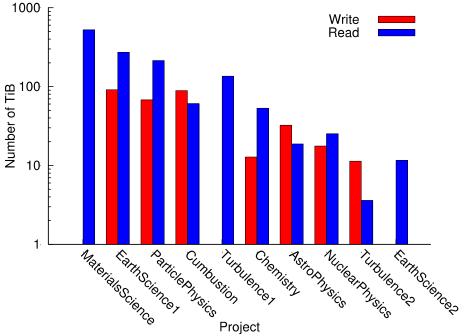

THE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Big Data in HPC Applications and Programming Abstractions

Saba Sehrish Oct 3, 2012

ANITA BORG INSTITUTE FOR WOMEN AND TECHNOLOGY


Association for Computing Machinery

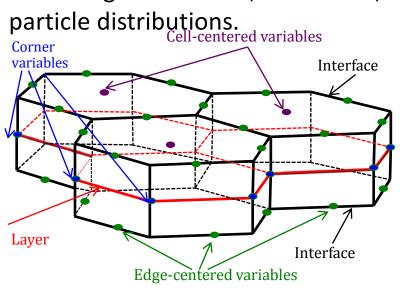
Big Data in Computational Science - Size

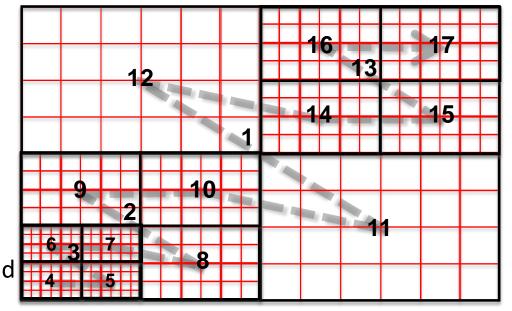
Data requirements for select 2012 INCITE applications at ALCF (BG/P)

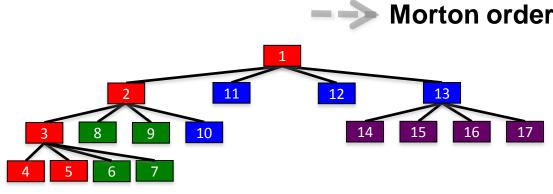
	On-line	Off-line
	Data	Data
Project	(TBytes)	(TBytes)
Supernovae Astrophysics	10	D 400
Combustion in Reactive Gases	:	1 17
CO2 Absorption		5 15
Seismic Hazard Analysis	60	0 100
Climate Science	20	D 750
Energy Storage Materials	10	0 10
Stress Corrosion Cracking	1	2 72
Nuclear Structure and Reactions	(5 30
Reactor Thermal Hydraulic Modeling	10	0 100
Laser-Plasma Interactions	6	D 60
Vaporizing Droplets in a Turbulent Flow	:	2 4

Top 10 data producer/consumers instrumented with Darshan over the month of July, 2011. Surprisingly, three of the top producer/consumers almost exclusively read existing data.

2012


THE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING




Association for

Big Data in Computational Science - Complexity

- Complexity is an artifact of science problems and codes:
- Complexity in data models multidimensional, hierarchical, treebased, graph-based, mesh-oriented, multi-component data sets
- Coupled multi-scale simulations generate multi-component datasets consisting of materials, fluid flows, and

Challenges we face in the I/O World

- We are looking at capacity but smart ways to manage the capacity to deal with not only size but complexity
- How are these data sets generated, which we need to store scientific simulations, observations/experiments/sensors
- How to store and retrieve data the I/O libraries
- What to store useful data
- What data formats self describing data
- What data layouts optimized way of data retrieval

012 THE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Association for Computing Machin

What I/O Programming Abstraction Options to use?

- Three Options
 Use existing programming abstractions and I/O frameworks
 Extend/Leverage these models
 Develop New models
- Existing I/O programming abstractions for I/O in science MPI-IO, PnetCDF, HDF5, ADIOS
- Abstractions in general for Big data: MapReduce (Hadoop)
- Extend/Leverage: RFSA, MRAP
- New: DAMSEL (incorporates data model of application into file formats and data layouts for exascale science)

Our Contributions

- Leverage Hadoop framework to understand scientific data formats and optimizations to improve performance
- Provide optimizations, etc for HPC applications with big data through RFSA
- Develop a new data model based I/O library

MRAP – MapReduce with Access Patterns

- MapReduce and the distributed file systems' applicability to HPC
- Successfully used with web applications at Yahoo!, Google, Facebook, etc
- Can it meet the requirements of I/O intensive HPC applications?

