
DAMSEL - A Data Model Storage Library for
Exascale Science

(This work is supported by Office of Advanced Scientific Computing
Research under the program of X-stack Software Research)

Saba Sehrish
CScADS 2011
July 26, 2011

1

Outline

Project Team

Motivation

Damsel I/O Library

Usecases: FLASH, GCRM

Proposed API and implementation, Data layout (In Progress)

2

Project Team

Northwestern University: Alok Choudhary, Wei-keng Liao,
Kui Gao, Saba Sehrish, Chen Jin, William Hendrix

Argonne National Laboratory: Rob Ross, Rob Latham, Tim
Tautges, Venkat Vishwanath

The HDF Group: Quincey Koziol, Gerd Herber

NC State University: Nagiza Samatova, Sriram
Lakshminarasimhan

3

Motivation

1 Motivation
Computational and Data Model Motifs
Existing I/O Libraries
Goals

4

Motivation
Computational and Data Model Motifs
Existing I/O Libraries
Goals

Computational Model Motifs

Damsel: A Data Model Storage Library for Exascale Science

1 Introduction

Parallel computational science applications have been described in terms of computation and communica-
tion patterns. An early taxonomy was the so-called seven dwarfs, later expanded to 13 (Table 1). Description
of a parallel program in terms of patterns has continued along two primary paths, the Berkeley pattern lan-
guage and the parallel patterns developed by Ralph Johnson (one of the original “gang of four” pioneering
the description of design patterns). The taxonomy represented by these patterns describes the operations
performed by typical simulations quite well, and petaFLOPS rates of computation have been demonstrated
across a wide range of these computational motifs. However, high FLOPS rates are only part of achieving
breakthrough science using computation. High I/O performance is critical from a performance and produc-
tivity perspective, to support interpretation of computational results and operation of these codes at fidelities
enabled by extreme-scale computers. Codes across the range of computational motifs are finding it difficult
to perform I/O on today’s petascale architectures, and this I/O problem may limit those applications’ ability
to achieve exascale performance.

Background and Current Status: As noted in the IESP report [1], “Traditional interfaces in file systems
and storage systems, or even in higher level data libraries, are designed to handle the worst-case scenarios
for conflicts, synchronization, coherence; mostly ignoring (or oblivious of) the HPC application needs and
the purpose of the I/O by an application. The purpose of I/O by an application can be a very important
source of information that can help scalable I/O performance when hundreds of thousands (to millions) of
cores simultaneously access the I/O system.” In other words, the high-level view of the data model is missed
and not exploited. Just as the computational motifs strongly influence FLOPS-based performance measures,
data model motifs have a significant impact on I/O behavior, but a different taxonomy is necessary for
characterizing I/O behavior in large codes.

Equally relevant is the data layout used in a code and how that layout interacts with I/O systems used to
save the data to disk. The data layout determines how the data model, consisting of domain discretization
structures (e.g., a grid or graph), solution fields, and metadata, is stored in memory. Various approaches

Table 1: The expanded list of Computational Motifs (Dwarfs). Here, we have identified data models used in the motifs
and provided illustrative examples. Some codes employ more than one motif. This project focuses on the top six (blue).

Motif Data Model/ Examples
Data Structure

Dense Linear Algebra a BLAS, LAPACK, ScaLAPACK, Matlab, S3D
Sparse Linear Algebra f OSKI, SuperLU, SpMV
Spectral Methods a FFT, Nek5000 (Nuclear Energy)
N-Body Methods b, e, j Molecular Dynamics, NN-Search
Structured Grids (+ AMR) a, b, c FLASH (Astrophysics), Chombo-based codes
Unstructured Grids (+ AMR) c UNIC, Phasta, SELFE numerical tsunami models
Monte Carlo, MapReduce a-l GFMC, EM, POV-Ray
Combinational Logic g, i RSA encryption, FastBit
Graph Traversal f, h S3D, Boost Graph Library (BGL), C4.5
Dynamic Programming a Smith-Waterman
String Searches d, e BLAST, HMMER
Backtrack and Branch-and-Bound f, i, g Clique, Kernel regression
Probabilistic Graphical Models h, k BBN, HMM, CRF
Finite State Machines l Collision detection

a–Multidimensional array, e.g., dense matrix in 2D; b–Point- or region-based quadtree, octree, compressed octree, or hyperoctree;
c–Lattice model; d–Suffix tree, suffix array; e–R-tree, B-tree, X-tree, and their variants; f–Sparse matrix, e.g., block compressed
sparse row (BCSR); g–Bitmap index, bitvector; h–Direct Acyclic Graph (DAG); i–Hash table, grid file; j–K-d tree; k–Junction tree;
l–Transition table, Petri net.

