classification scheme

and the interaction data sets used in our study.

4.1 Functional Classification Scheme: FunCat
Since our evaluation of the various graph transformations is based

on the improvement provided by each of them over the raw network
in the task of protein function prediction, it is important to define a
set of reliable functional labels to be assigned to each protein. We
chose the set of functional labels at a depth of two in the FunCat

2We had previously extended the notion of h-confidence to contin-
uous data [26], but in a manner slightly different from that given
here. The previous approach addressed the general case which in-
volved continuous attributes that could have widely different scales.
The current formulation is better suited when all the attributes have
similar scales.



classification scheme of the MIPS database [21]. We made thisse-
lection since this scheme has been widely used in function predic-
tion literature [18], and the selected labels represent a good trade-
off between the generality and specificity of the labels in this hier-
archy. Also, all our experiments are performed on yeast proteins,
and there are about4500 proteins in yeast that can be annotated
using the labels that we selected. Since we use a cross-validation-
based evaluation methodology, we only consider this set of proteins
in our study.

4.2 Protein Interaction Data Sets
In order to be able to conduct a general evaluation study of the

graph transformation methods, we selected the high-throughput protein-
protein interaction networks of budding yeast (S. cerevisiae) listed
in Table 2, since each of these data sets follows a different weighing
scheme for the constitent interactions. Table 2 specifies the sizes of
these networks in terms of the number of proteins and interactions
constituting them, considering only the proteins annotated using
our selection of functional labels. We removed any instances of re-
dundant interactions, such as the interactionB −A whenA−B is
already present in the data set, and self interactions, suchasA−A,
whereA andB are proteins. A short description of each of the data
sets and the weighing scheme adopted by them follows.

4.2.1 DIPCore
Deaneet al [6] proposed two methods for assessing the reliabil-

ity of high-throughput protein interactions, namely the paralogous
verification method (PVM) and the expression profile reliability in-
dex (EPRI). Using this method, they prepared the DIPCore data
set, which is a set of highly reliable interactions selectedfrom the
Database of Interacting Proteins [33]. This set consists of5731 in-
teractions between2526 yeast proteins. However, in its publicly
available format3, the interactions in DIPCore do not have any as-
sociated weights. Hence, in our study, we assumed these weights
to be1 for all interactions.

4.2.2 Thecombineddata set
In order to illustrate the case of interaction data sets whose relia-

bilities are estimated indirectly using other types of genomic data,
we constructed a combination of three high-throughput yeast inter-
action sets, namely those of Gavinet al [9], Uetz et al [29] and
Ito et al [12], and refer to it as thecombineddata set. This data
set consists of7753 interactions between3781 proteins, and the
weights for these interactions are derived as follows. The reliabili-
ties of each of the individual data sets was estimated using the EPR
Index [6] tool provided by DIP4, which computes the reliability
of a data set by comparing the distribution of gene expression dis-
tances between the pairs of interacting proteins in the given data
set, with that obtained from the DIPCore data set. The reliabili-
ties computed for the above three data sets are tabulated in Table 1.
Finally, the individual edge weights are calculated using the com-
monly used formula ofw(e) = 1−

Q

i
(1− ri) [16, 19], where the

product runs over all the data setsi where edgee is found, andri

is the corresponding reliability of data seti. Overall, this method-
ology provides us a set of indirectly derived weights for theedges
constituting thecombineddata set.

4.2.3 Kroganet al’s data set
Recently, Kroganet al[10] have reported a large high-throughput

and reliable data set of7123 interactions among2708 yeast pro-
teins. In addition, they have also assigned likelihood values for
3dip.doe-mbi.ucla.edu/dip/Download.cgi?SM=6
4dip.doe-mbi.ucla.edu/dip/Services.cgi?SM=1

Data set # Interactions Reliability
Gavinet al [9] 3210 0.744
Uetzet al [29] 822 0.492
Ito et al [12] 3959 0.201

Table 1: Reliabilities of data sets computed using EPRI

each interaction in their data set using various machine learning al-
gorithms that tried to estimate the experimental reproducibility of
these interactions. Thus, we treated these likelihood scores as the
edge weights and used the entire set as an example of a data set
whose edges are weighted directly using experimentally observed
interaction data.

In summary, our selection of interaction data sets does indeed
reflect a variety of weighing schemes used. Also, it can be seen
that none of these data sets cover the entire yeast genome, and thus
are highly likely to be incomplete.

