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Big Data ...Popular View.. Streaming..
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Genomics

Data Volume increases
to 10 PBin FY21

Data Challenges in High Energy Physics:
Large Hadron Collider exemplar

High Energy Physics
(Large Hadron Collider)

15 PB of data/year

Light Sources

Approximately 300 TB/
day

- Climate
Data expected to be
=== = hundreds of 100 EB

Source Bill Harrod, SC12
plenary presentation

ATLAS and CMS detectors
generate analog data at rates
equivalent to 1PB/second
Output rate after data reduction is
1GB/second ~ 10PB/year
Storage of cumulative derived
data, simulated data, replicated
data is currently ~ 100PB, and is
rapidly increasing

Workflow: homogeneous
community of physicists access
read-only shared data using the
Worldwide LHC Computing Grid

Data Challenges in Large-Scale Slmulatlons
S3D Combustion code exemplar

* Goal: simulate turbulence-chemistry

» Exascale simulation will require 3PB

» Workflow challenges include co-

interaction at conditions that are

representative of realistic systems
» High pressure
» Turbulence intensity
* Turbulent length scales
» Sufficient chemical fidelity to differentiate
effects of fuels

of memory, and will generate 400PB
of raw data (1PB every 30 minutes)

design for simulation and in-situ
analyses

http://science.energy.gov/~/media/ascr/ascac/pdf/reports/2013/

ASCAC Data Intensive_Computing report final.pdf
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Thinking about BIG DATA?

Wikipedia Definition; “Big datais a collection of data

sets so large and complex that it becomes difficult to

process using on-hand database management tools
or traditional data processing applications.” ©
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Many thmk b1g data processmg is..




Drinking from a Firehose..
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To quench the thirst..
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“Data intensive” vs “Data Driven”

Data Intensive (D) Data Driven (DD)

« Perspective Driven . (Big) Data Analytics
o Processor, memory, o Top-down query

application, storage®¢ ,
, , o Bottom up discovery
* An applicafion can be (unpredictable TIR)
data intensive without o Predictive modeling

being I/O infensive « Usage model differences

DD is Not only about “What you Know”, It is ALSO
about “What else you may know”... and faster

® © Alok Choudhary 9



The Engagement?
enables

Data Intensive

Techniques in
Big Compute

Data Driven
Computing at
Scale

HW/SW design feedback
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... True Promise - Accelerating Time to
Actionable Insights

Data

intensive vs
Data-
driven?
%ys’gem Time to
dg51gn insights?
rivers

models
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CO2 levels hit new peak at key C| ) | S
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A Case for Big Compute + Big Data Science
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Understanding Climate Change — DI - Physics-Based Approach
(Simulation = Data Generator)

General Circulation Models: Mathematical models
with physical equations based on fluid dynamics

Parameterization and non-linearity
of differential equations are sources for uncertainty!

Figure Courtesy: NCAR
CCSM CAM3_ _ .
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anomalies from 1890-1919 (K)

Understanding Climate Change — (Simulation)
Physics Based Approach...
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Figure Courtesy: ORNL

2000

Ensemble average with

| observed greenhouse gas

concentrations

Ensemble average with
pre-industrial greenhouse
gas concentrations
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Simulation + data-driven science ©@

Physics based models are essential but Limited Disagreement between IPCC models

- Relatively reliable predictions at global scale for 8 - -
ancillary variables such as temperature

- Least reliable predictions for variables that are crucial
for impact assessment such as regional precipitation

“The sad truth of climate science is that the

A rm—

most crucial informat'ion is the least reliable” Regional hy;.r-olgy exhibits large
(Nature, 2010) variations among major IPCC model
projections
Low uncertainty | High uncertainty | Out of scope
Temperature Hurricanes Fires
Pressure Extremes Malaria outbreaks
Large-scale wind  Precipitation Landslides

® © Alok Choudhary ®15
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Data Driven Science — Operational to Strategic

Instrume sensors supercomputers

Transactional:
Data
Generation

Historical: Data
Processing,
transformation,
approximation

Discovery,
Insights,

Feedback

Data Mining,

analytics,
unsupervised
learning

Historical Learning Trigger/

data Models questions

Data
Management

Data
Reduction,

Query

Data
Visualization

Data Sharing

16



Transactional analytics to Data- Driven Science

Climate Data

(hPa)
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Anomaly time series

Extreme Normal
Climate Network Phase Phase
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Edge weights: significant correlations
Nodes in the graph: grid points on the globe

Multivariate Networks

Multiphase Networks
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Data Driven Science : Thinking about
Analytics?