15

Motivation
Computational and Data Model Motifs
Existing I/O Libraries
Goals

Data Model Motifs

6

Motivation
Computational and Data Model Motifs
Existing I/O Libraries
Goals

Existing I/O Libraries

Storage data models developed in the 1990s; Network
Common Data Format (netCDF) and Hierarchical Data
Format (HDF)

I/O library interfaces still based on low-level vectors of
variables

Lack of support for sophisticated data models, e.g. AMR,
unstructured Grids, Geodesic grid, etc

Require too much work at application level to achieve close to
peak I/O performance

7

Motivation
Computational and Data Model Motifs
Existing I/O Libraries
Goals

Example: Lower Triangle Matrix

Damsel: A Data Model Storage Library for Exascale Science

Figure 2: Traditional I/O software stack.
Proposed work has impact on high-level
I/O libraries and I/O middleware.

Figure 3: One way in which storage models do not match perfectly
with application abstractions. Layout for a simple lower triangular ma-
trix results in wasted space and possibly lower performance (either
more seeks or larger I/O requests) when reading.

2.1 Today’s I/O Software Stack

I/O systems on modern HPC hardware is actually a stack of components, consisting of disk and network
hardware, high-level I/O libraries, and I/O middleware that link the two. A depiction of this I/O stack is
shown in Figure 2. At the bottom of this stack is the storage layer, appearing as a parallel file system
connected to disk and network hardware. I/O middleware, such as an MPI-IO implementation [17], sits on
top of the parallel file system and handles communication between parallel compute nodes and I/O nodes,
including management of both concurrency and locality of accessing data.

I/O middleware and lower layers are designed to maximize I/O throughput, primarily as a linear stream of
bytes. Computational science codes, in contrast, understand the semantics of those bytes, as grids, fields
on the grids, and metadata annotations to both. High level I/O libraries are designed to translate between
the semantic and storage representations. HDF5 and PnetCDF are the two most popular options in HPC,
supporting the management and organization of semantic information, as well as the mechanics of I/O
storage operations. Currently, these high-level I/O libraries present a data model based on multi-dimensional
arrays of typed elements, with annotations for timestamps, runtime parameters, or other provenance. In
addition to multi-dimensional arrays and attributes, the libraries also define a portable, self-describing on-
disk file format, making it easier to exchange data with colleagues.

However, even a fairly simple example of solution data on a structured grid can map to I/O libraries in
less than ideal ways. Figure 3 illustrates the mapping from a conceptually straightforward lower triangular
matrix to several storage layouts. The netCDF layout, based on fixed-dimensional arrays, results in an array
that wastes just under half its allocated space. HDF5 supports multi-dimensional arrays and chunk-based
allocators, which alleviate this problem somewhat. However, the application must specify the chunk size,
and coordinate matching the matrix structures to those chunks. This can add development complexity, and is
even more difficult for unstructured data types. A better approach would take advantage of the data model’s
semantic information and avoid allocating space that will not be used.