5. EVALUATION METHODOLOGY
The previous sections detailed the different data sets usedin our

study and the graph transformations that were used to process them
and produce different transformed variants of the originalinterac-
tion graph. These graphs were then input into the FunctionalFlow
algorithm to produce predictions of functions for the constituent
proteins. However, since it is hard to evaluate the predictions made
for unannotated proteins, we restricted our evaluation to the pro-
teins annotated with at least one functional label at depth two in
the FunCat hierarchy. Table 2 details the number of proteinsand
interactions after imposing this restriction on each of thedata sets
used in this study.

Data set # Annotated # Corresponding
Proteins Interactions

DIPCore 2315 5413
Combined 3026 6490

Kroganet al 2291 6180

Table 2: Details of interaction sets used

Using this set of annotations, we used the FunctionalFlow al-
gorithm in a five-fold cross validation procedure, which produces
a likelihood score for each protein being annotated with each la-
bel (henceforth referred to as a protein-label pair). Now, in or-
der to convert these scores into annotations, we follow a global
scoring strategy. In this strategy, we sort the entire set ofprotein-
label scores in descending order, and then selected thekth score as
the threshold for annotation, i.e., all protein-label pairs with scores
greater than this threshold are predicted as annotations. Constantly
increasing the value ofk thus provided us a set of functional an-
notation at different stringencies, and we used these annotation to
calculate the following metrics for evaluating the performance of
the algorithm.

5.1 Precision-Recall
In order to evaluate the overall performance, we used the precision-

recall framework of evaluation [28]. However, since the traditional
precision and recall metrics are defined only for binary classifica-
tion problem, it needs to be modified for function prediction, given
that a protein may ideally have multiple labels. Thus, we adopt the
following definition of precision and recall used by other function
prediction studies [7, 15].
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P
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i=1
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Here,K is the total number of proteins with known functional
labels, and for each proteini, mi is the number of labels predicted
by the algorithm,ni is the actual number of labels possessed by the
protein, andki is the number of labels common to the actual and
predicted set of labels. Sccording to these definitions,Precision
denotes the proportion of correctly predicted annotationsout of all
the functional predictions made, whileRecall measures of the pro-
portion of correctly predicted functions out of all the known anno-
tations [28]. Thus, these measures are a suitable generalization of
the original precision-recall framework to the multi-label scenario.

5.2 Accuracy of Top-k Predictions
A biological researcher in the area of functional genomics may

choose a number of predictions of protein function for experimen-
tal investigation. Since the number of experiments that canbe per-
formed is quite limited, it is important to choose the most promising
candidates for investigation, i.e., to focus on those functional pre-
dictions most likely to be correct. Thus, for this situation, a list of
the topk predictions is often more relevant than a precision-recall
or ROC curve.

The details of the top-k evaluation methodology are as follows.
First, using the global scoring method, thek protein-label pairs with
the highest functional score are identified, and are produced as the
functional predictions of the algorithm. Next, the prediction accu-
racy, or the precision, of this set of predictions is evaluated with
respect to the known protein-label annotations. Then, a curve of
prediction accuracy versus number of protein-label pairs predicted
is produced by considering various values fork. We used values of
k up to500 or 1000 in our experiments.

Note that these two metrics are related by the following equation:

Recall

P recision
=

k

Total # true protein − label annotations

Thus, they provide two related perspectives on the performance
of a function prediction algorithm.

6. EXPERIMENTAL RESULTS
We evaluated several graph transformation methods using a wide

variety of protein interaction data sets by testing the performance
of the FunctionalFlow algorithm on the resultant interaction graph.
Our data sets were selected to reflect the various types of interac-
tion weighting schemes currently in use to estimate the reliabilities
of protein-protein interactions. The following sections detail the
results of our evaluation on each of these data sets. Note that all
the results reported were obtained by a five-fold cross validation-
based evaluation of the predictions produced by FunctionalFlow.
Also, it was mentioned in Section 3.6 that the three transformations,
namely p-value-based, common neighbor-based and h-confidence-
based, may contain some spurious links in the tranformed graph.
Hence, we tried several pruning thresholds for each of thesemeth-
ods, the details of which are provided in Table 3. Note that the best
value is the most commonly best performing value for the param-
eter, and is used to report the evaluation results, unless some other
value is specified.