•Yes - because of a resilient framework that allows large scale data processing.

•No - because access patterns in traditional HPC applications do not match directly with MapReduce splits.

 In MRAP - we add these HPC data semantics to the MapReduce framework

2012 THE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

MRAP Design

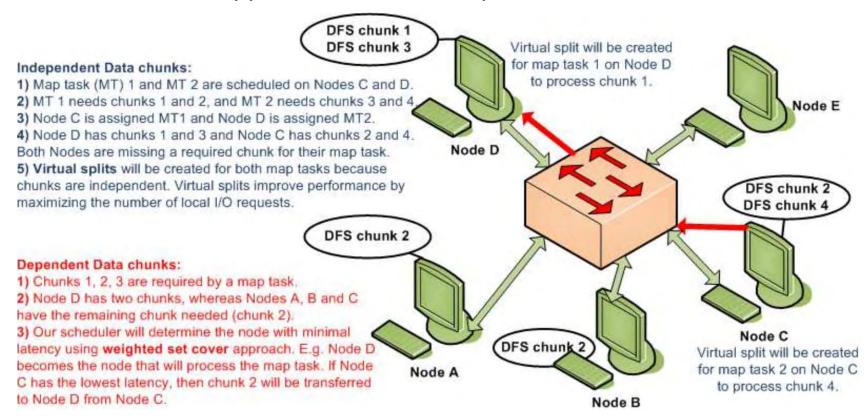
1. APIs and templates to specify the access patterns e.g. noncontiguous access patterns, matching patterns