2.2 Data Models and Layouts

A data model describes how simulation data is represented and accessed. For discretization-based solutions
of PDEs, the data model includes a description of the discretized domain (space and time, and sometimes
other dimensions like energy), and field data computed by the simulation over those discretizations. The
data model is a key part of HPC codes and strongly influences the efficiency of both computation and
communication. At their core, scientific codes usually store the model as multi-dimensional arrays, since

5

8

Motivation
Computational and Data Model Motifs
Existing I/O Libraries
Goals

Example: FLASH

7	
 6	
 5	
 4	

1	

2	
 13	
 12	
 11	

14	
 17	
 16	
 15	
 3	
 10	
 9	
 8	

1	

2	

3	

4	
 5	

6	
 7	

8	

9	
 10	

11	

12	
 13	

14	
 15	

16	
 17	

Morton order

•  Red	
 boxes	
 are	
 cells	

•  Black	
 boxes	
 are	
 blocks	

Each	
 block	
 in	
 AMR	
 grid	

corresponds	
 to	
 a	
 tree	

node	

FLASH	
 -­‐	

AMR	
 Grid	
 	

9

Motivation
Computational and Data Model Motifs
Existing I/O Libraries
Goals

Example: FLASH

Parallel adaptive-mesh refinement (AMR) code; Block
structured - a block is the unit of computation

Tree information: FLASH uses tree data structure for storing
grid blocks and relationships among blocks, including lrefine,
which child, nodetype and gid.

Per-block metadata: FLASH stores the size and coordinates
of each block in three different arrays: coord, bsize and
bnd box

Solution Data: Physical variables i.e. located on actual grid
are stored in a multi-dimensional (5D) array e.g. UNK

10

Motivation
Computational and Data Model Motifs
Existing I/O Libraries
Goals

Goals

Provide higher-level data model API to describe more
sophisticated data models

Enable exascale computational science applications to interact
conveniently and efficiently with storage through the data
model API

Develop a data model storage library to support these data
models, provide efficient storage data layouts

Productizing Damsel and working with computational
scientists to encourage adoption of this library by the scientific
community

11

Damsel I/O Library

2 Damsel I/O Library
Introduction
Data Model

12

Damsel I/O Library
Introduction
Data Model

Big Picture

High	
 Level	
 I/O	

Libraries	

MOAB/
iMesh	
 HDF5	
 PNetCDF	
 DAMSEL	

HDF5	
 PNetCDF	

Data	
 Model	
 I/O	
 API	

I/O	
 Op@miza@ons	

Data	
 Layout	
 and	
 Metadata	

Management	

Applica@on	

13

Damsel I/O Library
Introduction
Data Model

Proposed Approach

Damsel: A Data Model Storage Library for Exascale Science

3 Damsel: A Data Model Storage Library

Based on our analysis of exascale application needs (Section 2), we propose to build Damsel, a new data
model storage library for exascale science. The approach in architecting Damsel is similar to the concept
of “verticals” successfully deployed in commercial software systems for building specific applications and
modules on top of a basic infrastructure. For example, companies such as Oracle, SAP, IBM etc. provide
basic infrastructure for data warehouses, but then build optimized modules based on the required data models
for each “vertical” (e.g., Supply Chain Management, Customer Analytics etc.). This facilitates optimizations
for data storage, access, and query.

Previous efforts to optimize parallel I/O throughput can be divided into either application-driven efforts,
which take advantage of knowledge of the application data model and computational concurrency, or I/O
system-based efforts, with closer focus on I/O middleware or below. Application-driven efforts to optimize
parallel I/O performance approach concurrency and layout in terms of the application, e.g., using knowledge
of the application’s data layout and by coordinating data reduction and I/O operations. For example, Fu et.
al [23] experimented with several application-driven strategies, improving I/O throughput by factors of 2-4
by carefully coordinating the concurrency of writing. Application-driven efforts attain significant wins for
specific codes, but they do not generalize and often do not take best advantage of I/O system software.

Other efforts have focused on the high-level I/O libraries themselves and on underlying middleware or
parallel file systems. These system-based efforts, such as improvements in MPI-IO implementations, are
general, but the interfaces involved do not allow this software to leverage data model specific knowledge in
the way that application-driven efforts can.

Figure 5: Traditional I/O software stack (left) and pro-
posed re-componentization (right). These new components
largely replace existing high-level I/O and I/O middleware
libraries.

We will bridge this gap between application-driven
and system-driven design efforts by focusing the
design of Damsel around the data models that tie
the two layers together. The result will be a widely-
applicable library that integrates well with I/O sys-
tem software and leverages data model knowledge
for more efficient I/O.