Method Parameter Values tried Best value
P-value Max(p) 1,10−3,10−5 10−3

Common nbr Min(cmn nbrs) 1,2,3 2
Cont hconf Min(hconf) 0,0.1,0.2 0.1

Bin hconf
Min(support) 1,2,3 2
Min(hconf) 0,0.1,0.2 0

Table 3: Paramater values tried for different transformati ons

Finally, in order to make the discussion clearer, we use the fol-
lowing notation in the rest of this section. The transformation of
the binary adjacency matrix of an interaction graph to its trans-
formed h-confidence-based adjacency matrix is referred to as the
bin hconf (binary h-confidence) method, while the transformation
of the weighted adjacency matrix of a graph to its transformed h-
confidence-based adjacency matrix is referred to as thecont hconf
(continuous h-confidence) method. The other notations are self-
explanatory. Also, note that the plots in this section are best viewed
in color.

6.1 The combined data set
In this experiment, we investigated the applicability of various

graph transformation methods to enhance the weighted networks
produced by indirect weighting methods such as EPRI [6]. The
representative of this category was thecombineddata set described
earlier in Section 4. We transformed this weighted network us-
ing the continuous h-confidence-based method, and its unweighted
version using three transformation methods, namely the binary h-
confidence-based, the p-value-based and the common neighbor-
based. Figure 1 shows the performance of the FunctionalFlowal-
gorithm on the the originalcombinedgraph, its unweighted adja-
cency matrix, and the four transformations computed above.It can
be seen from Figure 1(a) that continuous h-confidence has better
overall performance in terms of precision and recall. This improve-
ment is shown much more clearly by Figure 1(b), which shows that
the continuous h-confidence-based transformed graph produces the
most accurate predictions when only the top1000 predictions are
considered, and outperforms the raw weighted network by nearly
10% throughout. For instance, if only the top500 predictions are
considered, the accuracy of the predictions made using the raw
weighted network is only about70%, while that of the predictions
made using the continuous h-confidence-based transformations is
over 80%. Also, for this data set, p-value-based transformation
outperforms the raw network, though by a smaller margin thanthe
h-confidence-based transformations.

6.2 Krogan et al’s data set
Kroganet al’s data set was discussed earlier in Section 4, and

was used in their study [10] to discover overlapping proteincom-
plexes, which were subsequently categorized into cores, modules
and isoforms. In addition to the good results obtained, a major com-
ponent of this study was the use of machine learning algorithms to
compute the likelihood of an observed interaction to be valid. In
this experiment, we tested if the use of h-confidence could enhance
these weights for effective function prediction. Thus, we used the
continuous version of the h-confidence measure, defined in Section
3.5, to transform the original weighted interaction network and cal-
culate the reliability of an edge connecting two proteinsi andj on
the basis of the strengths of their interactions with each other or
with other proteins. Similar computations are carried out for the
other transformation methods such as p-value and common neigh-
bor.

The results of this experiment are shown in Figure 2. Figure 2(a)
shows that h-confidence-based transformation was indeed able to
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Figure 1: Performance of graph transformation methods on the
combined interaction set

obtain better results under the precision-recall framework, as com-
pared to the raw weighted graph and other transformations. This
difference in performance between the various methods is accentu-
ated by the relative performance of the different transformations
of the original networks when only the top500 predictions are
considered. As shown by Figures 2(b), continuous h-confidence-
and binary h-confidence-based transformations outperformthe raw
weighted graph by a large margin. For instance, for the top150 pre-
dictions, a margin of5% and10% is observed respectively. These
results show the merits of using association analysis-based trans-
formation methods for this data set.

6.3 DIPCore
The final category of protein interaction data sets that we con-

sidered were those that did not contain the reliabilities ofthe edges
explicitly, and since they form a single data set, it is difficult to
weigh their edges using an approach such as the one used to es-
timate the edge weights of thecombineddata set. Thus, we fo-
cused this experiment on investigating the utility of graphtransfor-
mation methods for unweighted interaction networks. We selected
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Figure 2: Performance of graph transformation methods on
Krogan et al’s interaction set [10]

the DIPCore [6] data set for this experiment, which is a set ofabout
6000 highly reliable unweighted interactions selected from within
DIP. The interaction graph was represented as a binary adjacency
matrix A, and was transformed using the binary h-confidence, p-
value and common neighbor methods.