Makes use of wealth of historical observational and simulation data
Accelerate Time-to-Discovery and Actionable Insights

4

Requires Understanding Analytics Algorithms and SW
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The Unknown

As we know,
There are known knowns.
There are things we know we know.

~_

\

* High Humidity results in outbreak of Meningitis
e Customers switch carriers when contract is over

Y

* Nuclear Reaction happens under these conditions

* Did combustion occur at the expected parameter
values

e.g., Statistics, Query, Transformation, Viz




The Unknown
As we know,
There are known knowns.
There are things we know we know.

We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.

REGION FOR PREDI

Top-Down Discovery - e Will this hurricane strike the Atlantic coast?

We know the question e What is the likelihood of this patient to
to ask develop cancer

e Will this customer buy a new smart phone?

Predictive Modeling...; e.g., SVM, Decision Trees

® © Alok Choudhary 20



The Unknown

But there are also unknown unknowns,
The ones we don't know

We don't know.

e Wow! I found a new galaxy?

 Switch C fails when switch A fails followed by
switch B failing

* On Thursday people buy beer and diaper
together.

* The ratio K/P > X is an indicator of onset of
diabetes.

Bottom up Discovery -

We don’t know the
question to ask

Relationship Mining, Clustering etc.. - ARM

® © Alok Choudhary ®2]



The Unknown Unknown

What Else you may find!

® © Alok Choudhary ®2?
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The HW/SW Design Goals?

Big Compute

Time to Compute

Big Data

Time to Insight

Speed of Data Output

Speed of data Ingestion

(Typically) Model Driven

(Typically) Data-Driven

End Consumer — (Typically designer

of algorithms and SW (scientist)

End consumer != Designer of

Performance Metrics — FLOPS

Algorithms or scientist

Performance Metric — Many

(Mostly) Latency Intolerance

Fault-tolerance important?

(Mostly) Latency Tolerant

Fault-tolerance : central

Top-Down Design

© Alok Choudhary

Bottom-up Design

24



Big Compute + Big Data Analytics = A
Knowledge Discovery Engine?

«=0=Big Compute ==Big Data Analytics “7+=BD+BC Knowledge Discovery Engine

® © Alok Choudhary ®25
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Computation Characteristics

ok Choudhary
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Extreme-scale System: An instrument and a
discovery engine

Millions of cores
Each core is a data generator

v
———————————————
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Big Compute + Big Data : Not a single
dimensional challenge

® © Alok Choudhary
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Big Data + Big Compute Strategy

Data P N

Intensive

Smarter
Systems +

Accelerated
Discovery

Driven

® © Alok Choudhary 029



Jin ok Accelerating Time to Discovery©

insertion of
new material

10 years for
insertion of
new material

BC: DW of
thousands of
DFT simulations

Experiment BD: Predictive
(synthesis) and Models for New
evaluation Materials

X Virtuous Cycle

BC: Validation
of Candidates Prioritization of

using Big top Candidates
Compute

® 30
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Who Knew?

The Unknown
As we know,

There are known knowns.
There are things we know we know.
We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.

But there are also unknown unknowns,
The ones we don't know
We don't know.

—Feb. 12, 2002, Department of Defense news briefing by
Donald Rumsfeld

. R

469-3?9 BC



Thank You!

Alok Choudhary
Dept. of Electrical Engineering and Computer Science
and Professor, Kellogg School of Management
Northwestern University
choudhar@eecs.northwestern.edu
312 515 2562

® © Alok Choudhary ®32



A different way of thinking: Extreme Computing
+ Big data analytics => Accelerating Discovery

MATERIAL
SCIENCE: A“paTA v
DRIVEN DISCOVERY”
WORTH A THOUSAND " | -
SIMULATIONS? ‘ ‘
.‘.

® © Alok Choudhary ® 33




Discovering Materials : Simulations =
Analvtics

Construction of FE Predictive Modeling Model Evaluation
prediction database
e Consists of compounds with known eConstruct data mining models to eTest model on unseen data
formation energy (FE) predict formation energy using 10-fold cross validation (data divided
eEmpiric periodic table information chemical formula and derivable into 10 segments, model built on 9
added (e.g. electro negativity, mass, empirical information segments and tested on remaining 1
atomic radii, # valence s, p, d, f segment; process repeated 10 times
electrons) with different test segment)

(a)

Large scale FE Validation

prediction

e Run combinatorial list
of compounds through
the FE model

e Thermodynamic
stability and heuristics

e Structure prediction

e Quantum mechanical
modeling

~ R g )

m
. . Shortlisted
Combinatorial . . Stable
. List of high- .
list of ternary . . : discovered
predictions potential
compounds structures

candidates

\ J \_ ),
(b)




