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Table 2: Comparison between CNM and INC

that are attached to vertices in group I. According to  CNM___INC__

[1], maximum modularity does not necessarily reflect Q Mod Den*  Q Mod Den*

that a network has community structure. fb_dyn 0.11 2428.47  0.00 2622.88
tw_dyn 0.10 486.44 0.01 443.08
tw_stat 0.31 136.04 0.01 505.53

*Modularity density is the sum over the clusters of the ratio between
the difference of the internal and external degrees of the cluster and
cluster size.

Conclusion
User-interest model finds affiliations that are constantly
evolving either due to temporal or spatial activities. To
overcome the limitations of the widely used modularity
based algorithm (CNM), our approach incrementally
Wmdows extracts communities disregarding the influence of the
communities identified in the previous steps. This
allows us to extract better focused communities.

Figure 1: A large single community found by CNM [2]
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