To address the limitations of the traditional I/O mid-
dleware stack (Figure 5, left), we will break the
traditional I/O stack’s functionality into more op-
timized and focused components (Figure 5, right):

• a set of I/O storage data models and application programming interfaces relevant to computational
science at exascale,

• a data layout component that maps these data models onto storage efficiently,

• a rich metadata representation and management layer that handles both internal metadata and that
generated by users and external tools,

• I/O optimizations: adaptive collective I/O, request aggregation, and virtual filing,

• storage access enhancements and optimizations that efficiently represent complex data models in
portable and extensible ways

In Section 3.1 we will discuss the data models, capabilities, and application interfaces that we will support
in Damsel. Following this we will discuss the research and development in data layout and metadata de-
sign (Section 3.2), and finally, the aggregation and storage access optimizations (Section 3.3) that we will

9

14

Damsel I/O Library
Introduction
Data Model

Proposed Approach

a set of data models I/O APIs relevant to computational
science applications

a data layout component that maps these data models onto
storage efficiently,

a rich metadata representation and management layer that
handles both internal metadata and that generated by users
and external tools,

I/O optimizations: adaptive collective I/O, request
aggregation, and virtual filing,

15

Damsel I/O Library
Introduction
Data Model

Data Model Components

Describe structural/(hierarchical) and solution information
through API

To describe the structural information, i.e. Grid data
Entity, Entity sets, Structured Blocks

To describe the solution variable, i.e. Solution data
Tags on Entities, Entity Sets, Structured Blocks

16

Damsel I/O Library
Introduction
Data Model

Example: Entity and Tags

vertex	

Edge	

Face	

Cell	
 center	

Ver1ces	

Cell	
 center	

Edge	

En11es:	
 Vertex,	
 Edge,	
 Rectangle,	
 Hex	

Tags:	
 Solu1on	
 data	
 at	
 ver1ces,	
 edges,	
 centers,	
 etc	

17

Damsel I/O Library
Introduction
Data Model

Example: Blocks and Tags

Step 3: Creating a cartesian mesh/structured block!

Step 1: Creating the first/start entity ! Step	
 2:	
 Defining	

start	
 coordinates,	

lengths,	
 number	
 of	

en::es	
 	

star:ng	
 en:ty	
 start_coord
[2]	
 =	
 {0.0,	
 0.0}	

num_en::es[0]	
 =	
 6	

num_en::es[1]	
 =	
 4	

Length[1]	
 =	
 0.5	

Length[0]	
 =	
 0.5	

Step 4: Tag the centers of entities in cartesian mesh/
structured block!

18

Damsel I/O Library
Introduction
Data Model

Example: Lower Triangle Matrix

Damsel: A Data Model Storage Library for Exascale Science

Figure 2: Traditional I/O software stack.
Proposed work has impact on high-level
I/O libraries and I/O middleware.

Figure 3: One way in which storage models do not match perfectly
with application abstractions. Layout for a simple lower triangular ma-
trix results in wasted space and possibly lower performance (either
more seeks or larger I/O requests) when reading.

2.1 Today’s I/O Software Stack

I/O systems on modern HPC hardware is actually a stack of components, consisting of disk and network
hardware, high-level I/O libraries, and I/O middleware that link the two. A depiction of this I/O stack is
shown in Figure 2. At the bottom of this stack is the storage layer, appearing as a parallel file system
connected to disk and network hardware. I/O middleware, such as an MPI-IO implementation [17], sits on
top of the parallel file system and handles communication between parallel compute nodes and I/O nodes,
including management of both concurrency and locality of accessing data.

I/O middleware and lower layers are designed to maximize I/O throughput, primarily as a linear stream of
bytes. Computational science codes, in contrast, understand the semantics of those bytes, as grids, fields
on the grids, and metadata annotations to both. High level I/O libraries are designed to translate between
the semantic and storage representations. HDF5 and PnetCDF are the two most popular options in HPC,
supporting the management and organization of semantic information, as well as the mechanics of I/O
storage operations. Currently, these high-level I/O libraries present a data model based on multi-dimensional
arrays of typed elements, with annotations for timestamps, runtime parameters, or other provenance. In
addition to multi-dimensional arrays and attributes, the libraries also define a portable, self-describing on-
disk file format, making it easier to exchange data with colleagues.