Ranking — Approximation is good enough

for ranking

- ] DM: bin.
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False positive rate (1 - specificity)
© Alok Choudhary

(closing the loop)

T indicates a model prediction
associated with a known stable

ternary compound that had was
absent from DFT thermodynamic
database; the prediction

is thus confirmed, but no crystal
structure search was necessarys
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Data Analytics/Mining applications:
Do they have different characteristics?
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Clear Implications on architecture, modes, memory hierarchy and other

components. Identify similarities and design for co-existence
® © Alok Choudhary ® 39



Analytics Apps Algorithms and Kernels...?

Top 3 Kernels

Analytics Algorithms
Kernel 1 (%) Kernel 2 (%) Kernel 3 (%)

K-means Distance (68) Center (21) minDist (10) -
Fuzzy K-means Center (58) Distance (39) fuzzySum (1) -
BIRCH Distance (54) Variance (22) Redist (10) -
HOP Density (39) Search (30) Gather (23) -
Naive Bayesian probCal (49) Variance (38) dataRead (10) -
ScalParC Classify (37) giniCalc (36) Compare (24) -
Apriori Subset (58) dataRead (14) Increment (8) -
Eclat Intersect (39) addClass (23) invertC (10) -
SVMIlight quotMatrix (57) quadGrad (38) quotUpdate (2) -

® © Alok Choudhary
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Data Analytics — Broad Impact => Accelerating
Discoveries

Illustrative Applications Feature, data Data analysis kernels

reduction, or
analytics task

Chemistry, Climate, Combustion, Clustering k-means, fuzzy k-means, BIRCH, MAFIA,

Cosmology, Fusion, Materials DBSCAN, HOP, SNN, Dynamic Time Warping,

science, Plasma Random Walk

Biology, Climate, Combustion, Statistics Extrema, mean, quantiles, standard deviation,

Cosmology, Plasma, Renewable copulas, value-based extraction, sampling

energy

Biology, Climate, Fusion, Plasma Feature selection Data slicing, LVF, SFG, SBG, ABB, RELIEF

Chemistry, Materials science, Data transformations  Fourier transform, wavelet transform, PCA/

Plasma, Climate SVD/EQOF analysis, multidimensional scaling,
differentiation, integration

Combustion, Earth science Topology Morse-Smale complexes, Reeb graphs, level set
decomposition

Earth science Geometry Fractal dimension, curvature, torsion

Biology, Climate, Cosmology, Classification ScalParC, decision trees, Naive Bayes,

Fusion SVMlight, RIPPER

Chemistry, Climate, Combustion, Data compression PPM, LZW, JPEG, wavelet compression, PCA,

Cosmology, Fusion, Plasma Fixed-point representation

Climate Anomaly detection Entropy, LOF, GBAD

ClimategBasthcseisngeary Similarity / distance Cosine similarity, correlation (TAPER), mutual,

information, Student's t-test, Eulerian distance,



Right Computing infrastructure? What
characteristics do typical analytics functions have?

Benchmark of Applications
Parameter! SPECINT SPECFP MediaBench TPC-H MinsBsneh

Data References 0.81 0.55 0.56 0.48 1.10
Bus Accesses 0.030 0.034 0.002 0.010 0.937
Instruction Decodes 117 1.02 1.28 1.08 0.7%
Resource Related Stalls 0.66 1.04 0.14 0.69 0.43
CPI 143 1.66 1.16 1.36 1.84

ALU Instructions 0.25 0.29 0.27 0.30 0.31
L1 Misses 0.023 0.008 0.010 0.029 0.015
L2 Misses 0.003 0.003 0.0004 0.002 0.006
Branches 0.13 0.03 0.16 0.1 .94
Branch Mispredictions 0.009 0.0008 0.016 0.0006 .99

TThe numbers shown here for the parameters are values per Instruction

° © Alok Choudhary 42



Big Data: Generalization and Optimizations

Analytical
complexity

most data is
structured

Data
volume

Analytic
RDBMSs

coexistence .
most data is

unstructured

Generalized Non-

relational
RDBMSs systems

Data

® © Alok Choudhary variety
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Data = Information = Insights =

Actions

Operational
data &,

Historical
data

Business & X *

web content uﬂ

Web @
services  _

L

Event analytics
Text analytics

Data integration
& management

Data

warehouse
In-database

processing

Portal Scorecards
Mashups Dashboards
Gadgets Reports

Operational, tactical &
strategic analytics

In-memory
processing

® © Alok Choudhary
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Coupled Model Inter comparison P
Spatial resolution: 1 —0.25 degr, e
Temporal resolution: 6 hours