sis

AP

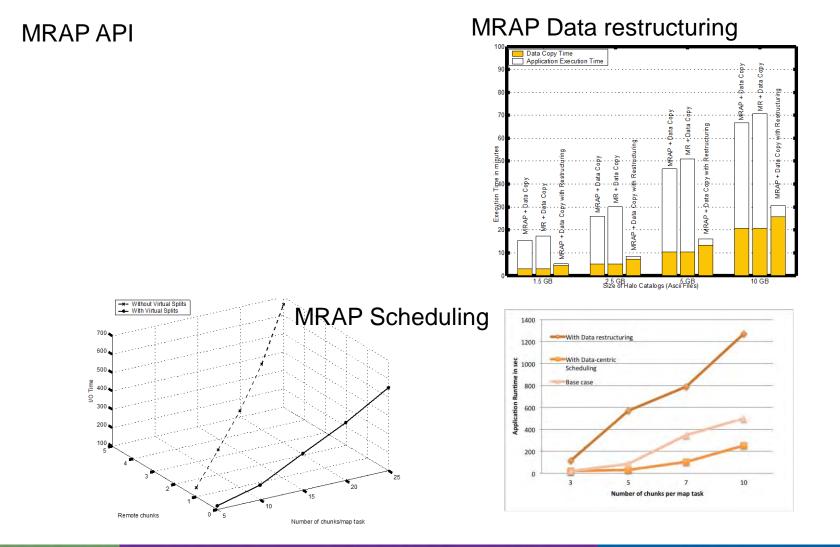
MRAP Optimizations

2. MRAP Data restructuring to organize data before hand to avoid/minimize data movement and remote data access


2012 THE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

MRAP Optimizations

3. MRAP Scheduling to improve data locality using a weighted set cover-based approach and virtual splits

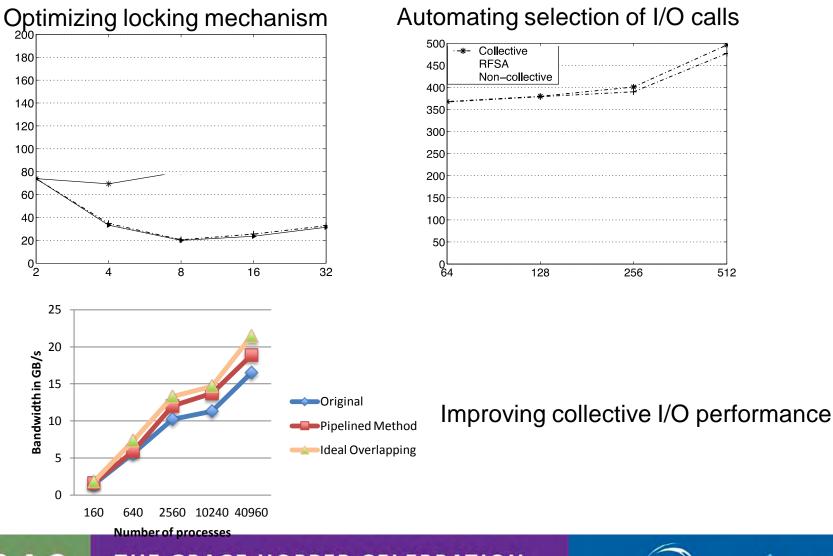


2012 THE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Performance Evaluations

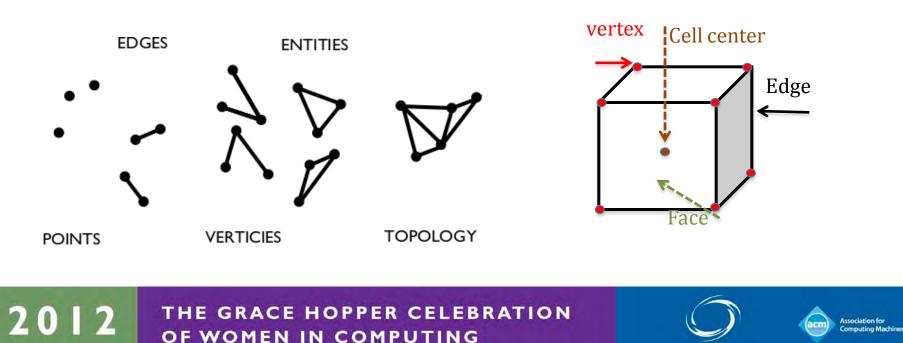
THE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

2012


RFSA – A reduced function set abstraction for MPI-IO

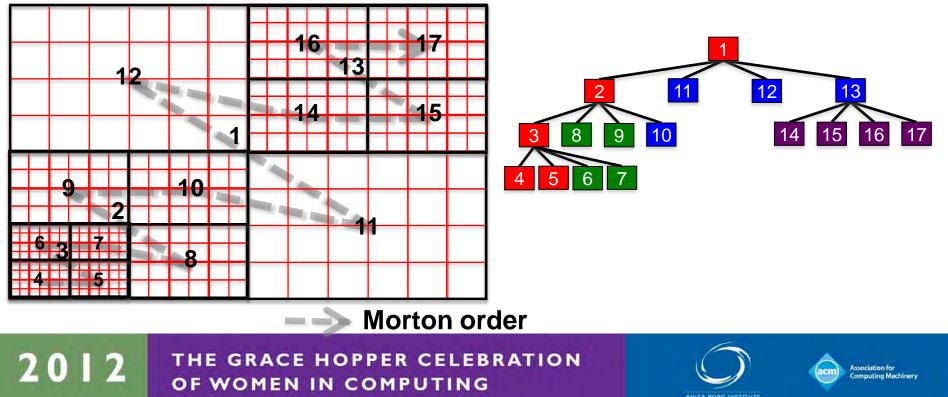
- Ways to improve MPI-IO functions
 - Programmer productivity
 - Reducing number of I/O calls e.g. by automatically choosing which read/write function to choose
 - Performance
 - Optimizing locking mechanism by proposing a conflict detection algorithm
 - Optimizing collective I/O by a pipelining mechanism to overlap communication and I/O

Performance Evaluation


2012

THE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Association for


DAMSEL

- Provide a set of API functions to support sophisticated data models e.g. block structured AMR, geodesic grid, etc
- Enable exascale computational science applications to interact conveniently and efficiently with the storage through data model API
- Develop a data model based storage library and provide efficient storage layouts

DAMSEL Example

- The FLASH is a modular, parallel multi-physics simulation, developed at University of Chicago
- □ Uses a structured adaptive-mesh refinement grid
 - The problem domain is hierarchically partitioned into blocks of equal sizes (in array elements)

Summary

- Too much described in very less time
- I/O Abstractions for Big data HPC applications
- MRAP
 - Based on MapReduce
- RFSA
 - Based on MPI-IO
- DAMSEL
 - Based on data models of computational applications

Acknowledgements

- University of Central Florida
 - Advisor: Jun Wang
 - Grant Mackey
- Northwestern University
 - Alok Choudhary
 - Wei-keng Liao
- Argonne National Laboratory
 - Rajeev Thakur
 - Rob Ross
 - Rob Latham
- Los Alamos National Laboratory/EMC
 - John Bent

2012 THE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Association for Computing Machine

Questions

2012

Saba Sehrish ssehrish@eecs.northwestern.edu

THE GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Association for Computing Machinery