However, even a fairly simple example of solution data on a structured grid can map to I/O libraries in
less than ideal ways. Figure 3 illustrates the mapping from a conceptually straightforward lower triangular
matrix to several storage layouts. The netCDF layout, based on fixed-dimensional arrays, results in an array
that wastes just under half its allocated space. HDF5 supports multi-dimensional arrays and chunk-based
allocators, which alleviate this problem somewhat. However, the application must specify the chunk size,
and coordinate matching the matrix structures to those chunks. This can add development complexity, and is
even more difficult for unstructured data types. A better approach would take advantage of the data model’s
semantic information and avoid allocating space that will not be used.

2.2 Data Models and Layouts

A data model describes how simulation data is represented and accessed. For discretization-based solutions
of PDEs, the data model includes a description of the discretized domain (space and time, and sometimes
other dimensions like energy), and field data computed by the simulation over those discretizations. The
data model is a key part of HPC codes and strongly influences the efficiency of both computation and
communication. At their core, scientific codes usually store the model as multi-dimensional arrays, since

5

An	
 En%ty	
 in	
 	

Damsel	

A	

structured	

block	
 in	

Damsel	

19

Usecases

3 Usecases
Usecase I: FLASH
Usecase II: GCRM

20

Usecases
Usecase I: FLASH
Usecase II: GCRM

Introduction

7	
 6	
 5	
 4	

1	

2	
 13	
 12	
 11	

14	
 17	
 16	
 15	
 3	
 10	
 9	
 8	

1	

2	

3	

4	
 5	

6	
 7	

8	

9	
 10	

11	

12	
 13	

14	
 15	

16	
 17	

Morton order

•  Red	
 boxes	
 are	
 cells	

•  Black	
 boxes	
 are	
 blocks	

Each	
 block	
 in	
 AMR	
 grid	

corresponds	
 to	
 a	
 tree	

node	

FLASH	
 -­‐	

AMR	
 Grid	
 	

21

Usecases
Usecase I: FLASH
Usecase II: GCRM

Introduction

The FLASH is a modular, parallel multi-physics simulation
code capable of handling general compressible flow problems
found in many astrophysical environments.

Parallel adaptive-mesh refinement (AMR) code; Block
structured - a block is the unit of computation

Tree information: FLASH uses tree data structure for storing
grid blocks and relationships among blocks, including lrefine,
which child, nodetype and gid.

Per-block metadata: FLASH stores the size and coordinates
of each block in three different arrays: coord, bsize and
bnd box

Solution Data: Physical variables i.e. located on actual grid
are stored in a multi-dimensional (5D) array e.g. UNK

22

Usecases
Usecase I: FLASH
Usecase II: GCRM

FLASH using existing I/O Libraries

FLASH	
 in	
 PnetCDF	
 and	
 MOAB	

 moab::Core *mb = new moab::Core();!
 moab::ErrorCode rval;!
 moab::Range blk_handles;!
 moab::Tag unkTH, lrefineTH, scalarsTH;!
!
/*Step 1: Create an Entity Set*/!
 !
/*Step 2: Define/set tags for total_blocks,
runtime parameters, etc on the Entity set*/!
!
/*Step 3: Create FLASH blocks as vertices in
MOAB*/!
 rval = mb->create_vertices (block_coords,
total_blocks, blk_handles);!
 if (MB_SUCCESS != rval) return 1;!
!
/*Step 4: Define tags for the structural
information per block and solution data*/!
rval = mb->tag_create("lrefine", sizeof(int),
MB_TAG_DENSE, lrefineTH, lrefine);!
rval = mb->tag_create("unk", 10*(nxb*nyb*nzb)
*sizeof(double), MB_TAG_DENSE, unkTH, unk);!
!
/*Step 5: Set tags for tree & solution data*/!
rval = mb->tag_set_data(lrefineTH, blk_handles,
lrefine);!
rval = mb->tag_set_data(unkTH, blk_handles,
unk);!
!
/*Step 6: HDF5 File I/O*/!
/* Write data from memory to file */!