Models: 24 - 37

Simulation experiments: 10

o Conftrol runs & hindcast

o Decadal & centennial-scale
forecasts

Covers 1000s of simulation y
100+ variables

10s of TBs to 10s of PBs

Control, RCP4.5,
AMIP, &20C RcP8.5

E-driven E-driven
control & 20 C RCP8.5

1%/yr CO, (140 yrs)
abrupt 4XCO, (150 yrs)
fixed SST with 1x &

.....
-----

Summary of CMIP5 model
experiments, grouped into three tiers

® © Alok Choudhary @45
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\1E§ COMPUTER MODEL PLOTS
N

Contrast-based network mining for
discriminatory signatures

Hurricane

Novel dynamic graph clustering for T (G vaving
c N e\ ,A'r{omaly TFHC Indo-Pacific
dense directed graphs East Africa ST Anomaly

#RH Anomaly

April-June

THC: Thermohaline Circulation
AMO: Atlantic Meridional Oscillation

Improved forecast skill for seasonal
NSF News, DOE Research News, Science360

hurricane activity Sencan et al. IJCAI (2011)

. . endse et al. STAM SDM (2012)
Discovered key factors and mechanism hen et al. Data Mining & Knowledge Discovery (2012)

modulating NA hurricane variability = Chen et al. SIAM SDM (2013)

® © Alok Choudhary Chen et al. IJCAI (2013) Sy
Semazzi et al. in review at journal (2013)



From Science to Business + Social
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pry

btracted anomaly (hPa)
e

=

?

Monthy m

=

a5

g

g

£

£° 8

2

:

s,sl { |
95 96 97 98 99 00

01 02 03

20

Activity/interaction
based Network

A

subtracted anomaly (hPa)

Monthy mean
& 4

Years

Nodes int

Edge weights: significant

interactions/influence
| ?ne grap/h: peopfe/brands/...

Massive Data and

Soc1a1\141i\rllei;vgorks and Analysis

( Scalable W

Influence Tracking

\ Action-Based Connections

t Analytics J

Multi-language Learning and
Sentiment Predictive
Analytics Modeling

-8

interest.
) ®47




Data-Driven Knowledge
Discovery in Cli

Transformation from Data-Poor to Data-R
o Sensor Observations |
o Reanalysis Data
o Model Simulations

Surface Temperature [*C]
01JAN2011

A data-driven approach that:

* Makes use of wealth of observational and
simulation data

* Advances understanding of climate processes
* |Informs climate change impacts and adaptation

\\\\\
00000000

“Climate change research is now ‘big science,’
comparable in its magnitude, complexity, and societal
importance to human genomics and bioinformatics.”

(Nature Climate Change, Oct 2012)
® © Alok Choudhary ® 48



The Growth of Complexity = Need for Simplicity

Higher spatial or temporal resolution o ot

MD

o extremes analysis

o Network-based prediction

o Estimation of spatiotemporal
dependence

Higher data dimensionality

o Bayesian analysis of multi-model
ensembles

o Sampling-based statistical methods
o Multivariate quantile analysis

Greater complexity per data g ::

o Estimation of complex dependen
structures

o Handling non-stationarity h

o Multi-resolution analysis Prediction of land climate using ocean

Shorter response time climate variables T—

& ONPEFIEHVE My pothesis testing Crameroey and Gamguty, 20131 4

_Significant correlations for hurricane prediction

£ (Sencan, Chen, Hendrix, Pansombut, Semazzi, Choudhary,
Kumar, Melechko, and Samatova, 2011)

Y pREREEE




Structure-Property Optimization - Try
optimization for 10*3 dimensions

Microstructure
Representation

®

Traditional Method

/Features that
mathematically or
statistically describe
microstructures

=

® © Alok Choudhary

\ Find the value of )
microstructure that
leads to the extremal
properties
J . /
Database Feature
Construction [:‘:> Selection
/Randomly generated R Select a small set of
microstructure-property “critical” microstructure
pairs with most desired features
and most undesired
objectives
. > @ o =/
Data Mining Method
® 50

Global
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Accelerating Time to Insights

Experiment Result: Solution found IPerformance vs. Number of Yariables
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Actionable Insights? Unknown-

Unknown
Top Brand\
Affinity
' NIK;OWN
v o

=
)
vy

N Affinity
Mapping
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