We executed the FunctionalFlow algorithm with the four graphs
(one original and three transformed) as input, and obtainedthe
overall precision-recall curves for each of them, which areshown
in Figure 3(a). These curves show that the transformed graphob-
tained using binary h-confidence perform better than the original
graph for a large part of the precision-recall range, while those pro-
duced by the p-value and common neighbor methods performed
worse throughout. It is important to point out that even though the
improvement in performance may seem small, it is indeed signifi-
cant when seen in the light of the fact that DIPCore is a very reliable
data set [6], and is expected to be much richer in functional content
than several other interaction data sets [15, 27].

As shown in Figure 3(b), even among these top predictions, where
most methods are expected to produce good results due to the func-
tional richness of the network, the binary h-confidence-based graph
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Figure 3: Performance of graph transformation methods on the
DIPCore data set [6]

performs significantly better than the raw network. More specifi-
cally, there is a significant improvement of about5% throughout
the top1000 predictions. Also, graphs produced by p-value- and
combined neighbor-based transformations perform worse than the
original adjacency matrix.

Finally, it should also be noted that we applied our evaluation
methodology for weighted interaction networks to the data set used
by Nabievaet al to compare FunctionalFlow against other function
prediction algorithms [16]. Even here, the continuous h-confidence-
based transformation is able to outperform the original rawnet-
work. However, the difference between the performance of the two
graphs is very small, since the weights of Nabievaet al’s data set
are assigned using the functional labels of the interactingproteins.
Thus, although it would be hard to outperform this network’sand
its weights’ performance at the task of protein function prediction,
the improvement achieved by the h-confidence-based transforma-
tion demonstrates its ability to enhance the functional information
even in very precise networks.

In summary, through the evaluation of several protein interaction
data sets that use a wide variety of reliability estimation schemes
for their interaction, we showed that the h-confidence-based graph
transformation method produces the most precise network, which
can be used to predict protein function accurately. We believe that
the success of this method is due to the changes made by it to the
original network, namely removal of noisy edges and addition of
biologically viable ones, in combination with effective reliability
estimation of the edges in the resultant data set. We tested the va-
lidity of this hypothesis in the following final component ofour
study.

6.4 Effect of Noise on H-confidence-based
Graph Transformation

We designed the following test in order to test the effect of noisy
interactions in the input interaction graph on the accuracyof the
graph produced by transforming it using the binary h-confidence-
based transformation method. Given an interaction graphG con-
tainingn edges, and a noise level ofα%, we generatedn×α

100
edges

that are not already present inG, and added these "spurious" edges
to G to create a noisy interaction graphG′. However, it is diffi-
cult to generate weights randomly to these new edges, since the
edge weights in each data set follow some unknown distribution.
Thus, we applied this test only to the DIPCore data set, sinceits
edges do not carry weights. The spurious edges generated are
added as they are to the original data set without assigning them
any weights. Next, the function prediction algorithm Function-
alFlow is executed using the raw and this noisy interaction graphs,
as well as their transformed versions, which in this experiment are
generated only using the binary h-confidence method. (Thus,the
transformed graph in the following text refers only to the graph
transformed using this method.) The results are compiled both
in the precision-recall, as well the accuracy of the top-k predic-
tions frameworks. The precision-recall results show the expected
result that the precision-recall curves of the noisy versions of the
raw graph and the transformed graph are inferior to their original
counterparts (data not shown). However, the encouraging part of
these results is that the gap between the performance of the noisy
and the transformed noisy graphs is larger than that betweenthe
raw and the transformed raw graphs.
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Figure 4: Effect of adding 20% noise

A more interesting result is presented by Figures 4 and 5, which
illustrate the results of the accuracy of the top500 predictions made
using each of the noisy and original versions of the raw DIPCore
network and their transformed counterparts which were further pruned
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using a minimum h-confidence threshold of0.1. These plots show
that while the performance of FunctionalFlow deterioratessignifi-
cantly when spurious edges are added to the original network, the
corresponding loss in performance using the transformed graph is
much less in comparison. For instance, it can be easily seen from
Figure 4 that the performance of the transformed noisy graphis
very close in performance to the transformed raw graph. On the
other hand, the performance of the noisy network is significantly
worse than that of the raw network. More specifically, in Figure 5,
if only the first300 predictions are considered, then the accuracy of
the raw network is approximately87%, which deteriorates to84%
using the noisy raw network. On the other hand, the performance
of both the binary h-confidence-based graphs is almost93%. Al-
though these precise values fluctuate throughout the first500 pre-
dictions, the general trend is that noise effects the raw interaction
network much more adversely than the binary h-confidence-based
network. This behavior of the binary h-confidence method canbe
explained on the basis of the noise resilience characteristic of hy-
perclique patterns, as well as the incompleteness of the interaction
data sets.