/*Step 1: Create data set*/!
ncmpi_create_data()!
!
/*Step 2: Define dimension*/!
status = ncmpi_def_dim(ncid, "dim_tot_blocks",
(MPI_Offset)(*total_blocks), &dim_tot_blocks); !
!
/*Step 3: Define variables*/!
Status = ncmpi_def_var (ncid,
"runtime_parameters", NC_INT, rank, dimids,
&varid[id]);!
status = ncmpi_def_var (ncid, "lrefine",
NC_INT, rank, dimids, &varid[id]);!
!
/*Step 4: Create attributes for some
variables*/!
status = ncmpi_put_att_int(ncid, 1,
intScalarNames[i], NC_INT, 1, &intScalarValues
[i]);!
!
/*Step 5: Write structural & solution data*/!
/* Write data from memory to file */!
 err = ncmpi_put_vara_all(fileID, varID,
diskStart, diskCount, pData, memCountScalar,
memType);!
!
/*Step 6: Close the dataset/file*/!
ncmpi_close(fileID);!
!

23

Usecases
Usecase I: FLASH
Usecase II: GCRM

FLASH using DAMSEL

Goal: to describe hierarchical/structural and solution
information through API

Entity

Cells as Rectangles
Blocks as Cartesian Mesh

Entity Sets

Blocks assigned to entity sets to define hierarchical/structural
information

Tags

Only for solution data

24

Usecases
Usecase I: FLASH
Usecase II: GCRM

FLASH using proposed DAMSEL API

Step 1: Creating the first/start entity !
damsel_create_entity();!
Step 2: Defining start coordinates, lengths, number
of entities !
Step 3: Creating a cartesian mesh/structured block!
damsel_cartesianmesh_create()!
Step 4: Defining hierarchy using Entity sets!

damsel_create_entityset()!
damsel_addEntities()!
damsel_addChildren(EntityHandle , EntityHandle Children
[])!

Step 5: Define and set tags!
damsel_tag_define()!
damsel_tag_setval()!

Step 6: Damsel I/O!

25

Usecases
Usecase I: FLASH
Usecase II: GCRM

Introduction

26

Usecases
Usecase I: FLASH
Usecase II: GCRM

Introduction

•  Grid data
–  Cell corners (2/cell)

–  Cell	
 edges	
 (3/cell)	

–  Layers	
 and	
 interfaces	

•  Solu8on	
 data	
 at	
 both	
 interfaces	
 and	
 layers	

–  Cell	
 centers,	
 	

–  corners,	
 edges

	
 	

	
 	

	
 	
 	
 	

Interface	

Interface	

Layer	

Corner	
 	

variables	

Edge-­‐centered	
 variables	

Cell-­‐centered	
 	

variables	

27

Usecases
Usecase I: FLASH
Usecase II: GCRM

GCRM using existing I/O Libraries

PNetCDF

Grid Data:

Dimensions: Cells, edges, interfaces, etc
Variables: grid center lat(cells), grid corner lat(corners),
cell corners(cells, cellcorners)

Solution Data:

float pressure(time, cells, layers)
float u(time, corners, layers)
float wind(time, edges, layers)

MOAB

A Hexagonal Prism entity to describe a cell

An unstructured mesh to describe GCRM grid (no hierarchical
information)

28

Usecases
Usecase I: FLASH
Usecase II: GCRM

GCRM using DAMSEL

A Hexagonal Prism entity to describe a cell

An unstructured mesh to describe GCRM grid (no hierarchical
information)

Or a structured mesh to describe GCRM grid

29

Usecases
Usecase I: FLASH
Usecase II: GCRM

Summary

Motivation

DAMSEL Data Model

Usecases: FLASH and GCRM

API Implementation and data layout work is in progress

30

	Motivation
	Motivation
	Computational and Data Model Motifs
	Existing I/O Libraries
	Goals

	Damsel
	Damsel I/O Library
	Introduction
	Data Model

	Usecases
	Usecases
	Usecase I: FLASH
	Usecase II: GCRM