In an earlier study [35], we showed that hypercliques are very
effective in identifying large number of noisy objects frombinary
data sets, i.e., objects that are expected to have been generated by
processes other than that used for the regular objects. It was shown
that this removal of noisy objects significantly improved the results
of important data mining operations such as clustering and asso-
ciation analysis. A similar phenomenon is expected to reduce the
effect of the spurious edges added to the interaction graph.More
specifically, protein interaction networks, particularlysmall ones
such as DIPCore, are expected to be significantly incomplete[15,
30], and several interactions other than those already in the data
set are expected to be biologically valid. Thus, among the set of
noisy edges added to the original network, many are expectedto
be noisy, while a substantial number are also expected to be bio-
logically valid. Now, due to their noise removal ability, the binary
h-confidence-based transformation is able to identify the biologi-
cally more viable edges, and use them for prediction. On the other
hand, the performance of the raw noisy network suffers, since the
positive contribution of these valid edges is negated significantly
by the noisy edges.

In summary, this test shows that our hypothesis that the function
prediction performance of the h-confidence-based graph transfor-
mation is significantly better than that of the raw interaction net-
work due to the three important changes made to the original net-
work, namely the removal of spurious edges, the addition of bio-

logically viable ones, and effective weighting of the resultant set of
edges, is indeed highly likely to be true.

7. CONCLUDING REMARKS
The previous sections detailed several experiments that wecon-

ducted to evaluate the use of the various methods for transforming
a given protein interaction network. Several detailed conclusions
can be derived from these results, which we discuss below:

1. Given a variety of interaction networks, such as thecom-
bined, Kroganet al’s and the DIPCore interaction sets, the
h-confidence-based transformations generally produce more
accurate and more reliably weighted interaction graphs, which
produce better results for protein function prediction than the
original network.

2. Throughout our extensive evaluation, we observe that the
transformed graphs produced by the p-value- and the com-
mon neighbor-based methods perform worse than the raw in-
teraction networks when used for protein function prediction
task. This phenomenon may occur due to several reasons.
Firstly, these methods operate on the binary adjacency ma-
trix of the input graph, which leads to a loss of information
in the case of weighted interaction networks. Also, the fil-
tering operation on these matrices usually leads to the lossof
all the interactions of some proteins, thus disconnecting them
from the rest of the network. For instance, for the common
neighbor-based transformed graph of Krogan et al’s data set
derived using a filtering threshold of2, there are as many as
1136 such disconnected proteins, out of2291 proteins in the
data set. Clearly, FunctionalFlow can not produce any pre-
dictions for these proteins. Since our definition of precision
and recall does not take this case of disconnected proteins
into account, the results of these two methods will naturally
be affected adversely. However, a more detailed analysis of
these methods is needed to evaluate their performance.

3. Looking deeper into the results of the experiments on sev-
eral interaction networks, it can be seen that the less reli-
able the weights assigned to the edges in the raw network,
the greater improvement in performance obtained by using
a continuous h-confidence-based graph transformation. For
instance, Figure 1(b) shows that for thecombineddata set,
whose weights are derived from gene expression data, our
proposed transformation is able to improve predictions by
nearly10% throughout, which is very encouraging. On the
other hand, Figure 3(b) shows that for the DIPCore data set,
which is known to be very reliable [15, 6], the performance
benefits obtained by h-confidence, though significant, are of
a relatively smaller magnitude, i.e., approximately5% through-
out. Thus, for applications using protein interaction networks
whose edge weights are not available or are inappropriate,
continuous h-confidence is expected to produce better perfor-
mance than the raw weights and other transformations such
as p-value- and common neighbor-based ones.

4. Finally, through a test on the DIPCore data set, in which a
certain number of spurious edges were added to the original
interaction network, it was shown that the performance of
the h-confidence-based transformation suffers much less as
compared to the noisy interaction network. This illustrates
that the significantly better performance of the h-confidence-
based graph transformation method is indeed due to the re-
moval of spurious edges, the addition of biologically viable
ones, and effective weighting of the resultant set of edges.



This detailed analysis of results indicates that association analysis-
based graph transformation methods are useful, both from a data
mining, as well as a functional genomics perspective.
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